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Symmetric groups

▶ Let F be the groupoid of finite sets and bijections,
and Fd the subgroupoid of sets of order d .

▶ Then BFd ≃ BΣd and BF ≃
∐

d BΣd .

▶ There is a diagonal functor δ : F → F ×F given by δ(X ) = (X ,X ), and
functors σ, µ : F2 → F given by σ(X ,Y ) = X ⨿Y and µ(X ,Y ) = X ×Y .

▶ These give maps Σ∞
+ BF σ,µ←−− Σ∞

+ BF2 δ←− Σ∞
+ BF

and also transfers Σ∞
+ BF σ!,µ!−−−→ Σ∞

+ BF2 δ!−→ Σ∞
+ BF .

▶ These satisfy many relations and give rich algebraic structure on E 0(BF).
▶ Everything is easy to understand in generalised character theory.

▶ Recall that Θ∗ = Zn
p, and let A = π0[Θ

∗,F ] be the set of isomorphism
classes of finite sets with Θ∗-action. Then L⊗̂E0E 0(BF) = Map(A, L).▶

σ∗(f )(X ,Y ) = f (X ⨿ Y ) σ!(f ⊗ g)(X ) =
∑

X=Y⨿Z

f (Y )g(Z)

µ∗(f )(X ,Y ) = f (X × Y ) µ!(f ⊗ g)(X ) ∼
∑

X=Y×Z

f (Y )g(Z)

δ∗(f ⊗ g)(X ) = f (X )g(X ) δ!(f )(X ,Y ) = | Iso(X ,Y )|f (X ).
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Symmetric groups

▶ A is the set of isomorphism classes of finite sets with action of
Θ∗ = Hom(Θ,Q/Z(p)) ≃ Zn

p; then L⊗̂E0E 0(BF) = Map(A, L).
▶ Analogy: the group Θ = (Q/Z(p))

n is like the formal group scheme G.

▶ We would like to say: spf(E 0(BF)) is the scheme of iso classes of sets with
action of Hom(G,Q/Z(p)). But we do not know how to interpret that.

▶ For a finite subgroup A < Θ we have a surjective map Θ∗ → A∗

and thus an action of Θ∗ on A∗ so [A∗] ∈ A.
▶ Any [X ] ∈ A can be expressed uniquely as a disjoint union of [A∗]’s.

▶ Put I = ker(E 0(BF)→ E 0) and I ∗2 = σ!(I ⊗ I ) and Q = I/I ∗2.
This is still a ring using δ∗, with L⊗̂E0Q = Map(Sub(Θ), L).

▶ We do know how to interpret Sub(G) as a moduli scheme of finite
subgroups of G, and the main theorem is that spf(Q) = Sub(G).

▶ Also E 0(BF) is polynomial over E 0 under the σ!-product,
with Q as the module of indecomposables.

▶ This is enough to give a basis for E 0(BΣd) as a module over E 0,
together with most of the algebraic structure.
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with Q as the module of indecomposables.

▶ This is enough to give a basis for E 0(BΣd) as a module over E 0,
together with most of the algebraic structure.
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Finite subgroups of formal groups

▶ Let G be a formal group over a base scheme S , so OG ≃ OS [[x ]].

▶ The addition σ : G×S G→ G gives σ∗ : OG → OG⊗̂OS
OG ≃ OS [[y , z]]

with σ∗(x) = F (y , z) for some formal group law F .

▶ A (globally defined) finite subgroup of G is a subscheme
A = spf(OG/I ) < G with σ(A×S A) ≤ A
such that OA is a finitely generated free module over OS .

▶ The condition σ(A×S A) ≤ A is equivalent to σ∗(I ) ≤ I ⊗̂SOG +OG⊗̂S I .

▶ The finite rank condition says that A is a divisor.

▶ Example: OS = Zp, G = {u | u−1 is nilpotent}, An = {u ∈ G | upn = 1}.
▶ Example: OS = Fp, G = {x | x is nilpotent }, An = {x ∈ G | xpn = 0}.
▶ More generally: consider OS -algebras R together with schemes

A = spf(R[[x ]]/I ) < spec(R)×S G where OA is a finitely generated free
module over R and A is closed under addition.

▶ Free module condition: OA = R[[x ]]/fA(x) for some polynomial
fA(x) =

∑n
i=0 cix

n−i with c0 = 1 and ci nilpotent for i > 0.

▶ Closure under addition: certain relations among the coefficients ci .

▶ Thus, there is a universal example OSubn(G) = OS [[c1, . . . , cn]]/relations.

▶ In fact OSubn(G) = 0 unless n = pd for some d .
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Finite subgroups of formal groups

▶ Now consider the formal group G for Morava E -theory.

▶ There is a universal ring Rd = OSub
pd

(G) for E
0-algebras equipped with a

finite subgroup A < spf(Rd)×S G of order pd .

