Chromatic cohomology of finite groups 5

Neil Strickland

December 6, 2023

Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.

• Then
$$B\mathcal{F}_d \simeq B\Sigma_d$$
 and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.

- ▶ There is a diagonal functor $\delta: \mathcal{F} \to \mathcal{F} \times \mathcal{F}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{F}^2 \to \mathcal{F}$ given by $\sigma(X, Y) = X \amalg Y$ and $\mu(X, Y) = X \times Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \stackrel{\sigma,\mu}{\longleftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^{2} \stackrel{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \stackrel{\sigma_{1},\mu_{1}}{\longrightarrow} \Sigma^{\infty}_{+}B\mathcal{F}^{2} \stackrel{\delta_{1}}{\longrightarrow} \Sigma^{\infty}_{+}B\mathcal{F}$
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- ▶ Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{A} = \pi_0[\Theta^*, \mathcal{F}]$ be the set of isomorphism
- ► classes of finite sets with Θ^* -action. Then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = Map(\mathbb{A}, L)$.

$$\sigma^{*}(f)(X,Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \amalg Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X,Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.
- Then $B\mathcal{F}_d \simeq B\Sigma_d$ and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.
- ▶ There is a diagonal functor $\delta : \mathcal{F} \to \mathcal{F} \times \mathcal{F}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu : \mathcal{F}^2 \to \mathcal{F}$ given by $\sigma(X, Y) = X \amalg Y$ and $\mu(X, Y) = X \times Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \stackrel{\sigma,\mu}{\longleftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^{2} \stackrel{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \stackrel{\sigma_{1},\mu_{1}}{\longrightarrow} \Sigma^{\infty}_{+}B\mathcal{F}^{2} \stackrel{\delta_{1}}{\longrightarrow} \Sigma^{\infty}_{+}B\mathcal{F}$
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- ▶ Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{A} = \pi_0[\Theta^*, \mathcal{F}]$ be the set of isomorphism
- ► classes of finite sets with Θ^* -action. Then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = Map(\mathbb{A}, L)$.

$$\sigma^{*}(f)(X,Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \amalg Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X,Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.

• Then $B\mathcal{F}_d \simeq B\Sigma_d$ and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.

- ▶ There is a diagonal functor $\delta: \mathcal{F} \to \mathcal{F} \times \mathcal{F}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{F}^2 \to \mathcal{F}$ given by $\sigma(X, Y) = X \amalg Y$ and $\mu(X, Y) = X \times Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \stackrel{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \stackrel{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \stackrel{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \stackrel{\delta_1}{\rightarrow} \Sigma^{\infty}_{+}B\mathcal{F}$
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- ▶ Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{A} = \pi_0[\Theta^*, \mathcal{F}]$ be the set of isomorphism
- ► classes of finite sets with Θ^* -action. Then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = Map(\mathbb{A}, L)$.

$$\sigma^{*}(f)(X,Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \amalg Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X,Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.

• Then
$$B\mathcal{F}_d \simeq B\Sigma_d$$
 and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.

- ▶ There is a diagonal functor δ : $\mathcal{F} \to \mathcal{F} \times \mathcal{F}$ given by $\delta(X) = (X, X)$, and functors σ, μ : $\mathcal{F}^2 \to \mathcal{F}$ given by $\sigma(X, Y) = X \amalg Y$ and $\mu(X, Y) = X \times Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \xleftarrow{\sigma_{1,\mu}}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^{2} \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \xrightarrow{\sigma_{1,\mu_{1}}}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^{2} \xrightarrow{\delta_{1}}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- ▶ Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{A} = \pi_0[\Theta^*, \mathcal{F}]$ be the set of isomorphism
- ▶ classes of finite sets with Θ^* -action. Then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = Map(\mathbb{A}, L)$.

$$\sigma^{*}(f)(X,Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \amalg Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X,Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.

• Then
$$B\mathcal{F}_d \simeq B\Sigma_d$$
 and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.

- There is a diagonal functor δ: F → F × F given by δ(X) = (X, X), and functors σ, μ: F² → F given by σ(X, Y) = X ∐ Y and μ(X, Y) = X × Y.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$.

These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.

• Everything is easy to understand in generalised character theory.

- ▶ Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{A} = \pi_0[\Theta^*, \mathcal{F}]$ be the set of isomorphism
- ▶ classes of finite sets with Θ^* -action. Then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = Map(\mathbb{A}, L)$.

$$\sigma^{*}(f)(X,Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \sqcup Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X,Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.

• Then
$$B\mathcal{F}_d \simeq B\Sigma_d$$
 and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.

- There is a diagonal functor δ: F → F × F given by δ(X) = (X, X), and functors σ, μ: F² → F given by σ(X, Y) = X ∐ Y and μ(X, Y) = X × Y.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let A = π₀[Θ^{*}, F] be the set of isomorphism
 classes of finite sets with Θ^{*}-action. Then L_⊗²E⁰(BF) = Map(A, L).

$$\sigma^{*}(f)(X,Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \amalg Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X,Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.

• Then
$$B\mathcal{F}_d \simeq B\Sigma_d$$
 and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.

- There is a diagonal functor δ: F → F × F given by δ(X) = (X, X), and functors σ, μ: F² → F given by σ(X, Y) = X ∐ Y and μ(X, Y) = X × Y.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.

