Chromatic cohomology of finite groups 4

Neil Strickland

December 4, 2023

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1}h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [Zⁿ_p, G] is again a finite groupoid.
- ▶ We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = Map(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1}h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [Zⁿ_p, G] is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [Zⁿ_p, G] is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [ℤⁿ_p, G] is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [Zⁿ_p, G] is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [ℤⁿ_p, G] is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [ℤⁿ_p, G] is again a finite groupoid.
- ▶ We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- Theorem: this comes from a map θ: E⁰(BG) → E⁰ which also gives a perfect pairing (at least when E⁰(BG) is a free module over E⁰).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [ℤⁿ_p, G] is again a finite groupoid.
- ▶ We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z
- It is also like the map θ: R(G) → Z given by θ([V]) = dim(V^G), where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [ℤⁿ_p, G] is again a finite groupoid.
- ▶ We therefore have $\theta: L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- ▶ This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto \langle u, [M] \rangle$ from $H^d(M)$ to \mathbb{Z} .
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [Zⁿ_p, G] is again a finite groupoid.
- We therefore have $\theta \colon L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z.
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1}h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [Zⁿ_p, G] is again a finite groupoid.
- We therefore have $\theta \colon L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map u → ⟨u, [M]⟩ from H^d(M) to Z.
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.

The proof of the theorem uses transfers and Tate spectra.

- ▶ Recall: for a finite groupoid *G* we put $M^*(G) = \text{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta: M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- The HKR theorem says L ⊗_{E⁰} E⁰(BG) = L ⊗_Q M^{*}(ΛG), where ΛG = [Θ^{*}, G] = [ℤⁿ_p, G] is again a finite groupoid.
- We therefore have $\theta \colon L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \rightarrow E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- ▶ This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto \langle u, [M] \rangle$ from $H^d(M)$ to \mathbb{Z} .
- ▶ It is also like the map θ : $R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

Collapse and transfer

Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=v}[x].

The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.

- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v, x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \to G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ (the *transfer*).

• Consider a map $f: X \to Y$ of finite sets.

This induces a map $f : \mathbb{Z}[X] \to \mathbb{Z}[Y]$, and also a map $f^t : \mathbb{Z}[Y] \to \mathbb{Z}[X]$ given by $f^t([y]) = \sum_{f(x)=v} [x]$.

The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.

- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v,x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y].

and also a map $f^t \colon \mathbb{Z}[Y] \to \mathbb{Z}[X]$ given by $f^t([y]) = \sum_{f(x)=y} [x]$.

The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.

- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v,x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- ► The suspension spectrum $\Sigma^{\infty}X_+$ is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty}X_+ \to \Sigma^{\infty}Y_+$. We also want a map $f^T: \Sigma^{\infty}Y_+ \to \Sigma^{\infty}X_+$.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v,x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v,x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v,x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v,x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v,x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v,x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f* : V × X → V × Y by *f*(v, x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f* : V × X → V × Y by *f*(v, x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.

This is completely natural and so is compatible with any group actions.

- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f* : V × X → V × Y by *f*(v, x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \to G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v, x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \to G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ (the *transfer*).

- Consider a map f: X → Y of finite sets. This induces a map f: Z[X] → Z[Y], and also a map f^t: Z[Y] → Z[X] given by f^t([y]) = ∑_{f(x)=y}[x].
- The suspension spectrum Σ[∞]X₊ is a kind of refinement of Z[X], and we again have an easy map f: Σ[∞]X₊ → Σ[∞]Y₊. We also want a map f^T: Σ[∞]Y₊ → Σ[∞]X₊.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1 + ||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- Define *f*: V × X → V × Y by *f*(v, x) = (s(v) + i(x), f(x)), so *f* is an open embedding covering f.
- ▶ Define $c: S^V \land Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \land X_+$ by $c(\tilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\tilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t: Σ[∞]Y₊ → Σ[∞]X₊.
- ► Take $f = (G/H \rightarrow G/G = 1)$ and apply $EG_+ \wedge_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \rightarrow \Sigma^{\infty}BH_+$ (the *transfer*).