▶ Put R ′
d = E 0(BΣpd )/J, where J is the sum of images of transfer maps

from E 0(B(Σi × Σj)) with i , j > 0 and i + j = pd .

▶ The standard representation V of Σpd on Cpd gives a divisor

A = spf(E 0((PV )hΣ
pd
)) on G over spf(E 0(BΣpd )).

▶ This does not satisfy the coefficient relations for A to be closed under
addition, so A is not a subgroup scheme.

▶ If we work mod J then the relations are satisfied, so we get a subgroup
defined over R ′

d , and thus a map Rd → R ′
d .

▶ Theorem: Rd ≃ R ′
d .

▶ If we tensor with L then the relationship between G and Θ becomes close,
so L⊗E0 Rd ≃ L⊗E0 R ′

d ≃ Map(Subpd (Θ), L).

▶ Topological methods show that R ′
d is a free module over E 0.

▶ By the above, the rank is | Subpd (Θ)|, which can be computed by algebra.
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Finite subgroups of formal groups

▶ Recall R ′
d = E 0(BΣpd )/J; now put Rd = Rd/(u0, . . . , un−1) and

R
′
d = K 0(BΣpd )/J.

▶ Suppose we have a ring P which is a free module of finite rank over Fp,
and we have a relation abk = 0 in P.

▶ Then bkP is a cyclic module over P/a and biP/bi+1P is a cyclic module
over P/b so dim(P) ≤ dim(P/a) + k dim(P/b).

▶ Using formal group theory we can define lots of quotients of Rd to which
this applies, and so get an upper bound for dim(Rd).

▶ By some combinatorics, this upper bound is the same as | Subpd (Θ)|,
which is the rank of R ′

d over E 0, or of R
′
d over Fp.

▶ Now we know that all the ranks are the same, we can show that R ′
d = Rd .
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Power operations

▶ Under mild conditions we have E 0(X × Y ) = E 0(X )⊗E0 E 0(Y )
and so E 0(X p) = E 0(X )⊗p.

▶ Thus for u ∈ E 0(X ) we have u⊗p ∈ E 0(X p), invariant under permutation.

▶ Commutativity of ring spectra is subtle; but the conclusion is that there is
a power operation Pu ∈ E 0(X p

hΣp
) mapping to u⊗p.

▶ This has P0 = 0 and P1 = 1 and P(uv) = P(u)P(v) and
P(u + v) = P(u) + P(v) + transfers.

▶ It follows that P induces a ring map E 0(X )→ E 0(X p
hΣp

)/J ≃ R1 ⊗ E 0(X ).

▶ There is a similar story involving Σpd for d > 1.

▶ Taking X = CP∞ we get a ring map OG → OSub
pd

(G) ⊗OS OG,

corresponding to a map Subpd (G)×S G→ G.

▶ You should think of G as a bundle of groups over S .
Given a point a ∈ S and a subgroup A < Ga, it turns out that there is a
canonical point b ∈ S and a surjective homomorphism qa,A : Ga → Gb

with kernel A. The above map sends (A, x) to qA(x).
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Finite general linear groups

▶ Let F be a finite field of characteristic not equal to p.

▶ To simplify bookkeeping, we will assume that |F | = q with
vp(q − 1) = r > 0 so q = 1 (mod pr ) but q ̸= 1 (mod pr+1).
This implies that vp(q

m − 1) = vp(m) + r for all m > 0.

▶ Let F be an algebraic closure of F .
This has a Frobenius automorphism ϕ : x 7→ xq, and the Galois group Γ is
isomorphic to Ẑ, topologically generated by ϕ.

▶ We put H = BGL1(F )E , which has a natural group structure.
One can choose an isomorphism

GL1(F ) ≃ {u ∈ S1 | ur = 1 for some r ∈ Z, (r , q) = 1},

and using this we find that H is noncanonically isomorphic to G = (BS1)E ,

and canonically isomorphic to Tor(F
×
,G).

▶ Generalised character theory compares G with Θ = (Z/p∞)n. We will also

compare H with Φ = Tor(F
×
,Θ) ≃ Hom(Θ∗,F

×
)

(so Φ is noncanonically isomorphic to Θ).
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General linear groups over F

Theorem
The inclusion GL1(F )

d → GLd(F ) induces GLd(F )E ≃ Hd/Σd ≃ Div+d (H).
Equivalently,

E 0(BGL1(F )
d) = E 0[[x1, . . . , xd ]],

and E 0BGLd(F ) is the subring of symmetric functions, generated by elementary
symmetric functions c1, . . . , cd .

Proof.
This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring W
(the Witt ring of F ) with residue field F .
One can then choose an embedding W → C.
Using the fact that |F | is coprime to p, one can check that the maps

BGLd(F )←− BGLd(W ) −→ BGLd(C)

induce isomorphisms in mod p cohomology.
The claim follows easily from this.
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The theorem of Tanabe

Recall that the group Γ = Gal(F/F ) is generated by the Frobenius map ϕ.

