Chromatic cohomology of finite groups 5

Neil Strickland

December 6, 2023

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
\Rightarrow Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
- There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$
\Rightarrow These give maps $\Sigma_{+}^{\infty} B \mathcal{F} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \leftarrow \Sigma_{+}^{\infty} B \mathcal{F}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B F)$.
\Rightarrow Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{A}=\pi_{0}\left[\Theta^{*}, \mathcal{F}\right]$ be the set of isomorphism
- classes of finite sets with Θ^{*}-action. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.

$$
\begin{array}{rlrl}
\sigma^{*}(f)(X, Y) & =f(X \amalg Y) & \sigma^{!}(f \otimes g)(X) & =\sum_{X=Y \amalg Z} f(Y) g(Z) \\
\mu^{*}(f)(X, Y)=f(X \times Y) & \mu^{!}(f \otimes g)(X) & \sim \sum_{X=Y \times Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{!}(f)(X, Y) & =|\operatorname{Iso}(X, Y)| f(X)
\end{array}
$$

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
\Rightarrow Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
- There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$
- These give maps $\Sigma_{+}^{\infty} B \mathcal{F} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \leftarrow \Sigma_{+}^{\infty} B \mathcal{F}$
and also transfers $\sum_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{F}$
- These satisfy many relations and give rich algebraic structure on $E^{0}(B F)$.
\Rightarrow Everything is easy to understand in generalised character theory.
\checkmark Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{A}=\pi_{0}\left[\Theta^{*}, \mathcal{F}\right]$ be the set of isomorphism - classes of finite sets with Θ^{*}-action. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.

$$
\begin{aligned}
\sigma^{*}(f)(X, Y)=f(X \amalg Y) & \sigma^{!}(f \otimes g)(X) & =\sum_{X=Y \amalg Z} f(Y) g(Z) \\
\mu^{*}(f)(X, Y)=f(X \times Y) & \mu^{!}(f \otimes g)(X) & \sim \sum_{X=Y \times Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{!}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X)
\end{aligned}
$$

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
- Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
\Rightarrow There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$

and also transfers $\Sigma_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu \mid} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\circ} \Sigma_{+}^{\infty} B \mathcal{F}$
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{F})$.
- Everything is easy to understand in generalised character theory.
\Rightarrow Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{A}=\pi_{0}\left[\Theta^{*}, \mathcal{F}\right]$ be the set of isomorphism
\Rightarrow classes of finite sets with Θ^{*}-action. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.

$$
\begin{array}{ll}
\sigma^{*}(f)(X, Y)=f(X \text { II Y) } & \sigma^{\prime}(f \otimes g)(X)=\sum_{X=Y \amalg Z} f(Y) g(Z) \\
\mu^{*}(f)(X, Y)=f(X \times Y) & \mu^{\prime}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{\prime}(f)(X, Y)=|\operatorname{lso}(X, Y)| f(X)
\end{array}
$$

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
- Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
- There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{F} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}^{2}{ }_{\leftarrow}^{\delta} \Sigma_{+}^{\infty} B \mathcal{F}$
and also transfers $\sum_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu_{1}} \sum_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\delta_{1}} \sum_{+}^{\infty} B \mathcal{F}$
- These satisfy many relations and give rich algebraic structure on $E^{0}(B F)$.
\Rightarrow Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{A}=\pi_{0}\left[\Theta^{*}, \mathcal{F}\right]$ be the set of isomorphism
\Rightarrow classes of finite sets with Θ^{*}-action. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
$\sigma^{*}(f)(X, Y)=f(X \amalg Y) \quad \sigma^{!}(f \otimes g)(X)=\sum_{X=Y \amalg Z} f(Y) g(Z)$
$\mu^{*}(f)(X, Y)=f(X \times Y) \quad \mu^{\prime}(f \otimes g)(X) \sim \sum_{X=Y \times Z} f(Y) g(Z)$

$$
\delta^{*}(f \otimes g)(X)=f(X) g(X)
$$

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
- Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
- There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{F} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{F}$.
\rightarrow These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{F})$.
\rightarrow Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{A}=\pi_{0}\left[\Theta^{*}, \mathcal{F}\right]$ be the set of isomorphism \rightarrow classes of finite sets with Θ^{*}-action. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
- Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
- There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{F} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{F})$.
\Rightarrow Everything is easy to understand in generalised character theory.
\checkmark Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{A}=\pi_{0}\left[\Theta^{*}, \mathcal{F}\right]$ be the set of isomorphism - classes of finite sets with Θ^{*}-action. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
- Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
- There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{F} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- classes of finite sets with Θ^{*}-action.

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
- Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
- There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{F} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{A}=\pi_{0}\left[\Theta^{*}, \mathcal{F}\right]$ be the set of isomorphism \Rightarrow classes of finite sets with Θ^{*}-action. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_{d} the subgroupoid of sets of order d.
- Then $B \mathcal{F}_{d} \simeq B \Sigma_{d}$ and $B \mathcal{F} \simeq \coprod_{d} B \Sigma_{d}$.
- There is a diagonal functor $\delta: \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{F}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{F}^{2} \rightarrow \mathcal{F}$ given by $\sigma(X, Y)=X \amalg Y$ and $\mu(X, Y)=X \times Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{F} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{F}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{F} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{F}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{F}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{A}=\pi_{0}\left[\Theta^{*}, \mathcal{F}\right]$ be the set of isomorphism
- classes of finite sets with Θ^{*}-action. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.

$$
\begin{array}{rlrl}
\sigma^{*}(f)(X, Y) & =f(X \amalg Y) & \sigma^{!}(f \otimes g)(X) & =\sum_{X=Y \amalg Z} f(Y) g(Z) \\
\mu^{*}(f)(X, Y)=f(X \times Y) & \mu^{!}(f \otimes g)(X) & \sim \sum_{X=Y \times Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{!}(f)(X, Y) & =|\operatorname{Iso}(X, Y)| f(X)
\end{array}
$$

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n} ;$ then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B F)\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$. But we do not know how to interpret that.
\rightarrow For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
\rightarrow Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]$'s.
\Rightarrow Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma_{!}(I \otimes I)$ and $Q=I / I^{* 2}$. This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.
- Also $E^{0}(B F)$ is polynomial over E^{0} under the σ^{1}-product, with Q as the module of indecomposables.
\Rightarrow This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0}, together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n}$; then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]$'s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma_{!}(I \otimes I)$ and $Q=I / I^{* 2}$. This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$
- Also $E^{0}(B F)$ is polynomial over E^{0} under the $\sigma^{!}$-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0}, together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n}$; then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]$'s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$
\Rightarrow Also $E^{0}(B F)$ is polynomial over E^{0} under the σ^{1}-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0} together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n}$; then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$.
\Rightarrow For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]$'s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and I This is still a ring using δ^{*}, with $L \hat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.
- Also $E^{0}(B \mathcal{F})$ is polynomial over E^{0} under the $\sigma^{!}$-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0} together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n} ;$ then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(\rho)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]$'s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and I This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E 0} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.
- Also $E^{0}(B \mathcal{F})$ is polynomial over E^{0} under the σ^{3}-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0}, together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n} ;$ then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
\Rightarrow Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]$'s. Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and I^{\prime} This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.
- Also $E^{0}(B \mathcal{F})$ is polynomial over E^{0} under the σ^{4}-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0}, together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n}$; then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(\rho)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]$'s.