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ▶ The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr^G_{H} ; this is $E^0(BG)$ -linear
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ▶ The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called $\operatorname{tr}_{H_i}^G$; this is $E^0(BG)$ -linear
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ▶ The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called $\operatorname{tr}_{H_i}^G$; this is $E^0(BG)$ -linear
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_H^G \colon M^G \to M^H$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.

Now let *E* be an even periodic ring spectrum.

- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ▶ The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_{H}^G ; this is $E^0(BG)$ -linear
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called $\operatorname{tr}_{H^+}^G$; this is $E^0(BG)$ -linear
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where T is any subset of G containing one element of every H-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_{H}^G ; this is $E^0(BG)$ -linear
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_H^G \colon M^G \to M^H$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_H^G ; this is $E^0(BG)$ -linear.
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_H^G \colon M^G \to M^H$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_H^G ; this is $E^0(BG)$ -linear.
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_H^G \colon M^G \to M^H$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_H^G ; this is $E^0(BG)$ -linear.
- ▶ Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2 \text{ and } u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2).$
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}$: $K_*(BG) \rightarrow K^{-*}(BG)$.
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_H^G ; this is $E^0(BG)$ -linear.
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2 \text{ and } u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2).$
- ► Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other.

Then u is adjoint to a map $u^{\#}$: $K_*(BG) \to K^{-*}(BG)$.

This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).

Theorem (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_H^G ; this is $E^0(BG)$ -linear.
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2 \text{ and } u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2).$
- Take E = K = Morava K-theory, so K*(BG) and K_{*}(BG) are finitely generated free modules and dual to each other. Then u is adjoint to a map u[#]: K_{*}(BG) → K^{-*}(BG).
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).

Theorem (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_H^G ; this is $E^0(BG)$ -linear.
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- Take E = K = Morava K-theory, so K*(BG) and K_{*}(BG) are finitely generated free modules and dual to each other. Then u is adjoint to a map u[#]: K_{*}(BG) → K^{-*}(BG).
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).

Theorem (Greenlees-Sadofsky): $t_G(K) = 0$.

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $\operatorname{res}_{H}^{G}$: $M^{G} \to M^{H}$.
- ▶ There is a natural map $tr_H^G: M^H \to M^G$ given by $tr_H^G(m) = \sum_{t \in T} tm$, where *T* is any subset of *G* containing one element of every *H*-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ gives a map $E^0(BH) \to E^0(BG)$, called tr_H^G ; this is $E^0(BG)$ -linear.
- Formal properties of these maps are similar to those of the maps $M^G \rightarrow M^H \rightarrow M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2$ and $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2)$.
- Take E = K = Morava K-theory, so K*(BG) and K_{*}(BG) are finitely generated free modules and dual to each other. Then u is adjoint to a map u[#]: K_{*}(BG) → K^{-*}(BG).
- This arises from a map K ∧ BG₊ → F(BG₊, K) of spectra, whose cofibre is called the Tate spectrum t_G(K).
- **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

- Claim: the cofibre $t_G(K)$ of the map $K \wedge BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^0(BG)$, and $K^*(BG) = K^*[x]/x^{p^n}$
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.
- It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.
- ▶ Using $\widetilde{E}G = \lim_{\longrightarrow} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{\longrightarrow k} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.

- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

Claim: the cofibre $t_G(K)$ of the map $K \wedge BG_+ \rightarrow F(BG_+, K)$ is zero.

- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.

It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.

- ▶ Using $\widetilde{E}G = \lim_{K \to K} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{K \to K} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.

- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{k \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.
- It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.
- ▶ Using $\widetilde{E}G = \lim_{\longrightarrow} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{\longrightarrow k} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.

- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.

It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.

- ▶ Using $\widetilde{E}G = \lim_{K \to K} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{K \to K} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.

- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.
- It is not hard to check that G₊ ∧ ẼG = F(G₊, ẼG) = EG₊ ∧ ẼG = F(EG₊, ẼG) = 0. Using this one can identify t_G(K) with (ẼG ∧ F(EG₊, K))^G.
- ▶ Using $\widetilde{E}G = \lim_{K \to K} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{K \to K} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^o})[x^{-1}] = 0$ as required.
- For general G: combine fairly similar arguments with an induction on |G|.
- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.
- It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.
- ▶ Using $\widetilde{E}G = \lim_{K \to K} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{K \to K} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.

- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.
- It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.
- ▶ Using $\widetilde{E}G = \lim_{K \to K} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{K \to K} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- ▶ Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.

- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.
- It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.
- ▶ Using $\widetilde{E}G = \lim_{\longrightarrow} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{\longrightarrow k} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.
- ▶ For general *G*: combine fairly similar arguments with an induction on |*G*|.
- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.
- It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.
- ▶ Using $\widetilde{E}G = \lim_{K \to K} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{K \to K} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.

▶ For general *G*: combine fairly similar arguments with an induction on |*G*|.

Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.

▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class x ∈ K⁰(BG), and K^{*}(BG) = K^{*}[x]/x^{pⁿ}.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free *G*-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{i \to k} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of *nL*.
- It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0.$ Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.
- ▶ Using $\widetilde{E}G = \lim_{K \to K} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \lim_{K \to K} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.

- Conclusion: K_{*}(BG) maps isomorphically to K^{*}(BG), which is dual to K_{*}(BG), so K^{*}(BG) is self-dual.
- ▶ By rearranging the argument slightly: the *K*-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

More about duality

- We have shown that K*(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha : G \to H$ induces $\alpha^* : K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_1 : K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_1(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- If α is an inclusion of groups, then α_1 is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

$$\begin{array}{ccc} G & \xrightarrow{\alpha} & H & K^*(BG) & \xleftarrow{\alpha^*} & K^*(BH) \\ \beta & & & & & \\ \beta & & & & \\ \beta & & & & \\ K & \xrightarrow{\beta_1} & & & & \\ K^*(BK) & \xleftarrow{\delta^*} & K^*(BL) \end{array}$$

- ▶ Recall $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$
- From the duality theorem it follows that there is a unique *Frobenius form* $\theta \colon K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E* when E⁰(BG) is free.

- ▶ We have shown that K^{*}(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha \colon G \to H$ induces $\alpha^* \colon K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_1 \colon K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_1(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- If α is an inclusion of groups, then α_1 is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

$$\begin{array}{ccc} G & \xrightarrow{\alpha} & H & K^*(BG) & \xleftarrow{\alpha^*} & K^*(BH) \\ \beta & & & & & \\ \beta & & & & \\ \beta & & & & \\ K & \xrightarrow{\beta_1} & & & & \\ K & \xrightarrow{\beta_1} & & & & \\ K^*(BK) & \xleftarrow{\delta^*} & K^*(BL) \end{array}$$

- ▶ Recall $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E^* when $E^0(BG)$ is free.

More about duality

- We have shown that K*(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha: G \to H$ induces $\alpha^*: K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_1: K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_1(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.

lf α is an inclusion of groups, then α_1 is just the transfer.

Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

- ▶ Recall $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$
- From the duality theorem it follows that there is a unique *Frobenius form* $\theta \colon K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E^* when $E^0(BG)$ is free.

- ▶ We have shown that K^{*}(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha : G \to H$ induces $\alpha^* : K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_1 : K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_1(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- If α is an inclusion of groups, then α_1 is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

- ▶ Recall $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E^* when $E^0(BG)$ is free.

- ▶ We have shown that K^{*}(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha : G \to H$ induces $\alpha^* : K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_! : K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_!(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- If α is an inclusion of groups, then α_1 is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

- ▶ Recall $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E^* when $E^0(BG)$ is free.

- ▶ We have shown that K^{*}(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha : G \to H$ induces $\alpha^* : K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_! : K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_!(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- If α is an inclusion of groups, then α_1 is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

$$\begin{array}{cccc} G & \xrightarrow{\alpha} & H & & K^*(BG) & \xleftarrow{\alpha^*} & K^*(BH) \\ \beta & & & & & & \\ \beta & & & & & \\ \downarrow & & & & & \\ K & \xrightarrow{\delta} & L & & & K^*(BK) & \xleftarrow{\delta^*} & K^*(BL) \end{array}$$

► Recall
$$u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$$

- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E^* when $E^0(BG)$ is free.

- ▶ We have shown that K^{*}(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha : G \to H$ induces $\alpha^* : K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_! : K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_!(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- If α is an inclusion of groups, then α_1 is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

- ► Recall $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E^* when $E^0(BG)$ is free.