Everything is easy to understand in generalised character theory.

Recall that Θ^{*} = Zⁿ_p, and let A = π₀[Θ^{*}, F] be the set of isomorphism
 classes of finite sets with Θ^{*}-action. Then L²_{⊗E⁰}E⁰(BF) = Map(A, L).

$$\sigma^{*}(f)(X,Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \sqcup Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X,Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.

• Then
$$B\mathcal{F}_d \simeq B\Sigma_d$$
 and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.

- There is a diagonal functor δ: F → F × F given by δ(X) = (X, X), and functors σ, μ: F² → F given by σ(X, Y) = X ∐ Y and μ(X, Y) = X × Y.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- ► Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{A} = \pi_0[\Theta^*, \mathcal{F}]$ be the set of isomorphism
- ▶ classes of finite sets with Θ^* -action. Then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = \mathsf{Map}(\mathbb{A}, L)$.

$$\sigma^{*}(f)(X, Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X = Y \amalg Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X, Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X = Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X, Y) = |\operatorname{Iso}(X, Y)|f(X).$$

Let *F* be the groupoid of finite sets and bijections, and *F_d* the subgroupoid of sets of order *d*.

• Then
$$B\mathcal{F}_d \simeq B\Sigma_d$$
 and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.

- ▶ There is a diagonal functor δ : $\mathcal{F} \to \mathcal{F} \times \mathcal{F}$ given by $\delta(X) = (X, X)$, and functors σ, μ : $\mathcal{F}^2 \to \mathcal{F}$ given by $\sigma(X, Y) = X \amalg Y$ and $\mu(X, Y) = X \times Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.

Everything is easy to understand in generalised character theory.

- ▶ Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{A} = \pi_0[\Theta^*, \mathcal{F}]$ be the set of isomorphism
- ► classes of finite sets with Θ^* -action. Then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = Map(\mathbb{A}, L)$.

$$\sigma^{*}(f)(X,Y) = f(X \amalg Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \amalg Z} f(Y)g(Z)$$
$$\mu^{*}(f)(X,Y) = f(X \times Y) \qquad \mu^{!}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- A is the set of isomorphism classes of finite sets with action of $\Theta^* = \operatorname{Hom}(\Theta, \mathbb{Q}/\mathbb{Z}_{(p)}) \simeq \mathbb{Z}_p^n$; then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = \operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- This is enough to give a basis for E⁰(BΣ_d) as a module over E⁰, together with most of the algebraic structure.

• A is the set of isomorphism classes of finite sets with action of $\Theta^* = \operatorname{Hom}(\Theta, \mathbb{Q}/\mathbb{Z}_{(p)}) \simeq \mathbb{Z}_p^n$; then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = \operatorname{Map}(\mathbb{A}, L)$.

Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .

- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗⁰ E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗⁰ E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_{(p})). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- This is enough to give a basis for E⁰(BΣ_d) as a module over E⁰, together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗_{E⁰} E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗_{E⁰} E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗_{E⁰} E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any [X] ∈ A can be expressed uniquely as a disjoint union of [A^{*}]'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗_{E⁰} E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \otimes_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗_{E⁰} E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ¹-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗_{E⁰} E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ[!]-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗_{E⁰} E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ[!]-product, with Q as the module of indecomposables.
- ▶ This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

- A is the set of isomorphism classes of finite sets with action of Θ^{*} = Hom(Θ, ℚ/ℤ_(p)) ≃ ℤⁿ_p; then L_⊗_{E⁰} E⁰(BF) = Map(A, L).
- Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- We would like to say: spf(E⁰(BF)) is the scheme of iso classes of sets with action of Hom(G, Q/Z_(p)). But we do not know how to interpret that.
- For a finite subgroup A < Θ we have a surjective map Θ^{*} → A^{*} and thus an action of Θ^{*} on A^{*} so [A^{*}] ∈ A.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret Sub(G) as a moduli scheme of finite subgroups of G, and the main theorem is that spf(Q) = Sub(G).
- Also E⁰(BF) is polynomial over E⁰ under the σ[!]-product, with Q as the module of indecomposables.
- This is enough to give a basis for E⁰(B∑_d) as a module over E⁰, together with most of the algebraic structure.