This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$.

- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.
\Rightarrow Also $E^{0}(B F)$ is polynomial over E^{0} under the σ^{\prime}-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0}, together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n} ;$ then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(\rho)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]$'s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma_{!}(I \otimes I)$ and $Q=I / I^{* 2}$.
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.
- Also $E^{0}(B \mathcal{F})$ is polynomial over E^{0} under the σ^{4}-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0} together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n} ;$ then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]^{\prime}$ s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma_{!}(I \otimes I)$ and $Q=I / I^{* 2}$. This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$.

\Rightarrow We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$

- Also $E^{0}(B \mathcal{F})$ is polynomial over E^{0} under the σ^{1}-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0} together with most of the algebraic structure

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n}$; then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]^{\prime}$'s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma_{!}(I \otimes I)$ and $Q=I / I^{* 2}$. This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n}$; then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]^{\prime}$'s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma_{!}(I \otimes I)$ and $Q=I / I^{* 2}$. This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.
- Also $E^{0}(B \mathcal{F})$ is polynomial over E^{0} under the $\sigma^{!}$-product, with Q as the module of indecomposables.
\Rightarrow This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0}, together with most of the algebraic structure.

Symmetric groups

- \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^{*}=\operatorname{Hom}\left(\Theta, \mathbb{Q} / \mathbb{Z}_{(p)}\right) \simeq \mathbb{Z}_{p}^{n}$; then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{F})=\operatorname{Map}(\mathbb{A}, L)$.
- Analogy: the group $\Theta=\left(\mathbb{Q} / \mathbb{Z}_{(p)}\right)^{n}$ is like the formal group scheme \mathbb{G}.
- We would like to say: $\operatorname{spf}\left(E^{0}(B \mathcal{F})\right)$ is the scheme of iso classes of sets with action of $\operatorname{Hom}\left(\mathbb{G}, \mathbb{Q} / \mathbb{Z}_{(p)}\right)$. But we do not know how to interpret that.
- For a finite subgroup $A<\Theta$ we have a surjective map $\Theta^{*} \rightarrow A^{*}$ and thus an action of Θ^{*} on A^{*} so $\left[A^{*}\right] \in \mathbb{A}$.
- Any $[X] \in \mathbb{A}$ can be expressed uniquely as a disjoint union of $\left[A^{*}\right]^{\prime}$'s.
- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{F}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma_{!}(I \otimes I)$ and $Q=I / I^{* 2}$. This is still a ring using δ^{*}, with $L \widehat{\otimes}_{E^{0}} Q=\operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- We do know how to interpret $\operatorname{Sub}(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G}, and the main theorem is that $\operatorname{spf}(Q)=\operatorname{Sub}(\mathbb{G})$.
- Also $E^{0}(B \mathcal{F})$ is polynomial over E^{0} under the $\sigma^{!}$-product, with Q as the module of indecomposables.
- This is enough to give a basis for $E^{0}\left(B \Sigma_{d}\right)$ as a module over E^{0}, together with most of the algebraic structure.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket x \rrbracket$
- The addition $\sigma: \mathbb{G} \times_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma(A \times s A) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
\Rightarrow Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$
\rightarrow Example: $\mathcal{O}_{S}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
- More generally: consider \mathcal{O}_{S}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket x \rrbracket / I)<\operatorname{spec}(R) \times s \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_{A}=R \| x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
- Closure under addition: certain relations among the coefficients c_{i}.
- Thus, there is a universal example $\mathcal{O}_{\text {sub }_{n}(\mathbb{G})}=\mathcal{O}_{s} \llbracket c_{1}, \ldots, c_{n} \rrbracket /$ relations.
\Rightarrow In fact $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket \times \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma(A \times s A) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$
- Example: $\mathcal{O}_{S}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$
- More generally: consider \mathcal{O}_{s}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket \times \rrbracket / I)<\operatorname{spec}(R) \times{ }_{S} \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_{A}=R \llbracket x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$
\Rightarrow Closure under addition: certain relations among the coefficients c_{i}
- Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s} \llbracket c_{1}, \ldots, c_{n} \rrbracket /$ relations.
- In fact $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=0$ unless $n=p^{d}$ for some d