- ▶ We have shown that K^{*}(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha : G \to H$ induces $\alpha^* : K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_! : K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_!(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- If α is an inclusion of groups, then α_1 is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

- ► Recall $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E^* when $E^0(BG)$ is free.

- We have shown that K*(BG) is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha : G \to H$ induces $\alpha^* : K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_! : K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_!(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- If α is an inclusion of groups, then α_1 is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

- ► Recall $u = \operatorname{tr}_{\Delta}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG).$
- From the duality theorem it follows that there is a unique Frobenius form $\theta \colon K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- There are similar statements for E^* when $E^0(BG)$ is free.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + F y) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[x].dx$.
- Given any f(x) ∈ E⁰ [x] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- ▶ **Theorem:** the Frobenius form θ : $E^0(BC_{p^m}) = E^0[[x]]/[p^m]_F(x) \to E^0$ is induced by ρ_m .
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- **Open problem**: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **Dpen problem**: give a residue formula for θ : $E^0(B^kA) \to E^0$.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + Fy) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[[x]].dx$.
- Given any f(x) ∈ E⁰ [x] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- ▶ **Theorem:** the Frobenius form θ : $E^0(BC_{p^m}) = E^0[[x]]/[p^m]_F(x) \to E^0$ is induced by ρ_m .
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- **Open problem**: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **Dpen problem**: give a residue formula for θ : $E^0(B^kA) \to E^0$.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + F y) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[x].dx$.
- Given any f(x) ∈ E⁰ [x] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- ▶ **Theorem:** the Frobenius form θ : $E^0(BC_{p^m}) = E^0[[x]]/[p^m]_F(x) \to E^0$ is induced by ρ_m .
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **• Open problem**: give a residue formula for θ : $E^0(B^kA) \rightarrow E^0$.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x+Fy) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[[x]].dx$.
- Given any f(x) ∈ E⁰ [[x]] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- ▶ **Theorem:** the Frobenius form θ : $E^0(BC_{p^m}) = E^0[[x]]/[p^m]_F(x) \to E^0$ is induced by ρ_m .
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **• Open problem**: give a residue formula for θ : $E^0(B^kA) \rightarrow E^0$.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + F y) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[[x]].dx$.
- Given any f(x) ∈ E⁰ [[x]] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- ▶ **Theorem:** the Frobenius form θ : $E^0(BC_{p^m}) = E^0[[x]]/[p^m]_F(x) \to E^0$ is induced by ρ_m .
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **Dpen problem**: give a residue formula for θ : $E^0(B^kA) \rightarrow E^0$.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + F y) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[[x]].dx$.
- Given any f(x) ∈ E⁰ [[x]] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- Theorem: the Frobenius form θ: E⁰(BC_{ρ^m}) = E⁰[[x]]/[p^m]_F(x) → E⁰ is induced by ρ_m.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **Dpen problem**: give a residue formula for θ : $E^0(B^kA) \rightarrow E^0$.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + F y) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[[x]].dx$.
- Given any f(x) ∈ E⁰ [[x]] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- Theorem: the Frobenius form θ: E⁰(BC_{ρ^m}) = E⁰[[x]]/[p^m]_F(x) → E⁰ is induced by ρ_m.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **Dpen problem**: give a residue formula for θ : $E^0(B^kA) \rightarrow E^0$.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + F y) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[[x]].dx$.
- Given any f(x) ∈ E⁰ [[x]] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- Theorem: the Frobenius form θ: E⁰(BC_{ρ^m}) = E⁰[[x]]/[p^m]_F(x) → E⁰ is induced by ρ_m.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **Dpen problem**: give a residue formula for θ : $E^0(B^kA) \rightarrow E^0$.

Let E be Morava E-theory.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + F y) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[[x]].dx$.
- Given any f(x) ∈ E⁰ [[x]] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- Theorem: the Frobenius form θ: E⁰(BC_{ρ^m}) = E⁰[[x]]/[p^m]_F(x) → E⁰ is induced by ρ_m.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).

• **Open problem**: give a residue formula for θ : $E^0(B^kA) \rightarrow E^0$.

- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x + F y) = \log_F(x) + \log_F(y)$.
- The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[[x]].dx$.
- Given any f(x) ∈ E⁰ [[x]] we can expand f(x)ω/[p^m]_F(x) in positive and negative powers of x, and define ρ_m(f(x)) = res(f(x)ω/[p^m]_F(x)) to be the coefficient of x⁻¹dx.
- ▶ Theorem: the Frobenius form $\theta : E^0(BC_{p^m}) = E^0[\![x]\!]/[p^m]_F(x) \to E^0$ is induced by ρ_m .
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ Theorem (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- **• Open problem**: give a residue formula for θ : $E^0(B^kA) \rightarrow E^0$.

Semirings with λ -operations

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- ▶ If *h* is the number of conjugacy classes then *h* is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_+(G) \simeq \mathbb{N}^h$ and $R(G) \simeq \mathbb{Z}^h$ additively.
- The scheme
 - $\mathsf{Div}^+(\mathbb{G}) = \coprod_{k \ge 0} \mathsf{Div}_k^+(\mathbb{G}) = \coprod_{k \ge 0} \mathbb{G}^k / \Sigma_k = \mathsf{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations
- For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

Semirings with λ -operations

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving R₊(G) ≃ N^h and R(G) ≃ Z^h additively.
- The scheme
 - $\mathsf{Div}^+(\mathbb{G}) = \coprod_{k \ge 0} \mathsf{Div}_k^+(\mathbb{G}) = \coprod_{k \ge 0} \mathbb{G}^k / \Sigma_k = \mathsf{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations
- For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to $[\Lambda^k V]$, where $\Lambda^k V$ is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving R₊(G) ≃ N^h and R(G) ≃ Z^h additively.
- The scheme
 - $\mathsf{Div}^+(\mathbb{G}) = \coprod_{k \ge 0} \mathsf{Div}_k^+(\mathbb{G}) = \coprod_{k \ge 0} \mathbb{G}^k / \Sigma_k = \mathsf{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations
- ► For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving R₊(G) ≃ N^h and R(G) ≃ Z^h additively.
- The scheme
 - $\mathsf{Div}^+(\mathbb{G}) = \coprod_{k \ge 0} \mathsf{Div}_k^+(\mathbb{G}) = \coprod_{k \ge 0} \mathbb{G}^k / \Sigma_k = \mathsf{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations
- ► For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- ▶ If *h* is the number of conjugacy classes then *h* is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_+(G) \simeq \mathbb{N}^h$ and $R(G) \simeq \mathbb{Z}^h$ additively.
- ► The scheme $\operatorname{Div}^+(\mathbb{G}) = \coprod_{k\geq 0} \operatorname{Div}^+_k(\mathbb{G}) = \coprod_{k\geq 0} \mathbb{G}^k / \Sigma_k = \operatorname{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operation
- ► For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving R₊(G) ≃ N^h and R(G) ≃ Z^h additively.
- The scheme Div⁺(G) = ∐_{k≥0} Div⁺_k(G) = ∐_{k≥0} G^k/Σ_k = spf(E⁰(∐_k BU(k))) is a semiring object in the category of schemes, with λ-operation
- ► For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving R₊(G) ≃ N^h and R(G) ≃ Z^h additively.
- The scheme
 - $\operatorname{Div}^+(\mathbb{G}) = \coprod_{k \ge 0} \operatorname{Div}^+_k(\mathbb{G}) = \coprod_{k \ge 0} \mathbb{G}^k / \Sigma_k = \operatorname{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations.
- For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving R₊(G) ≃ N^h and R(G) ≃ Z^h additively.
- ► The scheme $\operatorname{Div}^+(\mathbb{G}) = \coprod_{k \ge 0} \operatorname{Div}_k^+(\mathbb{G}) = \coprod_{k \ge 0} \mathbb{G}^k / \Sigma_k = \operatorname{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations.
- ► For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving R₊(G) ≃ N^h and R(G) ≃ Z^h additively.
- ► The scheme $\operatorname{Div}^+(\mathbb{G}) = \coprod_{k \ge 0} \operatorname{Div}^+_k(\mathbb{G}) = \coprod_{k \ge 0} \mathbb{G}^k / \Sigma_k = \operatorname{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations.
- For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- ► The λ operations on $R_+(G)$ induce Adams operations on R(G), e.g. $\psi^2(x) = x^2 2\lambda^2(x)$ and $\psi^3(x) = x^3 3x\lambda^2(x) + 3\lambda^3(x)$. These are ring maps with $\psi^k \psi^m = \psi^{km}$.