- ▶ Let \mathbb{G} be a formal group over a base scheme *S*, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[x]$.
- ▶ The addition σ : $\mathbb{G} \times_{S} \mathbb{G} \to \mathbb{G}$ gives $\sigma^{*} : \mathcal{O}_{\mathbb{G}} \to \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x) = F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A = \operatorname{spf}(\mathcal{O}_{\mathbb{G}}/I) < \mathbb{G}$ with $\sigma(A \times_S A) \leq A$ such that \mathcal{O}_A is a finitely generated free module over \mathcal{O}_S .
- The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- ▶ The finite rank condition says that *A* is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent }\}$, $A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}$.
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{Sub_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{Sub_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[x]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{OS} O_G ≃ O_S [[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A = \operatorname{spf}(\mathcal{O}_{\mathbb{G}}/I) < \mathbb{G}$ with $\sigma(A \times_S A) \leq A$ such that \mathcal{O}_A is a finitely generated free module over \mathcal{O}_S .
- The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- ▶ The finite rank condition says that *A* is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent }\}, A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}.$
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{Sub_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{Sub_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S}O_G ≃ O_S[[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of G is a subscheme $A = \operatorname{spf}(\mathcal{O}_{\mathbb{G}}/I) < \mathbb{G}$ with $\sigma(A \times_S A) \leq A$ such that \mathcal{O}_A is a finitely generated free module over \mathcal{O}_S .
- The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- ▶ The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent }\}, A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}.$
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S} O_G ≃ O_S [[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- ▶ The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent }\}, A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}.$
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{Sub_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S} O_G ≃ O_S [[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent }\}, A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}.$
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S}O_G ≃ O_S[[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) *finite subgroup* of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- ▶ The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent }\}, A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}.$
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S}O_G ≃ O_S[[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent }\}, A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}.$
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{Sub_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S}O_G ≃ O_S[[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent } \}$, $A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}$.
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{Sub_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S}O_G ≃ O_S[[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent } \}$, $A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}$.
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S}O_G ≃ O_S[[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) *finite subgroup* of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent } \}$, $A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}$.
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.

Closure under addition: certain relations among the coefficients c_i.

- ▶ Thus, there is a universal example $\mathcal{O}_{Sub_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S} O_G ≃ O_S [[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent } \}$, $A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}$.
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[\![x]\!]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ► Thus, there is a universal example O_{Sub_n(G)} = O_S[[c₁,..., c_n]]/relations.
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S} O_G ≃ O_S [[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) finite subgroup of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ► The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent } \}$, $A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}$.
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{Sub_n(\mathbb{G})} = \mathcal{O}_S[[c_1, \ldots, c_n]]/\text{relations}.$
- ▶ In fact $\mathcal{O}_{Sub_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- The addition σ: G ×_S G → G gives σ^{*}: O_G → O_G ⊗_{O_S}O_G ≃ O_S[[y, z]] with σ^{*}(x) = F(y, z) for some formal group law F.
- A (globally defined) *finite subgroup* of G is a subscheme A = spf(O_G/I) < G with σ(A ×_S A) ≤ A such that O_A is a finitely generated free module over O_S.
- ► The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- The finite rank condition says that A is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent } \}$, $A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}$.
- More generally: consider O_S-algebras R together with schemes A = spf(R[[x]]/I) < spec(R) ×_S G where O_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- Closure under addition: certain relations among the coefficients c_i.
- ▶ Thus, there is a universal example $\mathcal{O}_{Sub_n(\mathbb{G})} = \mathcal{O}_S[[c_1, ..., c_n]]/\text{relations}$.
- ▶ In fact $\mathcal{O}_{\text{Sub}_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

- Now consider the formal group G for Morava E-theory.
- ► There is a universal ring R_d = O_{Sub_{pd}(G)} for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- ► The standard representation V of Σ_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **Theorem:** $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- **b** By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.
- Now consider the formal group G for Morava E-theory.
- There is a universal ring R_d = O_{Sub_pd}(G) for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- ► The standard representation V of Σ_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **Theorem:** $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- **b** By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group G for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_pd}(G) for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- ► The standard representation V of Σ_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **Theorem:** $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- by the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group \mathbb{G} for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_pd}(G) for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- ▶ Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- ► The standard representation V of Σ_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **Theorem:** $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- **b** By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group \mathbb{G} for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_pd}(G) for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- ▶ Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- ► The standard representation V of Σ_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **Theorem:** $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- **b** By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group \mathbb{G} for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_{pd}(G)} for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- ▶ Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- ► The standard representation V of Σ_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **Theorem:** $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- **b** By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group G for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_pd}(G) for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- ▶ Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- ► The standard representation V of Σ_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **•** Theorem: $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group \mathbb{G} for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_pd}(G) for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- ▶ Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- The standard representation V of \sum_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.

• Theorem: $R_d \simeq R'_d$.

- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- **b** By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group G for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_{pd}(G)} for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- ▶ Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- The standard representation V of \sum_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **•** Theorem: $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group \mathbb{G} for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_{pd}(G)} for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- ▶ Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- The standard representation V of \sum_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **•** Theorem: $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- **b** By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- Now consider the formal group G for Morava *E*-theory.
- There is a universal ring R_d = O_{Sub_pd}(G) for E⁰-algebras equipped with a finite subgroup A < spf(R_d) ×_S G of order p^d.
- ▶ Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_j))$ with i, j > 0 and $i + j = p^d$.
- The standard representation V of \sum_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{p^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \rightarrow R'_d$.
- **•** Theorem: $R_d \simeq R'_d$.
- If we tensor with L then the relationship between G and Θ becomes close, so L ⊗_{E⁰} R_d ≃ L ⊗_{E⁰} R'_d ≃ Map(Sub_{p^d}(Θ), L).
- Topological methods show that R'_d is a free module over E^0 .
- By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

- ▶ Recall $R'_d = E^0(B\Sigma_{p^d})/J$; now put $\overline{R}_d = R_d/(u_0, \dots, u_{n-1})$ and $\overline{R}'_d = K^0(B\Sigma_{p^d})/J$.
- Suppose we have a ring *P* which is a free module of finite rank over \mathbb{F}_p , and we have a relation $ab^k = 0$ in *P*.
- Then b^kP is a cyclic module over P/a and bⁱP/bⁱ⁺¹P is a cyclic module over P/b so dim(P) ≤ dim(P/a) + k dim(P/b).
- ▶ Using formal group theory we can define lots of quotients of \overline{R}_d to which this applies, and so get an upper bound for dim (\overline{R}_d) .
- ▶ By some combinatorics, this upper bound is the same as $|\operatorname{Sub}_{p^d}(\Theta)|$, which is the rank of R'_d over E^0 , or of \overline{R}'_d over \mathbb{F}_p .
- Now we know that all the ranks are the same, we can show that $R'_d = R_d$.