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{s} \llbracket x \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma(A \times s A) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq\left|\widehat{\otimes}_{S} \mathcal{O}_{G}+\mathcal{O}_{\mathrm{G}} \widehat{\otimes}_{S}\right|$
- The finite rank condition says that A is a divisor
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$
- Example: $\mathcal{O}_{S}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$
- More generally: consider \mathcal{O}_{s}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket \times \rrbracket / I)<\operatorname{spec}(R) \times_{S} \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition
- Free module condition: $\mathcal{O}_{A}=R \llbracket x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$
\rightarrow Closure under addition: certain relations among the coefficients c_{i}
\rightarrow Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s}\left[c_{1}, \ldots, c_{n}\right] /$ relations .
- In fact $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{s} \llbracket x \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma(A \times s A) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$
- Example: $\mathcal{O}_{S}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$
- More generally: consider \mathcal{O}_{s}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket \times \rrbracket / I)<\operatorname{spec}(R) \times{ }_{S} \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition
- Free module condition: $\mathcal{O}_{A}=R[x] / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
\rightarrow Closure under addition: certain relations among the coefficients C_{i}
\rightarrow Thus, there is a universal example $\mathcal{O}_{\text {sub }_{n}(\mathbb{G})}=\mathcal{O}_{s}\left[c_{1}, \ldots, c_{n}\right] /$ relations .
- In fact $\mathcal{O}_{\text {Sub }_{n}(\mathrm{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket \times \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{s} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{s}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma(A \times s A) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
\Rightarrow The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$
\triangleright Example: $\mathcal{O}_{S}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
\Rightarrow More generally: consider \mathcal{O}_{S}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket \times \rrbracket / I)<\operatorname{spec}(R) \times s \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
\Rightarrow Free module condition: $\mathcal{O}_{A}=R \llbracket x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
- Closure under addition: certain relations among the coefficients c_{i} \rightarrow Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s}\left[c_{1}, \ldots, c_{n}\right] /$ relations.
- In fact $\mathcal{O}_{\text {Sub }_{n}(\mathrm{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket \times \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{s} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{s}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma(A \times s A) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$
- Example: $\mathcal{O}_{S}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
- More generally: consider \mathcal{O}_{s}-algebras R together with schemes $A=\operatorname{spf}(R[x] / I)<\operatorname{spec}(R) \times_{S} \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition
- Free module condition: $\mathcal{O}_{A}=R \mathbb{\pi} \| / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
- Closure under addition: certain relations among the coefficients c_{i}.
\rightarrow Thus, there is a universal example $\mathcal{O}_{s_{u b}(\mathbb{N})}=\mathcal{O}_{s} \| c_{1} \ldots . c_{n} \rrbracket /$ relations .
\Rightarrow In fact $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket \times \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{s} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{s}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma(A \times s A) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{s}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$.
\rightarrow More generally: consider \mathcal{O}_{S}-algebras R together with schemes $A=\operatorname{spf}(R\|x\| / I)<\operatorname{spec}(R) \times s \mathbb{G}$ where \mathcal{O}_{Δ} is a finitely generated free module over R and A is closed under addition
\rightarrow Free module condition: $\mathcal{O}_{A}=R \llbracket x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
\rightarrow Closure under addition: certain relations among the coefficients c_{i}
- Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s} \llbracket c_{1}$,
$c_{n} \rrbracket /$ relations.
- In fact $\mathcal{O}_{\text {s.ub }}$ (C) $=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket \times \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{s}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma(A \times s A) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{s}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{\rho^{n}}=1\right\}$.
- Example: $\mathcal{O}_{s}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
\rightarrow More generally: consider O_{S}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket x \rrbracket / I)<\operatorname{spec}(R) \times_{S} \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
\rightarrow Free module condition: $\mathcal{O}_{A}=R[x] / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
- Closure under addition: certain relations among the coefficients C_{i}
\rightarrow Thus, there is a universal example $\mathcal{O}_{S_{s b_{n}(\mathbb{G})}}=\mathcal{O}_{s} \llbracket c_{1}$,
- In fact $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{s} \llbracket x \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma\left(A \times_{s} A\right) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$.
- Example: $\mathcal{O}_{s}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
- More generally: consider \mathcal{O}_{S}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket x \rrbracket / I)<\operatorname{spec}(R) \times s \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
\rightarrow Free module condition: $\mathcal{O}_{A}=R[x] / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
- Closure under addition: certain relations among the coefficients C_{i} \rightarrow Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s}\left[c_{1}, \ldots, c_{n}\right] /$ relations. \rightarrow In fact $\mathcal{O}_{\mathrm{Sub}_{n}(\mathbb{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket x \rrbracket$.
- The addition $\sigma: \mathbb{G} \times_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma\left(A \times_{s} A\right) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$.
- Example: $\mathcal{O}_{s}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
- More generally: consider \mathcal{O}_{S}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket x \rrbracket / I)<\operatorname{spec}(R) \times s \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_{A}=R \llbracket x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
\rightarrow Closure under addition: certain relations among the coefficients c_{i} \rightarrow Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s} \llbracket c_{1}, \ldots, c_{n} \rrbracket /$ relations. \rightarrow In fact $\mathcal{O}_{\text {sub }}(\mathbb{C})=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket x \rrbracket$.
- The addition $\sigma: \mathbb{G} \times_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma\left(A \times_{s} A\right) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times_{S} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$.
- Example: $\mathcal{O}_{s}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
- More generally: consider \mathcal{O}_{S}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket x \rrbracket / I)<\operatorname{spec}(R) \times s \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_{A}=R \llbracket x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
- Closure under addition: certain relations among the coefficients c_{i}.
\rightarrow Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s}\left[c_{1}, \ldots, c_{n}\right] /$ relations.
$>$ In fact $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{s} \llbracket x \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma\left(A \times_{s} A\right) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times{ }_{s} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$.
- Example: $\mathcal{O}_{s}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
- More generally: consider \mathcal{O}_{S}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket x \rrbracket / I)<\operatorname{spec}(R) \times s \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_{A}=R \llbracket x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
- Closure under addition: certain relations among the coefficients c_{i}.
- Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s} \llbracket c_{1}, \ldots, c_{n} \rrbracket /$ relations.