Theorem (Tanabe)

The elements

ϕ∗(ck)− ck ∈ E 0BGLd(F ) = E 0[[c1, . . . , cd ]]

form a regular sequence, and

E 0BGLd(F ) =
E 0[[c1, . . . , cd ]]

(ϕ∗(c1)− c1, . . . , ϕ∗(cd)− cd)
= (E 0BGLd(F ))Γ.

Equivalently, we have BGLd(F )E = Div+d (H)Γ.

In many respects this is very satisfactory, but there are many natural questions
that cannot be answered without more detailed algebraic analysis.
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Groupoids

▶ Let V be the groupoid of finite dimensional vector spaces over F , and their
isomorphisms. Then BV ≃

∐
d BGLd(F ).

▶ We write V for the corresponding groupoid for F , so BV ≃
∐

d BGLd(F ).

▶ Now BVE =
∐

d Div
+
d (H) = Div+(H),

and the functor V 7→ F ⊗F V gives BVE = Div+(H)Γ.

▶ The functors ⊕,⊗ : V2 → V make BV a commutative semiring in the
homotopy category of spaces.This in turn makes BVE a commutative
semiring in the category of formal schemes.This matches an obvious
commutative semiring structure on Div+(H)Γ.

▶ Alternatively, E∨
∗ (BV) and K∗(BV) are Hopf rings.

▶ Some other groupoids are also relevant, for example

L = {(X , L) | X is a finite set, and L is an F -linear line bundle over X}.

This has BL ≃
∐

d EΣd ×Σd BGL1(F )
d .

There is a functor π : L → V given by π(X , L) =
⊕

x Lx .

▶ The index of Σd ≀ GL1(F )
d in GLd(F ) has index coprime to p, so

BL → BV gives an epimorphism in E -cohomology. Earlier work on
symmetric groups gives a good understanding of E 0BL.
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Generalised character theory

▶ There is a diagonal functor δ : V → V × V given by δ(X ) = (X ,X ), and
functors σ, µ : V2 → V given by σ(X ,Y ) = X ⊕ Y and µ(X ,Y ) = X ⊗ Y .

▶ These give maps Σ∞
+ BV σ,µ←−− Σ∞

+ BV2 δ←− Σ∞
+ BV

and also transfers Σ∞
+ BV σ!,µ!−−−→ Σ∞

+ BV2 δ!−→ Σ∞
+ BV.

▶ These satisfy many relations and give rich algebraic structure on E 0(BV).
▶ Everything is easy to understand in generalised character theory.

▶ Recall that Θ∗ = Zn
p, and let B = π0[Θ

∗,V] be the set of isomorphism
classes of finite-dimensional F -linear representations of Θ∗.
Then L⊗̂E0E 0(BV) = Map(B, L).

▶ .
σ∗(f )(X ,Y ) = f (X ⊕ Y ) σ!(f ⊗ g)(X ) =

∑
X=Y⊕Z

f (Y )g(Z)

δ∗(f ⊗ g)(X ) = f (X )g(X ) δ!(f )(X ,Y ) = | Iso(X ,Y )|f (X ).

▶ For finite sets, any subset of Y ⨿ Z is Y0 ⨿ Z0 with Y0 ⊆ Y and Z0 ⊆ Z .

▶ But a subspace of Y ⊕ Z need not be Y0 ⊕ Z0 with Y0 ≤ Y and Z0 ≤ Z .

▶ This causes a lot of trouble with adapting the symmetric group proof.
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The Atiyah-Hirzebruch Spectral Sequence

▶ Theorem: E∨
0 BV is also polynomial.

▶ It is enough to prove that K0BV is polynomial.

▶ We use the Atiyah-Hirzebruch spectral sequence H∗(BV;K∗) =⇒ K∗(BV)
and its dual.

▶ Quillen: H∗(BV;K∗) is generated by BV1 and has countably many
polynomial generators bi and exterior generators ei .

▶ Let F (k) be the extension of F of degree pk , so GLd(F (k)) maps to
GLpkd(F ). The group GL1(F (k)) is cyclic so the AHSS is well understood,
with only one differential. This gives some information about the AHSS
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Irreducibles

▶ Put I = ker(E 0(BV)→ E 0) and I ∗2 = σ!(I ⊗ I ) and Q = I/I ∗2.

▶ This is still a ring with L⊗E0 Q = Map(Irr(Θ∗), L), where
Irr(Θ∗) = Hom(Θ∗,GL1(F ))/Gal is the set of isomorphism classes of
irreducible F -linear representations of Θ∗.

▶ We find that Q ≃
∏

m DΓ
m, where DΓ

m = E 0[[y ]]/gm(y) for a certain monic
polynomial gm(y).

▶ All this and many more details have nice interpretations in formal group
theory.
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