► Recall $R'_d = E^0(B\Sigma_{p^d})/J$; now put $\overline{R}_d = R_d/(u_0, \dots, u_{n-1})$ and $\overline{R}'_d = K^0(B\Sigma_{p^d})/J$.

- Suppose we have a ring *P* which is a free module of finite rank over \mathbb{F}_p , and we have a relation $ab^k = 0$ in *P*.
- Then b^kP is a cyclic module over P/a and bⁱP/bⁱ⁺¹P is a cyclic module over P/b so dim(P) ≤ dim(P/a) + k dim(P/b).
- ▶ Using formal group theory we can define lots of quotients of \overline{R}_d to which this applies, and so get an upper bound for dim (\overline{R}_d) .
- ▶ By some combinatorics, this upper bound is the same as $|\operatorname{Sub}_{p^d}(\Theta)|$, which is the rank of R'_d over E^0 , or of \overline{R}'_d over \mathbb{F}_p .
- Now we know that all the ranks are the same, we can show that $R'_d = R_d$.

- ► Recall $R'_d = E^0(B\Sigma_{p^d})/J$; now put $\overline{R}_d = R_d/(u_0, \dots, u_{n-1})$ and $\overline{R}'_d = K^0(B\Sigma_{p^d})/J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_p , and we have a relation $ab^k = 0$ in P.
- Then b^kP is a cyclic module over P/a and bⁱP/bⁱ⁺¹P is a cyclic module over P/b so dim(P) ≤ dim(P/a) + k dim(P/b).
- ▶ Using formal group theory we can define lots of quotients of \overline{R}_d to which this applies, and so get an upper bound for dim (\overline{R}_d) .
- ▶ By some combinatorics, this upper bound is the same as $|\operatorname{Sub}_{p^d}(\Theta)|$, which is the rank of R'_d over E^0 , or of \overline{R}'_d over \mathbb{F}_p .
- Now we know that all the ranks are the same, we can show that $R'_d = R_d$.

- ► Recall $R'_d = E^0(B\Sigma_{p^d})/J$; now put $\overline{R}_d = R_d/(u_0, \dots, u_{n-1})$ and $\overline{R}'_d = K^0(B\Sigma_{p^d})/J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_p , and we have a relation $ab^k = 0$ in P.
- Then b^kP is a cyclic module over P/a and bⁱP/bⁱ⁺¹P is a cyclic module over P/b so dim(P) ≤ dim(P/a) + k dim(P/b).
- ▶ Using formal group theory we can define lots of quotients of \overline{R}_d to which this applies, and so get an upper bound for dim(\overline{R}_d).
- ▶ By some combinatorics, this upper bound is the same as $|\operatorname{Sub}_{p^d}(\Theta)|$, which is the rank of R'_d over E^0 , or of \overline{R}'_d over \mathbb{F}_p .
- Now we know that all the ranks are the same, we can show that $R'_d = R_d$.

- ► Recall $R'_d = E^0(B\Sigma_{p^d})/J$; now put $\overline{R}_d = R_d/(u_0, \dots, u_{n-1})$ and $\overline{R}'_d = K^0(B\Sigma_{p^d})/J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p} , and we have a relation $ab^{k} = 0$ in P.
- Then b^kP is a cyclic module over P/a and bⁱP/bⁱ⁺¹P is a cyclic module over P/b so dim(P) ≤ dim(P/a) + k dim(P/b).
- ▶ Using formal group theory we can define lots of quotients of \overline{R}_d to which this applies, and so get an upper bound for dim (\overline{R}_d) .
- ▶ By some combinatorics, this upper bound is the same as $|\operatorname{Sub}_{p^d}(\Theta)|$, which is the rank of R'_d over E^0 , or of \overline{R}'_d over \mathbb{F}_p .
- Now we know that all the ranks are the same, we can show that $R'_d = R_d$.

- ► Recall $R'_d = E^0(B\Sigma_{p^d})/J$; now put $\overline{R}_d = R_d/(u_0, \dots, u_{n-1})$ and $\overline{R}'_d = K^0(B\Sigma_{p^d})/J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_p , and we have a relation $ab^k = 0$ in P.
- Then b^kP is a cyclic module over P/a and bⁱP/bⁱ⁺¹P is a cyclic module over P/b so dim(P) ≤ dim(P/a) + k dim(P/b).
- ▶ Using formal group theory we can define lots of quotients of \overline{R}_d to which this applies, and so get an upper bound for dim (\overline{R}_d) .
- By some combinatorics, this upper bound is the same as |Sub_{p^d}(Θ)|, which is the rank of R'_d over E⁰, or of R'_d over F_p.