Finite subgroups of formal groups

- Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{s} \llbracket x \rrbracket$.
- The addition $\sigma: \mathbb{G} \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$ gives $\sigma^{*}: \mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S} \llbracket y, z \rrbracket$ with $\sigma^{*}(x)=F(y, z)$ for some formal group law F.
- A (globally defined) finite subgroup of \mathbb{G} is a subscheme $A=\operatorname{spf}\left(\mathcal{O}_{\mathbb{G}} / I\right)<\mathbb{G}$ with $\sigma\left(A \times_{s} A\right) \leq A$ such that \mathcal{O}_{A} is a finitely generated free module over \mathcal{O}_{S}.
- The condition $\sigma\left(A \times{ }_{s} A\right) \leq A$ is equivalent to $\sigma^{*}(I) \leq I \widehat{\otimes}_{S} \mathcal{O}_{\mathbb{G}}+\mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{S} I$.
- The finite rank condition says that A is a divisor.
- Example: $\mathcal{O}_{S}=\mathbb{Z}_{p}, \mathbb{G}=\{u \mid u-1$ is nilpotent $\}, A_{n}=\left\{u \in \mathbb{G} \mid u^{p^{n}}=1\right\}$.
- Example: $\mathcal{O}_{s}=\mathbb{F}_{p}, \mathbb{G}=\{x \mid x$ is nilpotent $\}, A_{n}=\left\{x \in \mathbb{G} \mid x^{p^{n}}=0\right\}$.
- More generally: consider \mathcal{O}_{S}-algebras R together with schemes $A=\operatorname{spf}(R \llbracket x \rrbracket / I)<\operatorname{spec}(R) \times s \mathbb{G}$ where \mathcal{O}_{A} is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_{A}=R \llbracket x \rrbracket / f_{A}(x)$ for some polynomial $f_{A}(x)=\sum_{i=0}^{n} c_{i} x^{n-i}$ with $c_{0}=1$ and c_{i} nilpotent for $i>0$.
- Closure under addition: certain relations among the coefficients c_{i}.
- Thus, there is a universal example $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=\mathcal{O}_{s} \llbracket c_{1}, \ldots, c_{n} \rrbracket /$ relations.
- In fact $\mathcal{O}_{\text {Sub }_{n}(\mathbb{G})}=0$ unless $n=p^{d}$ for some d.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{s_{u b} d(\mathbb{E})}$ for E^{0}-algebras ec uipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
\Rightarrow The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$.
\checkmark This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
\Rightarrow Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$.
\Rightarrow Topological methods show that R_{d}^{\prime} is a free module over E^{0}.
- By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
\Rightarrow There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p d}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}
\triangleright Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{n d}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$
\Rightarrow This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$
- Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$
- Topological methods show that R_{d}^{\prime} is a free module over E^{0}.
- By the above, the rank is $\left|\operatorname{Sub}_{n d}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
\Rightarrow Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
- Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$
- Tonological methods show that R_{d}^{\prime} is a free module over E^{0}.
- By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
\Rightarrow The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
\Rightarrow Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$
\Rightarrow Topological methods show that R_{d}^{\prime} is a free module over E^{0}.
- By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$.
\rightarrow This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod I then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
\rightarrow Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with \mathbf{I} then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$.
- Topological methods show that R_{d}^{\prime} is a free module over E^{0}.
\rightarrow By the above the rank is $\left|S_{\text {ub }}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
\rightarrow If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
\rightarrow Theorem: $R_{d} \simeq R_{d}^{\prime}$
\rightarrow If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$.
- Topological methods show that R_{d}^{\prime} is a free module over E^{0}.
\Rightarrow By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
\rightarrow Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$.
\rightarrow Topological methods show that R_{d}^{\prime} is a free module over E^{0}. - By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
- Theorem: $R_{d} \simeq R_{d}^{\prime}$.
\rightarrow If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$.
- Topological methods show that R_{d}^{\prime} is a free module over E^{0}. \Rightarrow By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
- Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$.
\rightarrow Topological methods show that R_{d}^{\prime} is a free module over E^{0}
- By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
- Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$.
- Topological methods show that R_{d}^{\prime} is a free module over E^{0}.
\rightarrow By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- There is a universal ring $R_{d}=\mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})}$ for E^{0}-algebras equipped with a finite subgroup $A<\operatorname{spf}\left(R_{d}\right) \times s \mathbb{G}$ of order p^{d}.
- Put $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$, where J is the sum of images of transfer maps from $E^{0}\left(B\left(\Sigma_{i} \times \Sigma_{j}\right)\right)$ with $i, j>0$ and $i+j=p^{d}$.
- The standard representation V of $\Sigma_{p^{d}}$ on $\mathbb{C}^{p^{d}}$ gives a divisor $A=\operatorname{spf}\left(E^{0}\left((P V)_{h \Sigma_{p^{d}}}\right)\right)$ on \mathbb{G} over $\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right)\right)$.
- This does not satisfy the coefficient relations for A to be closed under addition, so A is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R_{d}^{\prime}, and thus a map $R_{d} \rightarrow R_{d}^{\prime}$.
- Theorem: $R_{d} \simeq R_{d}^{\prime}$.
- If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^{0}} R_{d} \simeq L \otimes_{E^{0}} R_{d}^{\prime} \simeq \operatorname{Map}\left(\operatorname{Sub}_{p^{d}}(\Theta), L\right)$.
- Topological methods show that R_{d}^{\prime} is a free module over E^{0}.
- By the above, the rank is $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which can be computed by algebra.

Finite subgroups of formal groups

R Recall $R_{d}^{\prime}=E^{0}\left(B \Sigma_{p^{d}}\right) / J$; now put $\bar{R}_{d}=R_{d} /\left(u_{0}, \ldots, u_{n-1}\right)$ and $\bar{R}_{d}^{\prime}=K^{0}\left(B \Sigma_{p^{d}}\right) / J$.
\Rightarrow Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p}, and we have a relation $a b^{k}=0$ in P.

- Then $b^{k} P$ is a cyclic module over P / a and $b^{i} P / b^{i+1} P$ is a cyclic module over P / b so $\operatorname{dim}(P) \leq \operatorname{dim}(P / a)+k \operatorname{dim}(P / b)$.
- Using formal group theory we can define lots of quotients of \bar{R}_{d} to which this applies, and so get an upper bound for $\operatorname{dim}\left(\bar{R}_{d}\right)$.
\Rightarrow By some combinatorics, this upper bound is the same as $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which is the rank of R_{d}^{\prime} over E^{0}, or of \bar{R}_{d}^{\prime} over \mathbb{F}_{p}.
- Now we know that all the ranks are the same, we can show that $R_{d}^{\prime}=R_{d}$.

Finite subgroups of formal groups

- Recall $R_{d}^{\prime}=E^{0}\left(B \Sigma_{\rho^{d}}\right) / J$; now put $\bar{R}_{d}=R_{d} /\left(u_{0}, \ldots, u_{n-1}\right)$ and $\bar{R}_{d}^{\prime}=K^{0}\left(B \Sigma_{p^{d}}\right) / J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p}, and we have a relation $a b^{k}=0$ in P
- Then $b^{k} P$ is a cyclic module over P / a and $b^{i} P / b^{i+1} P$ is a cyclic module over P / b so $\operatorname{dim}(P) \leq \operatorname{dim}(P / a)+k \operatorname{dim}(P / b)$.
- Using formal group theory we can define lots of quotients of \bar{R}_{d} to which this applies, and so get an upper bound for $\operatorname{dim}\left(\bar{R}_{d}\right)$.
- By some combinatorics, this upper bound is the same as $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which is the rank of R_{d}^{\prime} over E^{0}, or of \bar{R}_{d}^{\prime} over \mathbb{F}_{p}.
- Now we know that all the ranks are the same, we can show that $R_{d}^{\prime}=R_{d}$.

Finite subgroups of formal groups

- Recall $R_{d}^{\prime}=E^{0}\left(B \Sigma_{\rho^{d}}\right) / J$; now put $\bar{R}_{d}=R_{d} /\left(u_{0}, \ldots, u_{n-1}\right)$ and $\bar{R}_{d}^{\prime}=K^{0}\left(B \Sigma_{p^{d}}\right) / J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p}, and we have a relation $a b^{k}=0$ in P.
- Then $b^{k} P$ is a cyclic module over P / a and $b^{i} P / b^{i+1} P$ is a cyclic module over P / b so $\operatorname{dim}(P) \leq \operatorname{dim}(P / a)+k \operatorname{dim}(P / b)$.
- Using formal group theory we can define lots of quotients of \bar{R}_{d} to which this applies, and so get an upper bound for $\operatorname{dim}\left(\bar{R}_{d}\right)$.
- By some combinatorics, this upper bound is the same as | $\operatorname{Sub}_{p^{d}}(\Theta) \mid$, which is the rank of R_{d}^{\prime} over E^{0}, or of \bar{R}_{d}^{\prime} over \mathbb{F}_{p}.
- Now we know that all the ranks are the same, we can show that $R_{d}^{\prime}=R_{d}$

