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Duality

▶ Recall: for a finite groupoid G we put M∗(G) = Map(π0(G),Q).
We define θ : M∗(G) → Q by θ(h) =

∑
i<r |G(ai , ai )|−1h(ai ),

where {ai | i < r} contains one representative of each isomorphism class.
We then define ⟨f , g⟩G = θ(fg).This is a perfect pairing on M∗(G).

▶ The HKR theorem says L⊗E0 E 0(BG) = L⊗Q M∗(ΛG),
where ΛG = [Θ∗,G ] = [Zn

p,G ] is again a finite groupoid.

▶ We therefore have θ : L⊗E0 E 0(BG) → L giving a perfect pairing.

▶ Theorem: this comes from a map θ : E 0(BG) → E 0 which also gives a
perfect pairing (at least when E 0(BG) is a free module over E 0).

▶ This is like Poincaré duality for oriented manifolds:
the map θ is like the map u 7→ ⟨u, [M]⟩ from Hd(M) to Z.

▶ It is also like the map θ : R(G) → Z given by θ([V ]) = dim(V G ), where
R(G) is the complex representation ring. This also gives a perfect pairing.

▶ The above theorem (due to Greenlees and Sadofsky) was the first known
example of chromatic ambidexterity; there is now a more general theory.

▶ The proof of the theorem uses transfers and Tate spectra.
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▶ This is like Poincaré duality for oriented manifolds:
the map θ is like the map u 7→ ⟨u, [M]⟩ from Hd(M) to Z.

▶ It is also like the map θ : R(G) → Z given by θ([V ]) = dim(V G ), where
R(G) is the complex representation ring. This also gives a perfect pairing.

▶ The above theorem (due to Greenlees and Sadofsky) was the first known
example of chromatic ambidexterity; there is now a more general theory.

▶ The proof of the theorem uses transfers and Tate spectra.



Duality

▶ Recall: for a finite groupoid G we put M∗(G) = Map(π0(G),Q).
We define θ : M∗(G) → Q by θ(h) =

∑
i<r |G(ai , ai )|−1h(ai ),

where {ai | i < r} contains one representative of each isomorphism class.
We then define ⟨f , g⟩G = θ(fg).This is a perfect pairing on M∗(G).

▶ The HKR theorem says L⊗E0 E 0(BG) = L⊗Q M∗(ΛG),
where ΛG = [Θ∗,G ] = [Zn

p,G ] is again a finite groupoid.

▶ We therefore have θ : L⊗E0 E 0(BG) → L giving a perfect pairing.

▶ Theorem: this comes from a map θ : E 0(BG) → E 0 which also gives a
perfect pairing (at least when E 0(BG) is a free module over E 0).
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Collapse and transfer

▶ Consider a map f : X → Y of finite sets.
This induces a map f : Z[X ] → Z[Y ],
and also a map f t : Z[Y ] → Z[X ] given by f t([y ]) =

∑
f (x)=y [x ].

▶ The suspension spectrum Σ∞X+ is a kind of refinement of Z[X ],
and we again have an easy map f : Σ∞X+ → Σ∞Y+.
We also want a map f T : Σ∞Y+ → Σ∞X+.

▶ Put V = R[X ], giving i : X → V ⊂ SV = V ∪ {∞}.
▶ Put s(v) = v/

√
2(1 + ∥v∥2),

giving a homeomorphism from V to an open ball of radius 1/
√
2.

▶ Define f̃ : V × X → V × Y by f̃ (v , x) = (s(v) + i(x), f (x)),

so f̃ is an open embedding covering f .

▶ Define c : SV ∧ Y+ = (V × Y ) ∪ {∞} → (V × X ) ∪ {∞} = SV ∧ X+

by c(f̃ (v , x)) = (v , x) and c(v , y) = ∞ for (v , y) ̸∈ image(f̃ ).

▶ This is completely natural and so is compatible with any group actions.