Now we know that all the ranks are the same, we can show that $R'_d = R_d$.

- ► Recall $R'_d = E^0(B\Sigma_{p^d})/J$; now put $\overline{R}_d = R_d/(u_0, \dots, u_{n-1})$ and $\overline{R}'_d = K^0(B\Sigma_{p^d})/J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p} , and we have a relation $ab^{k} = 0$ in P.
- Then b^kP is a cyclic module over P/a and bⁱP/bⁱ⁺¹P is a cyclic module over P/b so dim(P) ≤ dim(P/a) + k dim(P/b).
- ▶ Using formal group theory we can define lots of quotients of \overline{R}_d to which this applies, and so get an upper bound for dim (\overline{R}_d) .
- By some combinatorics, this upper bound is the same as |Sub_{p^d}(Θ)|, which is the rank of R'_d over E⁰, or of R'_d over F_p.
- Now we know that all the ranks are the same, we can show that $R'_d = R_d$.

- ▶ Under mild conditions we have $E^0(X \times Y) = E^0(X) \otimes_{E^0} E^0(Y)$ and so $E^0(X^p) = E^0(X)^{\otimes p}$.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ▶ This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{b\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- ► Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{O_S} O_G, corresponding to a map Sub_pd(G) ×_S G → G.
- ▶ You should think of G as a bundle of groups over S. Given a point $a \in S$ and a subgroup $A < \mathbb{G}_a$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a,A}$: $\mathbb{G}_a \to \mathbb{G}_b$ with kernel A. The above map sends (A, x) to $q_A(x)$.

▶ Under mild conditions we have $E^0(X \times Y) = E^0(X) \otimes_{E^0} E^0(Y)$ and so $E^0(X^p) = E^0(X)^{\otimes p}$.

▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.

- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ▶ This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{h\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- ► Taking X = CP[∞] we get a ring map O_G → O_{Sub_{pd}(G)} ⊗_{O_S} O_G, corresponding to a map Sub_{pd}(G) ×_S G → G.
- ▶ You should think of G as a bundle of groups over S. Given a point $a \in S$ and a subgroup $A < \mathbb{G}_a$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a,A}$: $\mathbb{G}_a \to \mathbb{G}_b$ with kernel A. The above map sends (A, x) to $q_A(x)$.

▶ Under mild conditions we have $E^0(X \times Y) = E^0(X) \otimes_{E^0} E^0(Y)$ and so $E^0(X^p) = E^0(X)^{\otimes p}$.

▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.

- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ▶ This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{h\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{OS} O_G, corresponding to a map Sub_pd(G) ×_S G → G.
- ▶ You should think of G as a bundle of groups over S. Given a point $a \in S$ and a subgroup $A < \mathbb{G}_a$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a,A}$: $\mathbb{G}_a \to \mathbb{G}_b$ with kernel A. The above map sends (A, x) to $q_A(x)$.

- ▶ Under mild conditions we have $E^0(X \times Y) = E^0(X) \otimes_{E^0} E^0(Y)$ and so $E^0(X^p) = E^0(X)^{\otimes p}$.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ▶ This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{b\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{OS} O_G, corresponding to a map Sub_pd(G) ×_S G → G.
- You should think of G as a bundle of groups over S. Given a point a ∈ S and a subgroup A < G_a, it turns out that there is a canonical point b ∈ S and a surjective homomorphism q_{a,A}: G_a → G_b with kernel A. The above map sends (A, x) to q_A(x).

- ▶ Under mild conditions we have $E^0(X \times Y) = E^0(X) \otimes_{E^0} E^0(Y)$ and so $E^0(X^p) = E^0(X)^{\otimes p}$.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ► This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{h\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{OS} O_G, corresponding to a map Sub_pd(G) ×_S G → G.
- You should think of G as a bundle of groups over S. Given a point a ∈ S and a subgroup A < G_a, it turns out that there is a canonical point b ∈ S and a surjective homomorphism q_{a,A}: G_a → G_b with kernel A. The above map sends (A, x) to q_A(x).

- Under mild conditions we have E⁰(X × Y) = E⁰(X) ⊗_{E⁰} E⁰(Y) and so E⁰(X^p) = E⁰(X)^{⊗p}.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ► This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{b\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{OS} O_G, corresponding to a map Sub_pd(G) ×_S G → G.
- You should think of G as a bundle of groups over S. Given a point a ∈ S and a subgroup A < G_a, it turns out that there is a canonical point b ∈ S and a surjective homomorphism q_{a,A}: G_a → G_b with kernel A. The above map sends (A, x) to q_A(x).

- Under mild conditions we have E⁰(X × Y) = E⁰(X) ⊗_{E⁰} E⁰(Y) and so E⁰(X^p) = E⁰(X)^{⊗p}.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ► This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{b\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{OS} O_G, corresponding to a map Sub_pd(G) ×_S G → G.
- You should think of G as a bundle of groups over S. Given a point a ∈ S and a subgroup A < G_a, it turns out that there is a canonical point b ∈ S and a surjective homomorphism q_{a,A}: G_a → G_b with kernel A. The above map sends (A, x) to q_A(x).