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to [Λ^kV], where Λ^kV is the k'th exterior power of V.
- We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving R₊(G) ≃ N^h and R(G) ≃ Z^h additively.
- ► The scheme $\operatorname{Div}^+(\mathbb{G}) = \coprod_{k \ge 0} \operatorname{Div}^+_k(\mathbb{G}) = \coprod_{k \ge 0} \mathbb{G}^k / \Sigma_k = \operatorname{spf}(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations.
- For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on R₊(G) induce Adams operations on R(G), e.g. ψ²(x) = x² − 2 λ²(x) and ψ³(x) = x³ − 3xλ²(x) + 3λ³(x). These are ring maps with ψ^kψ^m = ψ^{km}.

- We define Ch(G) to be the scheme of morphism R₊(G) → Div⁺(G) of λ-semirings, and C(E, G) = O_{Ch(G)}.
- If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1.

- ▶ We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1.

- We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1.

- We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1.

- We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- ► If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1.

- We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- ► If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1.

- We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- ► If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1.

- We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- ► If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.

However, this fails for the symmetric group Σ_6 when p = n = 2. It also fails for certain central extensions $C_p \to G \to C_p^{2d}$ with d > 1.

- We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1

- We define Ch(G) to be the scheme of morphism $R_+(G) \to Div^+(\mathbb{G})$ of λ -semirings, and $C(E, G) = \mathcal{O}_{Ch(G)}$.
- If we understand everything about R₊(G) then we can write down a presentation of C(E, G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^0(BG)$, the ring C(E, G) is finitely generated as an E^0 -module.
- There is a natural map α_G: C(E, G) → E⁰(BG), whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso.
 However, this fails for the symmetric group Σ₆ when p = n = 2.
 It also fails for certain central extensions C_p → G → C_p^{2d} with d > 1.

The character table	e of Σ_4	is as	follows:	
---------------------	-----------------	-------	----------	--

class	size	1	ϵ	σ	ρ	$\epsilon \rho$
14	1	1	1	2	3	3
1 ² 2	6	1	-1	0	1	-1
2 ²	3	1	1	2	-1	-1
13	8	1	1	-1	0	0
4	6	1	-1	0	-1	1

The ring structure, Adams operations and λ -operations are described in the following table.

$$\begin{split} \epsilon^2 &= 1 & \psi^k(\epsilon) = \epsilon^k & \lambda^2(\sigma) = \epsilon \\ \epsilon\sigma &= \sigma & \psi^2(\sigma) = 1 - \epsilon + \sigma & \lambda^2(\rho) = \epsilon\rho \\ \sigma^2 &= 1 + \epsilon + \sigma & \psi^3(\sigma) = 1 + \epsilon & \lambda^3(\rho) = \epsilon \\ \sigma\rho &= \rho + \epsilon\rho & \psi^2(\rho) = 1 + \sigma + \rho - \epsilon\rho \\ \rho^2 &= 1 + \sigma + \rho + \epsilon\rho & \psi^3(\rho) = 1 + \epsilon - \sigma + \rho. \end{split}$$

Ch(Σ_4) is the scheme of pairs $(d, D) \in \mathbb{G} \times \text{Div}_3^+(\mathbb{G})$ such that $2d = 0 \qquad \lambda^3(D) = [0] \qquad \psi^{-1}(D) = D \qquad \psi^2(D) + D = 2[0] + [d] + [d] D$

The character table of Σ_4 is as follows:

class	size	1	ϵ	σ	ρ	$\epsilon \rho$
14	1	1	1	2	3	3
1 ² 2	6	1	$^{-1}$	0	1	-1
2 ²	3	1	1	2	-1	-1
13	8	1	1	-1	0	0
4	6	1	$^{-1}$	0	$^{-1}$	1

The ring structure, Adams operations and λ -operations are described in the following table.