Finite subgroups of formal groups

- Recall $R_{d}^{\prime}=E^{0}\left(B \Sigma_{\rho^{d}}\right) / J$; now put $\bar{R}_{d}=R_{d} /\left(u_{0}, \ldots, u_{n-1}\right)$ and $\bar{R}_{d}^{\prime}=K^{0}\left(B \Sigma_{p^{d}}\right) / J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p}, and we have a relation $a b^{k}=0$ in P.
- Then $b^{k} P$ is a cyclic module over P / a and $b^{i} P / b^{i+1} P$ is a cyclic module over P / b so $\operatorname{dim}(P) \leq \operatorname{dim}(P / a)+k \operatorname{dim}(P / b)$.
\downarrow Using formal group theory we can define lots of quotients of \bar{R}_{d} to which this applies, and so get an upper bound for $\operatorname{dim}\left(\bar{R}_{d}\right)$.
- By some combinatorics, this upper bound is the same as $\left|\operatorname{Sub}_{p} d(\theta)\right|$, which is the rank of R_{d}^{\prime} over E^{0}, or of \bar{R}_{d}^{\prime} over \mathbb{F}_{p}.
- Now we know that all the ranks are the same, we can show that $R_{d}^{\prime}=R_{d}$.

Finite subgroups of formal groups

- Recall $R_{d}^{\prime}=E^{0}\left(B \Sigma_{\rho^{d}}\right) / J$; now put $\bar{R}_{d}=R_{d} /\left(u_{0}, \ldots, u_{n-1}\right)$ and $\bar{R}_{d}^{\prime}=K^{0}\left(B \Sigma_{p^{d}}\right) / J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p}, and we have a relation $a b^{k}=0$ in P.
- Then $b^{k} P$ is a cyclic module over P / a and $b^{i} P / b^{i+1} P$ is a cyclic module over P / b so $\operatorname{dim}(P) \leq \operatorname{dim}(P / a)+k \operatorname{dim}(P / b)$.
- Using formal group theory we can define lots of quotients of \bar{R}_{d} to which this applies, and so get an upper bound for $\operatorname{dim}\left(\bar{R}_{d}\right)$.
- By some combinatorics, this upper bound is the same as | $\operatorname{Sub}_{p^{d}}(\Theta) \mid$, which is the rank of R_{d}^{\prime} over E^{0}, or of \bar{R}_{d}^{\prime} over \mathbb{F}_{p}.
- Now we know that all the ranks are the same, we can show that $R_{d}^{\prime}=R_{d}$

Finite subgroups of formal groups

- Recall $R_{d}^{\prime}=E^{0}\left(B \Sigma_{\rho^{d}}\right) / J$; now put $\bar{R}_{d}=R_{d} /\left(u_{0}, \ldots, u_{n-1}\right)$ and $\bar{R}_{d}^{\prime}=K^{0}\left(B \Sigma_{p^{d}}\right) / J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p}, and we have a relation $a b^{k}=0$ in P.
- Then $b^{k} P$ is a cyclic module over P / a and $b^{i} P / b^{i+1} P$ is a cyclic module over P / b so $\operatorname{dim}(P) \leq \operatorname{dim}(P / a)+k \operatorname{dim}(P / b)$.
- Using formal group theory we can define lots of quotients of \bar{R}_{d} to which this applies, and so get an upper bound for $\operatorname{dim}\left(\bar{R}_{d}\right)$.
- By some combinatorics, this upper bound is the same as $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which is the rank of R_{d}^{\prime} over E^{0}, or of \bar{R}_{d}^{\prime} over \mathbb{F}_{p}.
\Rightarrow Now we know that all the ranks are the same, we can show that $R_{d}^{\prime}=R_{d}$

Finite subgroups of formal groups

- Recall $R_{d}^{\prime}=E^{0}\left(B \Sigma_{\rho^{d}}\right) / J$; now put $\bar{R}_{d}=R_{d} /\left(u_{0}, \ldots, u_{n-1}\right)$ and $\bar{R}_{d}^{\prime}=K^{0}\left(B \Sigma_{p^{d}}\right) / J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_{p}, and we have a relation $a b^{k}=0$ in P.
- Then $b^{k} P$ is a cyclic module over P / a and $b^{i} P / b^{i+1} P$ is a cyclic module over P / b so $\operatorname{dim}(P) \leq \operatorname{dim}(P / a)+k \operatorname{dim}(P / b)$.
- Using formal group theory we can define lots of quotients of \bar{R}_{d} to which this applies, and so get an upper bound for $\operatorname{dim}\left(\bar{R}_{d}\right)$.
- By some combinatorics, this upper bound is the same as $\left|\operatorname{Sub}_{p^{d}}(\Theta)\right|$, which is the rank of R_{d}^{\prime} over E^{0}, or of \bar{R}_{d}^{\prime} over \mathbb{F}_{p}.
- Now we know that all the ranks are the same, we can show that $R_{d}^{\prime}=R_{d}$.

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
\Rightarrow Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
\Rightarrow This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
\Rightarrow There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$.
- Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})} \otimes \mathcal{O}_{S} \mathcal{O}_{\mathbb{G}}$, corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S. Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A. The above map sends (A, x) to $q_{A}(x)$.

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$
- Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\text {Sub }_{p} d(\mathrm{G})} \otimes \mathcal{O}_{S} \mathcal{O}_{\mathbb{G}}$, corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \in \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A. The above map sends (A, x) to $q_{A}(x)$.

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
\Rightarrow Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$
\Rightarrow Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\text {Sub }_{p d}(\mathbb{G})} \otimes \mathcal{O}_{S} \mathcal{O}_{\mathbb{G}}$, corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A. The above map sends (A, x) to $q_{A}(x)$

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes P}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$.
\Rightarrow Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\text {Sub }_{p d}(\mathrm{G})} \otimes \mathcal{O}_{S} \mathcal{O}_{G}$, corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A. The above map sends (A, x) to $q_{A}(x)$.

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$.
- Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{G} \rightarrow \mathcal{O}_{\text {Sub }_{p} d()} \otimes_{S} \mathcal{O}_{C}$ corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S. Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A. The above map sends (A, x) to $q_{A}(x)$

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
\Rightarrow Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{G} \rightarrow \mathcal{O}_{\text {Sub }_{p}(G)} \otimes \mathcal{O}_{S} \mathcal{O}_{G}$. corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S.

Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A. The above map sends (A, x) to $q_{A}(x)$.

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$.
corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times{ }_{S} \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S.

Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a
canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$
with kernel A. The above map sends (A, x) to $q_{A}(x)$

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$.
- Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}}$, corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S.

Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a
canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$
with kernel A. The above map sends (A, x) to $q_{A}(x)$

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$.
- Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}}$, corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S.
canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A. The above map sends (A, x) to $q_{A}(x)$

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$.
- Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}}$, corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S. Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A.

Power operations

- Under mild conditions we have $E^{0}(X \times Y)=E^{0}(X) \otimes_{E^{0}} E^{0}(Y)$ and so $E^{0}\left(X^{p}\right)=E^{0}(X)^{\otimes p}$.
- Thus for $u \in E^{0}(X)$ we have $u^{\otimes p} \in E^{0}\left(X^{p}\right)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $P u \in E^{0}\left(X_{h \Sigma_{p}}^{p}\right)$ mapping to $u^{\otimes p}$.
- This has $P 0=0$ and $P 1=1$ and $P(u v)=P(u) P(v)$ and $P(u+v)=P(u)+P(v)+$ transfers.
- It follows that P induces a ring map $E^{0}(X) \rightarrow E^{0}\left(X_{h \Sigma_{p}}^{p}\right) / J \simeq R_{1} \otimes E^{0}(X)$.
- There is a similar story involving $\Sigma_{p^{d}}$ for $d>1$.
- Taking $X=\mathbb{C} P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \rightarrow \mathcal{O}_{\text {Sub }_{p^{d}}(\mathbb{G})} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{\mathbb{G}}$, corresponding to a map $\operatorname{Sub}_{p^{d}}(\mathbb{G}) \times s \mathbb{G} \rightarrow \mathbb{G}$.
- You should think of \mathbb{G} as a bundle of groups over S. Given a point $a \in S$ and a subgroup $A<\mathbb{G}_{a}$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a, A}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{b}$ with kernel A. The above map sends (A, x) to $q_{A}(x)$.

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$.
This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$ (so Φ is noncanonically isomorphic to Θ).

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
\Rightarrow Let F be an algebraic closure of F
This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.
- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\},
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$ and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$
(so Φ is noncanonically isomorphic to Θ).

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$.
- Let F be an algebraic closure of F

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\},
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$
(so Φ is noncanonically isomorphic to Θ).

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
\Rightarrow Let F be an algebraic closure of F
This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.
- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$
(so Φ is noncanonically isomorphic to Θ).

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F. isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.
- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}(\bar{F}$
(so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.
> We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure.
One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\} \text {. }
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}(\bar{F}$
(so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure.

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}(\bar{F}$
(so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.
\rightarrow Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$
(so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$ (so Φ is noncanonically isomorphic to Θ).

General linear groups over \bar{F}

TheoremThe inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.Equivalently,
$E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0}\left[x_{1}, \ldots, x_{d}\right]$,
and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementarysymmetric functions c_{1}, \ldots, c_{d}.
Proof.This is built into the foundations of étale homotopy theory.The main point is that one can build a torsion-free local ring \bar{W}
(the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem
The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring W
(the Witt ring of ${ }^{\prime} \bar{F}$) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G I_{d}(\bar{F}) \leftarrow B G I_{d}(\bar{W}) \rightarrow B G I_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem
The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.
This is built into the foundations of étale homotopy theory.
(the Witt ring of \bar{F}) with residue field \bar{F}
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem
The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.
This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W} (the Witt ring of \bar{F}) with residue field \bar{F}.

Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem
The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.
This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W} (the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem

The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.
This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W}
(the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in $\bmod p$ cohomology.

General linear groups over \bar{F}

Theorem

The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.

This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W}
(the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in $\bmod p$ cohomology.
The claim follows easily from this.

Recall that the group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ is generated by the Frobenius map ϕ.
Theorem (Tanabe)
The elements

$$
\phi^{*}\left(c_{k}\right)-c_{k} \in E^{0} B G L_{d}(\bar{F})=E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket
$$

form a regular sequence, and
$E^{0} B G L_{d}(F)=\frac{E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket}{\left(\phi^{*}\left(c_{1}\right)-c_{1}, \ldots, \phi^{*}\left(c_{d}\right)-c_{d}\right)}=\left(E^{0} B G L_{d}(F)\right)_{\Gamma}$.
Equivalently, we have $B G L_{d}(F)_{E}=\operatorname{Div}_{d}^{+}(\mathbb{H})^{\ulcorner }$
In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

The theorem of Tanabe

Recall that the group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ is generated by the Frobenius map ϕ.
Theorem (Tanabe)
The elements

$$
\phi^{*}\left(c_{k}\right)-c_{k} \in E^{0} B G L_{d}(\bar{F})=E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket
$$

form a regular sequence, and

$$
E^{0} B G L_{d}(F)=\frac{E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket}{\left(\phi^{*}\left(c_{1}\right)-c_{1}, \ldots, \phi^{*}\left(c_{d}\right)-c_{d}\right)}=\left(E^{0} B G L_{d}(\bar{F})\right)_{\Gamma}
$$

Equivalently, we have $B G L_{d}(F)_{E}=\operatorname{Div}_{d}^{+}(\mathbb{H})^{\ulcorner }$
In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

The theorem of Tanabe

Recall that the group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ is generated by the Frobenius map ϕ.
Theorem (Tanabe)
The elements

$$
\phi^{*}\left(c_{k}\right)-c_{k} \in E^{0} B G L_{d}(\bar{F})=E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket
$$

form a regular sequence, and

$$
E^{0} B G L_{d}(F)=\frac{E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket}{\left(\phi^{*}\left(c_{1}\right)-c_{1}, \ldots, \phi^{*}\left(c_{d}\right)-c_{d}\right)}=\left(E^{0} B G L_{d}(\bar{F})\right)_{\Gamma}
$$

Equivalently, we have $B G L_{d}(F)_{E}=\operatorname{Div}_{d}^{+}(\mathbb{H})^{「}$.
In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

The theorem of Tanabe

Recall that the group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ is generated by the Frobenius map ϕ.
Theorem (Tanabe)
The elements

$$
\phi^{*}\left(c_{k}\right)-c_{k} \in E^{0} B G L_{d}(\bar{F})=E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket
$$

form a regular sequence, and

$$
E^{0} B G L_{d}(F)=\frac{E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket}{\left(\phi^{*}\left(c_{1}\right)-c_{1}, \ldots, \phi^{*}\left(c_{d}\right)-c_{d}\right)}=\left(E^{0} B G L_{d}(\bar{F})\right)_{\Gamma}
$$

Equivalently, we have $B G L_{d}(F)_{E}=\operatorname{Div}_{d}^{+}(\mathbb{H})^{「}$.
In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
\Rightarrow We write $\bar{\nu}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(H i)^{\ulcorner }$.
\Rightarrow The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{r}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example $\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$.

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$.
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$.