- Under mild conditions we have E⁰(X × Y) = E⁰(X) ⊗_{E⁰} E⁰(Y) and so E⁰(X^p) = E⁰(X)^{⊗p}.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ► This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{h\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- ► Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{O_S} O_G, corresponding to a map Sub_pd(G) ×_S G → G.

You should think of G as a bundle of groups over S. Given a point a ∈ S and a subgroup A < G_a, it turns out that there is a canonical point b ∈ S and a surjective homomorphism q_{a,A}: G_a → G_b with kernel A. The above map sends (A, x) to q_A(x).

- Under mild conditions we have E⁰(X × Y) = E⁰(X) ⊗_{E⁰} E⁰(Y) and so E⁰(X^p) = E⁰(X)^{⊗p}.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ► This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{h\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- ► Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{O_S} O_G, corresponding to a map Sub_pd(G) ×_S G → G.

You should think of G as a bundle of groups over S. Given a point a ∈ S and a subgroup A < G_a, it turns out that there is a canonical point b ∈ S and a surjective homomorphism q_{a,A}: G_a → G_b with kernel A. The above map sends (A, x) to q_A(x).

- Under mild conditions we have E⁰(X × Y) = E⁰(X) ⊗_{E⁰} E⁰(Y) and so E⁰(X^p) = E⁰(X)^{⊗p}.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ► This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{h\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- ► Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{O_S} O_G, corresponding to a map Sub_pd(G) ×_S G → G.
- You should think of G as a bundle of groups over S. Given a point a ∈ S and a subgroup A < G_a, it turns out that there is a canonical point b ∈ S and a surjective homomorphism q_{a,A}: G_a → G_b with kernel A. The above map sends (A, x) to q_A(x).

- ▶ Under mild conditions we have $E^0(X \times Y) = E^0(X) \otimes_{E^0} E^0(Y)$ and so $E^0(X^p) = E^0(X)^{\otimes p}$.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- ► This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X_{h\Sigma_n}^p)/J \simeq R_1 \otimes E^0(X)$.
- There is a similar story involving \sum_{p^d} for d > 1.
- ► Taking X = CP[∞] we get a ring map O_G → O_{Sub_pd}(G) ⊗_{O_S} O_G, corresponding to a map Sub_pd(G) ×_S G → G.
- You should think of G as a bundle of groups over S. Given a point a ∈ S and a subgroup A < G_a, it turns out that there is a canonical point b ∈ S and a surjective homomorphism q_{a,A}: G_a → G_b with kernel A. The above map sends (A, x) to q_A(x).

- Let *F* be a finite field of characteristic not equal to *p*.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 ext{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Let F be a finite field of characteristic not equal to p.

- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$\mathit{GL}_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 ext{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x ↦ x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.
- We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 ext{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x ↦ x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$\mathit{GL}_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 ext{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- Let F be a finite field of characteristic not equal to p.
- ► To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$${\it GL}_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 ext{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- Let F be a finite field of characteristic not equal to p.
- ► To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure.

$$GL_1(\overline{E}) \sim \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z} \ (r, q)$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- Let F be a finite field of characteristic not equal to p.
- ► To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.
- We put 𝔑 = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.
Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- ► To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.
- We put 𝔑 = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

 $E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^{0}(BGL_{1}(\overline{F})^{d}) = E^{0}\llbracket x_{1}, \ldots, x_{d} \rrbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory.

The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the map

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} .

One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

 $BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the map

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this.

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

Recall that the group $\Gamma = Gal(\overline{F}/F)$ is generated by the Frobenius map ϕ .

Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}$$

Equivalently, we have $BGL_d(F)_E = \operatorname{Div}_d^+(\mathbb{H})^{\Gamma}$.

Recall that the group $\Gamma = \text{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ . Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}$$

Equivalently, we have $BGL_d(F)_E = \text{Div}_d^+(\mathbb{H})^{\Gamma}$.

Recall that the group $\Gamma = \text{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ . Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}$$

Equivalently, we have $BGL_d(F)_E = \text{Div}_d^+(\mathbb{H})^{\Gamma}$.

Recall that the group $\Gamma = \text{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ . Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}$$

Equivalently, we have $BGL_d(F)_E = \text{Div}_d^+(\mathbb{H})^{\Gamma}$.

Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.

▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.

- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(ℝ)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

• Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.

• We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.

▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}^+_d(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.

- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(ℝ)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

• Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.

• We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.

- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(ℝ)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_* L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $\mathcal{BL}\simeq \coprod_d \mathcal{E}\Sigma_d imes_{\Sigma_d} \mathcal{BGL}_1(\mathcal{F})^d.$

There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

► The index of $\Sigma_d \wr GL_1(F)^d$ in $GL_d(F)$ has index coprime to p, so $B\mathcal{L} \to B\mathcal{V}$ gives an epimorphism in *E*-cohomology. Earlier work on symmetric groups gives a good understanding of $E^0 B\mathcal{L}$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

► The index of $\Sigma_d \wr GL_1(F)^d$ in $GL_d(F)$ has index coprime to p, so $B\mathcal{L} \to B\mathcal{V}$ gives an epimorphism in *E*-cohomology. Earlier work on symmetric groups gives a good understanding of $E^0 B\mathcal{L}$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \stackrel{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \stackrel{\sigma_{1},\mu_{1}}{\longrightarrow} \Sigma^{\infty}_{+}B\mathcal{V}^{2} \stackrel{\delta_{1}}{\rightarrow} \Sigma^{\infty}_{+}B\mathcal{V}$
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{V})$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional *F*-linear representations of Θ^{*}. Then L_⊗_{E⁰} E⁰(BV) = Map(B, L).

$$\sigma^*(f)(X,Y) = f(X \oplus Y) \qquad \sigma^!(f \otimes g)(X) = \sum_{X=Y \oplus Z} f(Y)g(Z)$$

$$\delta^*(f \otimes g)(X) = f(X)g(X) \qquad \delta^!(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \stackrel{\sigma,\mu}{\longleftrightarrow} \Sigma^{\infty}_{+}B\mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \stackrel{\sigma_{1},\mu_{1}}{\longrightarrow} \Sigma^{\infty}_{+}B\mathcal{V}^{2} \stackrel{\delta_{1}}{\longrightarrow} \Sigma^{\infty}_{+}B\mathcal{V}$
- These satisfy many relations and give rich algebraic structure on $E^0(BV)$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional *F*-linear representations of Θ^{*}. Then L_⊗_{E⁰} E⁰(BV) = Map(B, L).

$$\sigma^{*}(f)(X,Y) = f(X \oplus Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \oplus Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{V})$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional *F*-linear representations of Θ^{*}. Then L_⊗_{E⁰} E⁰(BV) = Map(B, L).

$$\sigma^{*}(f)(X,Y) = f(X \oplus Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \oplus Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^0(BV)$.

Everything is easy to understand in generalised character theory.

Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional *F*-linear representations of Θ^{*}. Then L_⊗_{E⁰} E⁰(BV) = Map(B, L).

$$\sigma^{*}(f)(X,Y) = f(X \oplus Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \oplus Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^0(BV)$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional *F*-linear representations of Θ^{*}. Then L_⊗_{E⁰} E⁰(BV) = Map(B, L).

•
$$\sigma^*(f)(X,Y) = f(X \oplus Y) \qquad \sigma^!(f \otimes g)(X) = \sum_{X=Y \oplus Z} f(Y)g(Z)$$
$$\delta^*(f \otimes g)(X) = f(X)g(X) \qquad \delta^!(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^{2} \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \xrightarrow{\sigma_{1},\mu_{1}}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^{2} \xrightarrow{\delta_{1}}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^0(BV)$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional *F*-linear representations of Θ^{*}. Then L_⊗_{E⁰}E⁰(BV) = Map(B, L).

$$\sigma^*(f)(X,Y) = f(X \oplus Y) \qquad \sigma^!(f \otimes g)(X) = \sum_{X = Y \oplus Z} f(Y)g(Z)$$

$$\delta^*(f \otimes g)(X) = f(X)g(X) \qquad \delta^!(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^{2} \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \xrightarrow{\sigma_{1},\mu_{1}}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^{2} \xrightarrow{\delta_{1}}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^0(BV)$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional *F*-linear representations of Θ^{*}. Then L_⊗_{E⁰}E⁰(BV) = Map(B, L).

$$\sigma^*(f)(X,Y) = f(X \oplus Y) \qquad \sigma^!(f \otimes g)(X) = \sum_{X = Y \oplus Z} f(Y)g(Z)$$
$$\delta^*(f \otimes g)(X) = f(X)g(X) \qquad \delta^!(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^0(BV)$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}. Then L_⊗_{E⁰}E⁰(BV) = Map(B, L).

$$\begin{aligned} \sigma^*(f)(X,Y) &= f(X\oplus Y) \qquad \sigma^!(f\otimes g)(X) = \sum_{X=Y\oplus Z} f(Y)g(Z) \\ \delta^*(f\otimes g)(X) &= f(X)g(X) \qquad \delta^!(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X). \end{aligned}$$

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^0(BV)$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}. Then L_⊗_{E⁰}E⁰(BV) = Map(B, L).

$$\begin{aligned} & \sigma^*(f)(X,Y) = f(X\oplus Y) \qquad \sigma^!(f\otimes g)(X) = \sum_{X=Y\oplus Z} f(Y)g(Z) \\ & \delta^*(f\otimes g)(X) = f(X)g(X) \qquad \delta^!(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X). \end{aligned}$$

- ▶ For finite sets, any subset of $Y \amalg Z$ is $Y_0 \amalg Z_0$ with $Y_0 \subseteq Y$ and $Z_0 \subseteq Z$.
- ▶ But a subspace of $Y \oplus Z$ need not be $Y_0 \oplus Z_0$ with $Y_0 \leq Y$ and $Z_0 \leq Z$.
- ▶ This causes a lot of trouble with adapting the symmetric group proof.