▶ In the world of spectra we have a negative sphere S−V and we can take
the smash product with this to get f t : Σ∞Y+ → Σ∞X+.

▶ Take f = (G/H → G/G = 1) and apply EG+ ∧G (−) to f t and use
EG/H ≃ BH to get a map Σ∞BG+ → Σ∞BH+ (the transfer).
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Transfers

▶ Let M be an abelian group with G -action, and let H be a subgroup of G .

▶ There is an evident inclusion resGH : MG → MH .

▶ There is a natural map trGH : MH → MG given by trGH(m) =
∑

t∈T tm,
where T is any subset of G containing one element of every H-coset.

▶ Now let E be an even periodic ring spectrum.

▶ The inclusion H → G gives a map BH → BG and thus a ring map
E 0(BG) → E 0(BH), called resGH .

▶ The transfer Σ∞BG+ → Σ∞BH+ gives a map
E 0(BH) → E 0(BG), called trGH ; this is E

0(BG)-linear.

▶ Formal properties of these maps are similar to those of the maps
MG → MH → MG mentioned above.

▶ Put ∆ = {(g , g) | g ∈ G} ≤ G 2 and u = trG
2

∆ (1) ∈ E 0(BG 2).

▶ Take E = K = Morava K -theory, so K∗(BG) and K∗(BG) are finitely
generated free modules and dual to each other.
Then u is adjoint to a map u# : K∗(BG) → K−∗(BG).

▶ This arises from a map K ∧ BG+ → F (BG+,K) of spectra, whose cofibre
is called the Tate spectrum tG (K).

▶ Theorem (Greenlees-Sadofsky): tG (K) = 0.
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E 0(BH) → E 0(BG), called trGH ; this is E
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▶ Take E = K = Morava K -theory, so K∗(BG) and K∗(BG) are finitely
generated free modules and dual to each other.
Then u is adjoint to a map u# : K∗(BG) → K−∗(BG).
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Sketch proof of Tate vanishing

▶ Claim: the cofibre tG (K) of the map K ∧ BG+ → F (BG+,K) is zero.

▶ First suppose |G | = p, so G has a faithful one-dimensional complex
representation L with Euler class x ∈ K 0(BG), and K∗(BG) = K∗[x ]/xpn .

▶ The unit sphere S(∞L) is contractible and has free G -action so we can

take EG = S(∞L). Thus, the reduced suspension ẼG is the same as
S∞L = lim

−→k
SkL, where SkL ≃ S2k is the one-point compactification of nL.

▶ It is not hard to check that
G+ ∧ ẼG = F (G+, ẼG) = EG+ ∧ ẼG = F (EG+, ẼG) = 0.

Using this one can identify tG (K) with (ẼG ∧ F (EG+,K))G .

▶ Using ẼG = lim
−→

SkL and SkL ∧ F (EG+,K) = F (S−kL ∧ EG+,K) we get

tG (K) = lim
−→k

F (BG−kL,K), where BG−kL is the Thom spectrum.

▶ Using the fact that the Euler class of kL is xk , we find that
π∗(tG (K)) = K−∗(BG)[x−1] = (K∗[x ]/xpn )[x−1] = 0 as required.

▶ For general G : combine fairly similar arguments with an induction on |G |.
▶ Conclusion: K∗(BG) maps isomorphically to K∗(BG),

which is dual to K∗(BG), so K∗(BG) is self-dual.

▶ By rearranging the argument slightly: the K -local spectrum LKΣ
∞BG+ is

self-dual, and E∗(BG) is self-dual provided that it is a free E∗-module.
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More about duality

▶ We have shown that K∗(BG) is naturally self-dual when G is a finite
group. There is an easy generalisation to groupoids.