- The index of $\left.\Sigma_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
\Rightarrow We write $\bar{\nu}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \mathcal{V}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $\left.B \mathcal{V}_{E}=\operatorname{Div}^{+}(H)\right)^{\prime}$
\Rightarrow The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\top}$
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example $\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{X}$

- The index of $\left.\Sigma_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \mathcal{V}_{E}=\amalg_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{「}$
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B V_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$
\rightarrow Alternatively, $E_{*}^{\vee}(B V)$ and $K_{*}(B V)$ are Hopf rings.
- Some other groupoids are also relevant, for example $\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\oplus_{x} L_{x}$
\rightarrow The index of $\Sigma_{d} l G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so
$B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the
homotopy category of spaces. This in turn makes $B V_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$
- Alternatively, $E_{*}^{\vee}(B \nu)$ and $K_{*}(B \nu)$ are Hopf rings.
- Some other groupoids are also relevant, for example $\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$

This has $B \mathcal{L} \simeq \amalg_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$

- The index of Σ_{d} $G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces.
semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^{+}(\mathbb{H})^{\Gamma}$
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example $\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\oplus_{x} L_{x}$

- The index of $\left.\sum_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$
This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\oplus_{x} L_{x}$
- The index of $\sum_{d} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B V_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
\Rightarrow Alternatively, $E_{*}^{\vee}(B \nu)$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, I) \mid X$ is a finite set, and I is an F-linear line bundle over $X\}$
This has $B \mathcal{L} \simeq \amalg_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$
- The index of $\left.\Sigma_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B V_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$
This has $B \mathcal{L} \sim \mathrm{II}_{d} E \sum_{d} x_{\Sigma_{d}} B G I_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$
-

The index of $\left.\sum_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$.
This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$.
- The index of $\left.\Sigma_{d}\right\urcorner G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$.
This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times_{\Sigma_{d}} B G L_{1}(F)^{d}$.
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$.
 symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$
\mathcal{L}=\{(X, L) \mid X \text { is a finite set, and } L \text { is an } F \text {-linear line bundle over } X\}
$$

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times_{\Sigma_{d}} B G L_{1}(F)^{d}$.
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$.

- The index of $\left.\Sigma_{d}\right\urcorner G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
$>$ These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{{ }^{\sigma}, \mu}{\leftarrow} \Sigma_{+}^{\infty} B V^{2}{ }^{\delta} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B V)$.
\Rightarrow Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}.
Then $L \widehat{Q}_{E_{0}} E^{0}(B V)=\operatorname{Map}(B, L)$.

$$
\begin{array}{rlrl}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{!}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{!}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X)
\end{array}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$.
- But a subspace of $Y \oplus Z$ need not be $Y_{0} \oplus Z_{0}$ with $Y_{0} \leq Y$ and $Z_{0} \leq Z$.
- This causes a lot of trouble with adapting the symmetric group proof.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
\Rightarrow These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{{ }^{\circ}}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \leftarrow \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*} Then $L \widehat{Q}_{E^{0}} E^{0}(B V)=\operatorname{Map}(\mathbb{B}, L)$

$$
\begin{array}{rlrl}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{!}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{!}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X)
\end{array}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$.
- But a subspace of $Y \oplus Z$ need not be $Y_{0} \oplus Z_{0}$ with $Y_{0} \leq Y$ and $Z_{0} \leq Z$.
\rightarrow This causes a lot of trouble with adapting the symmetric group proof.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{!}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
\Rightarrow These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$.
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*} Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{V})=\operatorname{Map}(\mathbb{B}, L)$

$$
\begin{array}{ll}
\sigma^{*}(f)(X, Y)=f(X \oplus Y) & \sigma^{!}(f \otimes g)(X)=\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{!}(f)(X, Y)=||\operatorname{so}(X, Y)| f(X)
\end{array}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$.
- But a subspace of $Y \oplus Z$ need not be $Y_{0} \oplus Z_{0}$ with $Y_{0} \leq Y$ and $Z_{0} \leq Z$.
\rightarrow This causes a lot of trouble with adapting the symmetric group proof.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{!}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$.
\rightarrow Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of $\Theta *$ Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{V})=\operatorname{Map}(\mathbb{B}, L)$

$$
\begin{array}{rlrl}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{!}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{!}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X)
\end{array}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$. - But a subspace of $Y \oplus Z$ need not be $Y_{0} \oplus Z_{0}$ with $Y_{0} \leq Y$ and $Z_{0} \leq Z$

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{\sigma, \mu}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{!}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$.
- Everything is easy to understand in generalised character theory.

$$
\begin{array}{rlrl}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{!}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{!}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X)
\end{array}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$.

\rightarrow This causes a lot of trouble with adapting the symmetric group proof.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{\sigma, \mu}{\leftrightarrows} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$.
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{V})=\operatorname{Map}(\mathbb{B}, L)$.

$$
\begin{aligned}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{\prime}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X) & =f(X) g(X) & \delta^{\prime}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X) .
\end{aligned}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$. - But a subspace of $Y \oplus Z$ need not be $Y_{0} \oplus Z_{0}$ with $Y_{0} \leq Y$ and $Z_{0} \leq Z$. - This causes a lot of trouble with adapting the symmetric group proof.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{\sigma, \mu}{\leftrightarrows} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$.
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}.
Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{V})=\operatorname{Map}(\mathbb{B}, L)$.

$$
\begin{aligned}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{\prime}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X) & =f(X) g(X) & \delta^{\prime}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X) .
\end{aligned}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$. - But a subspace of $Y \oplus Z$ need not be $Y_{0} \oplus Z_{0}$ with $Y_{0} \leq Y$ and $Z_{0} \leq Z$. - This causes a lot of trouble with adapting the symmetric group proof.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{\sigma, \mu}{\leftrightarrows} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$.
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}. Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{V})=\operatorname{Map}(\mathbb{B}, L)$.

$$
\begin{aligned}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{\prime}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X) & =f(X) g(X) & \delta^{\prime}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X) .
\end{aligned}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{\sigma, \mu}{\leftrightarrows} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$.
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}.
Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{V})=\operatorname{Map}(\mathbb{B}, L)$.

$$
\begin{array}{rlrl}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{!}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X)=f(X) g(X) & \delta^{\prime}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X) .
\end{array}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$.
- But a subspace of $Y \oplus Z$ need not be $Y_{0} \oplus Z_{0}$ with $Y_{0} \leq Y$ and $Z_{0} \leq Z$.