- ▶ There is a diagonal functor $\delta: \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu: \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{V} \xleftarrow{\sigma,\mu}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xleftarrow{\delta}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{V} \xrightarrow{\sigma_1,\mu_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}^2 \xrightarrow{\delta_1}{\leftarrow} \Sigma^{\infty}_{+}B\mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^0(BV)$.
- Everything is easy to understand in generalised character theory.
- Recall that Θ^{*} = Zⁿ_p, and let B = π₀[Θ^{*}, V] be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}. Then L_⊗_{E⁰}E⁰(BV) = Map(B, L).

$$\sigma^{*}(f)(X,Y) = f(X \oplus Y) \qquad \sigma^{!}(f \otimes g)(X) = \sum_{X=Y \oplus Z} f(Y)g(Z)$$
$$\delta^{*}(f \otimes g)(X) = f(X)g(X) \qquad \delta^{!}(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ For finite sets, any subset of $Y \amalg Z$ is $Y_0 \amalg Z_0$ with $Y_0 \subseteq Y$ and $Z_0 \subseteq Z$.
- ▶ But a subspace of $Y \oplus Z$ need not be $Y_0 \oplus Z_0$ with $Y_0 \leq Y$ and $Z_0 \leq Z$.
- This causes a lot of trouble with adapting the symmetric group proof.

The Atiyah-Hirzebruch Spectral Sequence

• Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- lt is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: $H_*(B\mathcal{V}; K_*)$ is generated by $B\mathcal{V}_1$ and has countably many polynomial generators b_i and exterior generators e_i .
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

• Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: $H_*(B\mathcal{V}; K_*)$ is generated by $B\mathcal{V}_1$ and has countably many polynomial generators b_i and exterior generators e_i .
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(B\mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.
The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(B\mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- ▶ Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

• Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- ▶ Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

• Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^mi} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.

This is the most complex pattern of AHSS differentials that we have seen.

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^mi} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Put $I = \ker(E^0(B\mathcal{V}) \to E^0)$ and $I^{*2} = \sigma^!(I \otimes I)$ and $Q = I/I^{*2}$.
- This is still a ring with L ⊗_{E⁰} Q = Map(Irr(Θ^{*}), L), where Irr(Θ^{*}) = Hom(Θ^{*}, GL₁(F))/Gal is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
- ▶ We find that $Q \simeq \prod_m D_m^{\Gamma}$, where $D_m^{\Gamma} = E^0 \llbracket y \rrbracket / g_m(y)$ for a certain monic polynomial $g_m(y)$.
- All this and many more details have nice interpretations in formal group theory.

▶ Put $I = \ker(E^0(B\mathcal{V}) \to E^0)$ and $I^{*2} = \sigma^!(I \otimes I)$ and $Q = I/I^{*2}$.

- This is still a ring with L ⊗_{E⁰} Q = Map(Irr(Θ^{*}), L), where Irr(Θ^{*}) = Hom(Θ^{*}, GL₁(F))/Gal is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
- ▶ We find that $Q \simeq \prod_m D_m^{\Gamma}$, where $D_m^{\Gamma} = E^0 \llbracket y \rrbracket / g_m(y)$ for a certain monic polynomial $g_m(y)$.
- All this and many more details have nice interpretations in formal group theory.

- ▶ Put $I = \ker(E^0(B\mathcal{V}) \to E^0)$ and $I^{*2} = \sigma^!(I \otimes I)$ and $Q = I/I^{*2}$.
- This is still a ring with L ⊗_{E⁰} Q = Map(Irr(Θ^{*}), L), where Irr(Θ^{*}) = Hom(Θ^{*}, GL₁(F))/Gal is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
- ▶ We find that $Q \simeq \prod_m D_m^{\Gamma}$, where $D_m^{\Gamma} = E^0 \llbracket y \rrbracket / g_m(y)$ for a certain monic polynomial $g_m(y)$.
- All this and many more details have nice interpretations in formal group theory.

- ▶ Put $I = \ker(E^0(B\mathcal{V}) \to E^0)$ and $I^{*2} = \sigma^!(I \otimes I)$ and $Q = I/I^{*2}$.
- This is still a ring with L ⊗_{E⁰} Q = Map(Irr(Θ^{*}), L), where Irr(Θ^{*}) = Hom(Θ^{*}, GL₁(F))/Gal is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
- ▶ We find that $Q \simeq \prod_m D_m^{\Gamma}$, where $D_m^{\Gamma} = E^0 \llbracket y \rrbracket / g_m(y)$ for a certain monic polynomial $g_m(y)$.
- All this and many more details have nice interpretations in formal group theory.

- ▶ Put $I = \ker(E^0(B\mathcal{V}) \to E^0)$ and $I^{*2} = \sigma^!(I \otimes I)$ and $Q = I/I^{*2}$.
- This is still a ring with L ⊗_{E⁰} Q = Map(Irr(Θ*), L), where Irr(Θ*) = Hom(Θ*, GL₁(F))/Gal is the set of isomorphism classes of irreducible F-linear representations of Θ*.
- ▶ We find that $Q \simeq \prod_m D_m^{\Gamma}$, where $D_m^{\Gamma} = E^0 \llbracket y \rrbracket / g_m(y)$ for a certain monic polynomial $g_m(y)$.
- All this and many more details have nice interpretations in formal group theory.