▶ Any functor α : G → H induces α∗ : K∗(BH) → K∗(BG). As everything is
self-dual, there is a unique α! : K

∗(BG) → K∗(BH) adjoint to α∗, i.e.
⟨α!(a), b⟩H = ⟨a, α∗(b)⟩G for a ∈ K∗(BG) and b ∈ K∗(BH).

▶ If α is an inclusion of groups, then α! is just the transfer.

▶ Given a homotopy pullback square of groupoids as shown on the left, we
have a commutative diagram as shown on the right.

G H K∗(BG) K∗(BH)

K L K∗(BK) K∗(BL)

α

β γ β!

α∗

γ!

δ δ∗

This generalises the classical Mackey property of transfers.

▶ Recall u = trG
2

∆ (1) ∈ K 0(BG 2) = K 0(BG)⊗K0 K 0(BG).

▶ From the duality theorem it follows that there is a unique Frobenius form
θ : K 0(BG) → K 0 such that (θ ⊗ 1)(u) = 1 in K 0(BG).

▶ Using the Mackey property: ⟨u, v⟩G = θ(uv).

▶ There are similar statements for E∗ when E 0(BG) is free.
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α
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This generalises the classical Mackey property of transfers.

▶ Recall u = trG
2

∆ (1) ∈ K 0(BG 2) = K 0(BG)⊗K0 K 0(BG).

▶ From the duality theorem it follows that there is a unique Frobenius form
θ : K 0(BG) → K 0 such that (θ ⊗ 1)(u) = 1 in K 0(BG).

▶ Using the Mackey property: ⟨u, v⟩G = θ(uv).

▶ There are similar statements for E∗ when E 0(BG) is free.
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Duality in the abelian case

▶ Let E be Morava E -theory.

▶ There is a power series logF (x) =
∑

k>0 mkx
k with m1 = 1 and

mk ∈ Q⊗ E 0 and logF (x +F y) = logF (x) + logF (y).

▶ The series d logF (x) =
∑

k k mkx
k−1 dx actually lies in E 0[[x ]].dx .

▶ Given any f (x) ∈ E 0[[x ]] we can expand f (x)ω/[pm]F (x) in positive and
negative powers of x , and define ρm(f (x)) = res(f (x)ω/[pm]F (x)) to be
the coefficient of x−1dx .

▶ Theorem: the Frobenius form θ : E 0(BCpm ) = E 0[[x ]]/[pm]F (x) → E 0

is induced by ρm.

▶ For a general finite abelian group A we can decompose A as a product of
cyclic groups and thus determine the Frobenius form.

▶ Open problem: do this more naturally in terms of higher-dimensional
residues and local cohomology.

▶ Theorem (Hopkins-Lurie): for all k the space BkA = K(k,A) has
E∗(BkA) naturally self-dual (but it is trivial for k > n).

▶ Open problem: give a residue formula for θ : E 0(BkA) → E 0.
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Semirings with λ-operations

▶ The representation semiring R+(G) is the set of isomorphism classes of
complex representations.

▶ This has addition [V ] + [W ] = [V ⊕W ] and multiplication
[V ][W ] = [V ⊗W ] but no subtraction.

▶ There are also operations λk sending [V ] to [ΛkV ],
where ΛkV is the k’th exterior power of V .

▶ We also have a ring R(G) of virtual representations,
which is the group completion of R(G).

▶ If h is the number of conjugacy classes then h is also the number of
isomorphism classes of irreducible representations. These form a basis
giving R+(G) ≃ Nh and R(G) ≃ Zh additively.

▶ The scheme
Div+(G) =

∐
k≥0 Div

+
k (G) =

∐
k≥0 G

k/Σk = spf(E 0(
∐

k BU(k)))
is a semiring object in the category of schemes, with λ-operations.

▶ For divisors D =
∑

i<r [ai ] and E =
∑

j<s [bj ] we have DE =
∑

i,j [ai + bj ]

and λkD =
∑

i1<···<ik<r [ai1 + · · ·+ aik ].