Generalised character theory

- There is a diagonal functor $\delta: \mathcal{V} \rightarrow \mathcal{V} \times \mathcal{V}$ given by $\delta(X)=(X, X)$, and functors $\sigma, \mu: \mathcal{V}^{2} \rightarrow \mathcal{V}$ given by $\sigma(X, Y)=X \oplus Y$ and $\mu(X, Y)=X \otimes Y$.
- These give maps $\Sigma_{+}^{\infty} B \mathcal{V} \stackrel{\sigma, \mu}{\leftrightarrows} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \stackrel{\delta}{\leftarrow} \Sigma_{+}^{\infty} B \mathcal{V}$ and also transfers $\Sigma_{+}^{\infty} B \mathcal{V} \xrightarrow{\sigma_{1}, \mu_{1}} \Sigma_{+}^{\infty} B \mathcal{V}^{2} \xrightarrow{\delta_{1}} \Sigma_{+}^{\infty} B \mathcal{V}$.
- These satisfy many relations and give rich algebraic structure on $E^{0}(B \mathcal{V})$.
- Everything is easy to understand in generalised character theory.
- Recall that $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and let $\mathbb{B}=\pi_{0}\left[\Theta^{*}, \mathcal{V}\right]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^{*}.
Then $L \widehat{\otimes}_{E^{0}} E^{0}(B \mathcal{V})=\operatorname{Map}(\mathbb{B}, L)$.

$$
\begin{aligned}
\sigma^{*}(f)(X, Y) & =f(X \oplus Y) & \sigma^{\prime}(f \otimes g)(X) & =\sum_{X=Y \oplus Z} f(Y) g(Z) \\
\delta^{*}(f \otimes g)(X) & =f(X) g(X) & \delta^{!}(f)(X, Y) & =|\operatorname{lso}(X, Y)| f(X) .
\end{aligned}
$$

- For finite sets, any subset of $Y \amalg Z$ is $Y_{0} \amalg Z_{0}$ with $Y_{0} \subseteq Y$ and $Z_{0} \subseteq Z$.
- But a subspace of $Y \oplus Z$ need not be $Y_{0} \oplus Z_{0}$ with $Y_{0} \leq Y$ and $Z_{0} \leq Z$.
- This causes a lot of trouble with adapting the symmetric group proof.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \nu^{\prime} ; K_{*}\right)$ is generated by $B \nu_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \nu)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the F_{∞} page, all exterior generators have been killed and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
> We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \nu_{;} K_{*}\right)$ is generated by $B \nu_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
\Rightarrow Quillen: $H_{*}\left(B \mathcal{V}_{;} K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
\Rightarrow At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m i}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B V)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
\rightarrow At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p / 1 i}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial
\rightarrow This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
$>$ The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information
\rightarrow At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
\Rightarrow At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{n \prime \prime}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

Irreducibles

- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{V}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma^{!}(I \otimes I)$ and $Q=I / I^{* 2}$.
- This is still a ring with $L \otimes_{E^{0}} Q=\operatorname{Map}\left(\operatorname{lrr}\left(\Theta^{*}\right), L\right)$, where $\operatorname{lrr}\left(\Theta^{*}\right)=\operatorname{Hom}\left(\Theta^{*}, G L_{1}(\bar{F})\right) / \mathrm{Gal}$ is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
- We find that $Q \simeq \prod_{m} D_{m}^{\ulcorner }$, where $D_{m}^{\ulcorner }=E^{0} \llbracket y \rrbracket / g_{m}(y)$ for a certain monic polynomial $g_{m}(y)$.
- All this and many more details have nice interpretations in formal group theory.

Irreducibles

- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{V}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma^{\prime}(I \otimes I)$ and $Q=I / I^{* 2}$.

This is still a ring with $L \otimes_{E^{0}} Q=\operatorname{Map}\left(\operatorname{lrr}\left(\Theta^{*}\right), L\right)$, where $\operatorname{lrr}\left(\Theta^{*}\right)=\operatorname{Hom}\left(\Theta^{*}, G L_{1}(\bar{F})\right) / \mathrm{Gal}$ is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
\Rightarrow We find that $Q \simeq \Pi_{m} D_{m}^{r}$, where $D_{m}^{r}=E^{0} \llbracket y \rrbracket / g_{m}(y)$ for a certain monic polynomial $g_{m}(y)$.

- All this and many more details have nice interpretations in formal group theory.

Irreducibles

- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{V}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma^{!}(I \otimes I)$ and $Q=I / I^{* 2}$.
- This is still a ring with $L \otimes_{E^{0}} Q=\operatorname{Map}\left(\operatorname{lrr}\left(\Theta^{*}\right), L\right)$, where $\operatorname{lrr}\left(\Theta^{*}\right)=\operatorname{Hom}\left(\Theta^{*}, G L_{1}(\bar{F})\right) / \mathrm{Gal}$ is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
\Rightarrow We find that $Q \simeq \prod_{m} D_{m}^{\Gamma}$, where $D_{m}^{\Gamma}=E^{0} \llbracket y \rrbracket / g_{m}(y)$ for a certain monic polynomial $g_{m}(y)$.
- All this and many more details have nice interpretations in formal group theory.

Irreducibles

- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{V}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma^{!}(I \otimes I)$ and $Q=I / I^{* 2}$.
- This is still a ring with $L \otimes_{E^{0}} Q=\operatorname{Map}\left(\operatorname{lrr}\left(\Theta^{*}\right), L\right)$, where $\operatorname{lrr}\left(\Theta^{*}\right)=\operatorname{Hom}\left(\Theta^{*}, G L_{1}(\bar{F})\right) / \mathrm{Gal}$ is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
- We find that $Q \simeq \prod_{m} D_{m}^{\Gamma}$, where $D_{m}^{\Gamma}=E^{0} \llbracket y \rrbracket / g_{m}(y)$ for a certain monic polynomial $g_{m}(y)$.
- All this and many more details have nice interpretations in formal group theory.

Irreducibles

- Put $I=\operatorname{ker}\left(E^{0}(B \mathcal{V}) \rightarrow E^{0}\right)$ and $I^{* 2}=\sigma^{!}(I \otimes I)$ and $Q=I / I^{* 2}$.
- This is still a ring with $L \otimes_{E^{0}} Q=\operatorname{Map}\left(\operatorname{lrr}\left(\Theta^{*}\right), L\right)$, where $\operatorname{lrr}\left(\Theta^{*}\right)=\operatorname{Hom}\left(\Theta^{*}, G L_{1}(\bar{F})\right) / \mathrm{Gal}$ is the set of isomorphism classes of irreducible F-linear representations of Θ^{*}.
- We find that $Q \simeq \prod_{m} D_{m}^{\Gamma}$, where $D_{m}^{\Gamma}=E^{0} \llbracket y \rrbracket / g_{m}(y)$ for a certain monic polynomial $g_{m}(y)$.
- All this and many more details have nice interpretations in formal group theory.