$$\begin{split} \epsilon^2 &= 1 & \psi^k(\epsilon) = \epsilon^k & \lambda^2(\sigma) = \epsilon \\ \epsilon\sigma &= \sigma & \psi^2(\sigma) = 1 - \epsilon + \sigma & \lambda^2(\rho) = \epsilon\rho \\ \sigma^2 &= 1 + \epsilon + \sigma & \psi^3(\sigma) = 1 + \epsilon & \lambda^3(\rho) = \epsilon \\ \sigma\rho &= \rho + \epsilon\rho & \psi^2(\rho) = 1 + \sigma + \rho - \epsilon\rho \\ \rho^2 &= 1 + \sigma + \rho + \epsilon\rho & \psi^3(\rho) = 1 + \epsilon - \sigma + \rho. \end{split}$$

 $\mathsf{Ch}(\Sigma_4)$ is the scheme of pairs $(d,D)\in \mathbb{G} imes \mathsf{Div}_3^+(\mathbb{G})$ such that

2d = 0 $\lambda^{3}(D) = [0]$ $\psi^{-1}(D) = D$ $\psi^{2}(D) + D = 2[0] + [d] + [d]D$

The character table of Σ_4 is as follows:

class	size	1	ϵ	σ	ρ	$\epsilon \rho$
14	1	1	1	2	3	3
1 ² 2	6	1	$^{-1}$	0	1	-1
2 ²	3	1	1	2	-1	-1
13	8	1	1	-1	0	0
4	6	1	$^{-1}$	0	$^{-1}$	1

The ring structure, Adams operations and λ -operations are described in the following table.

$$\begin{split} \epsilon^2 &= 1 & \psi^k(\epsilon) = \epsilon^k & \lambda^2(\sigma) = \epsilon \\ \epsilon\sigma &= \sigma & \psi^2(\sigma) = 1 - \epsilon + \sigma & \lambda^2(\rho) = \epsilon\rho \\ \sigma^2 &= 1 + \epsilon + \sigma & \psi^3(\sigma) = 1 + \epsilon & \lambda^3(\rho) = \epsilon \\ \sigma\rho &= \rho + \epsilon\rho & \psi^2(\rho) = 1 + \sigma + \rho - \epsilon\rho \\ \rho^2 &= 1 + \sigma + \rho + \epsilon\rho & \psi^3(\rho) = 1 + \epsilon - \sigma + \rho. \end{split}$$

Ch(Σ_4) is the scheme of pairs $(d, D) \in \mathbb{G} \times \text{Div}_3^+(\mathbb{G})$ such that $2d = 0 \qquad \lambda^3(D) = [0] \qquad \psi^{-1}(D) = D \qquad \psi^2(D) + D = 2[0] + [d] + [d]D$

 $\mathsf{Ch}(\Sigma_4)$ is the scheme of pairs $(d,D)\in \mathbb{G} imes \mathsf{Div}_3^+(\mathbb{G})$ such that

2d = 0 $\lambda^{3}(D) = [0]$ $\psi^{-1}(D) = D$ $\psi^{2}(D) + D = 2[0] + [d] + [d]D$

The formal group law for n = p = 2 satisfies

$$[2](x) = x^{4}$$

$$[-1](x) = x + x^{4} + x^{10} + x^{16} + x^{22} \pmod{x^{32}}$$

$$x +_{F} y = x + y + x^{2}y^{2} \pmod{x^{4}y^{4}}.$$

 $\begin{aligned} \mathcal{K}^{0}(B\Sigma_{4}) &= \mathcal{C}(\mathcal{K}, \Sigma_{4}) = \mathbb{F}_{2}[w, c_{2}, c_{3}]/J \text{ where} \\ J &= (w^{4}, c_{3}^{2}, c_{2}c_{3}, c_{2}^{4} + w^{2}c_{2}^{3} + wc_{2}^{2} + w^{2}c_{3}, wc_{2}^{3} + w^{2}c_{2} + wc_{3}). \end{aligned}$

Ch(Σ_4) is the scheme of pairs $(d, D) \in \mathbb{G} \times \text{Div}_3^+(\mathbb{G})$ such that 2d = 0 $\lambda^3(D) = [0]$ $\psi^{-1}(D) = D$ $\psi^2(D) + D = 2[0] + [d] + [d]D$