▶ The λ operations on R+(G) induce Adams operations on R(G), e.g.
ψ2(x) = x2 − 2λ2(x) and ψ3(x) = x3 − 3xλ2(x) + 3λ3(x).
These are ring maps with ψkψm = ψkm.
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which is the group completion of R(G).

▶ If h is the number of conjugacy classes then h is also the number of
isomorphism classes of irreducible representations. These form a basis
giving R+(G) ≃ Nh and R(G) ≃ Zh additively.

▶ The scheme
Div+(G) =

∐
k≥0 Div

+
k (G) =

∐
k≥0 G

k/Σk = spf(E 0(
∐

k BU(k)))
is a semiring object in the category of schemes, with λ-operations.

▶ For divisors D =
∑

i<r [ai ] and E =
∑

j<s [bj ] we have DE =
∑

i,j [ai + bj ]

and λkD =
∑

i1<···<ik<r [ai1 + · · ·+ aik ].

▶ The λ operations on R+(G) induce Adams operations on R(G), e.g.
ψ2(x) = x2 − 2λ2(x) and ψ3(x) = x3 − 3xλ2(x) + 3λ3(x).
These are ring maps with ψkψm = ψkm.
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Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



Chern approximations

▶ We define Ch(G) to be the scheme of morphism R+(G) → Div+(G) of
λ-semirings, and C(E ,G) = OCh(G).

▶ If we understand everything about R+(G) then we can write down a
presentation of C(E ,G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

▶ Like E 0(BG), the ring C(E ,G) is finitely generated as an E 0-module.

▶ There is a natural map αG : C(E ,G) → E 0(BG), whose image is the
subring generated by all Chern classes of all representations.

▶ There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

▶ If the chromatic height n is one, then αG is an isomorphism for all G . This
is because Morava E -theory at height one is the p-completion of KU and
so is very close to representation theory.

▶ If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then αG is iso.
However, this fails for the symmetric group Σ6 when p = n = 2.
It also fails for certain central extensions Cp → G → C 2d

p with d > 1.



The group G = Σ4 with n = p = 2

The character table of Σ4 is as follows:

class size 1 ϵ σ ρ ϵρ

14 1 1 1 2 3 3

122 6 1 −1 0 1 −1

22 3 1 1 2 −1 −1

13 8 1 1 −1 0 0

4 6 1 −1 0 −1 1

The ring structure, Adams operations and λ-operations are described in the
following table.

ϵ2 = 1 ψk(ϵ) = ϵk λ2(σ) = ϵ

ϵσ = σ ψ2(σ) = 1− ϵ+ σ λ2(ρ) = ϵρ

σ2 = 1 + ϵ+ σ ψ3(σ) = 1 + ϵ λ3(ρ) = ϵ

σρ = ρ+ ϵρ ψ2(ρ) = 1 + σ + ρ− ϵρ

ρ2 = 1 + σ + ρ+ ϵρ ψ3(ρ) = 1 + ϵ− σ + ρ.

Ch(Σ4) is the scheme of pairs (d ,D) ∈ G× Div+3 (G) such that

2d = 0 λ3(D) = [0] ψ−1(D) = D ψ2(D) + D = 2[0] + [d ] + [d ]D
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The formal group law for n = p = 2 satisfies

[2](x) = x4

[−1](x) = x + x4 + x10 + x16 + x22 (mod x32)

x +F y = x + y + x2y 2 (mod x4y 4).

K 0(BΣ4) = C(K ,Σ4) = F2[w , c2, c3]/J where

J = (w 4 , c23 , c2c3 , c
4
2 + w 2c32 + wc22 + w 2c3,wc

3
2 + w 2c2 + wc3).

The following 17 monomials form a basis for this ring over F2:

1 c2 c22 c32 c3
w wc2 wc22 wc3
w 2 w 2c2 w 2c22 w 2c3
w 3 w 3c2 w 3c22 w 3c3
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