The formal group law for n = p = 2 satisfies

$$[2](x) = x^{4}$$

$$[-1](x) = x + x^{4} + x^{10} + x^{16} + x^{22} \pmod{x^{32}}$$

$$x +_{F} y = x + y + x^{2}y^{2} \pmod{x^{4}y^{4}}.$$

$$\begin{aligned} \mathcal{K}^{0}(B\Sigma_{4}) &= \mathcal{C}(\mathcal{K}, \Sigma_{4}) = \mathbb{F}_{2}[w, c_{2}, c_{3}]/J \text{ where} \\ J &= (w^{4}, c_{3}^{2}, c_{2}c_{3}, c_{2}^{4} + w^{2}c_{2}^{3} + wc_{2}^{2} + w^{2}c_{3}, wc_{2}^{3} + w^{2}c_{2} + wc_{3}). \end{aligned}$$

 $Ch(\Sigma_4)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times Div_3^+(\mathbb{G})$ such that

2d = 0 $\lambda^{3}(D) = [0]$ $\psi^{-1}(D) = D$ $\psi^{2}(D) + D = 2[0] + [d] + [d]D$

The formal group law for n = p = 2 satisfies

$$[2](x) = x^{4}$$

$$[-1](x) = x + x^{4} + x^{10} + x^{16} + x^{22} \pmod{x^{32}}$$

$$x + F y = x + y + x^{2}y^{2} \pmod{x^{4}y^{4}}.$$

 $\begin{aligned} \mathcal{K}^{0}(B\Sigma_{4}) &= \mathcal{C}(\mathcal{K}, \Sigma_{4}) = \mathbb{F}_{2}[w, c_{2}, c_{3}]/J \text{ where} \\ J &= (w^{4}, c_{3}^{2}, c_{2}c_{3}, c_{2}^{4} + w^{2}c_{2}^{3} + wc_{2}^{2} + w^{2}c_{3}, wc_{2}^{3} + w^{2}c_{2} + wc_{3}). \end{aligned}$

 $Ch(\Sigma_4)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times Div_3^+(\mathbb{G})$ such that

2d = 0 $\lambda^{3}(D) = [0]$ $\psi^{-1}(D) = D$ $\psi^{2}(D) + D = 2[0] + [d] + [d]D$

The formal group law for n = p = 2 satisfies

$$[2](x) = x^{4}$$

$$[-1](x) = x + x^{4} + x^{10} + x^{16} + x^{22} \pmod{x^{32}}$$

$$x +_{F} y = x + y + x^{2}y^{2} \pmod{x^{4}y^{4}}.$$

$$\begin{aligned} \mathcal{K}^{0}(B\Sigma_{4}) &= \mathcal{C}(\mathcal{K}, \Sigma_{4}) = \mathbb{F}_{2}[w, c_{2}, c_{3}]/J \text{ where} \\ J &= (w^{4}, c_{3}^{2}, c_{2}c_{3}, c_{2}^{4} + w^{2}c_{2}^{3} + wc_{2}^{2} + w^{2}c_{3}, wc_{2}^{3} + w^{2}c_{2} + wc_{3}). \end{aligned}$$

 $Ch(\Sigma_4)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times Div_3^+(\mathbb{G})$ such that

2d = 0 $\lambda^{3}(D) = [0]$ $\psi^{-1}(D) = D$ $\psi^{2}(D) + D = 2[0] + [d] + [d]D$

The formal group law for n = p = 2 satisfies

$$[2](x) = x^{4}$$

$$[-1](x) = x + x^{4} + x^{10} + x^{16} + x^{22} \pmod{x^{32}}$$

$$x + F y = x + y + x^{2}y^{2} \pmod{x^{4}y^{4}}.$$

$$\begin{aligned} \mathcal{K}^{0}(B\Sigma_{4}) &= \mathcal{C}(\mathcal{K}, \Sigma_{4}) = \mathbb{F}_{2}[w, c_{2}, c_{3}]/J \text{ where} \\ J &= (w^{4}, c_{3}^{2}, c_{2}c_{3}, c_{2}^{4} + w^{2}c_{2}^{3} + wc_{2}^{2} + w^{2}c_{3}, wc_{2}^{3} + w^{2}c_{2} + wc_{3}). \end{aligned}$$