Chromatic cohomology of finite groups 4

Neil Strickland

December 4, 2023

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$. This is a perfect pairing on $M^{*}(G)$.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
\rightarrow We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
- Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
\Rightarrow This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
- It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
\Rightarrow The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$. This is a perfect pairing on $M^{*}(G)$.
$>$ The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\wedge G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
- Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
- It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
\Rightarrow We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing
- Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
- It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$.
The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\wedge G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{F^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing
\rightarrow Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
- It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$. This is a perfect pairing on $M^{*}(G)$. where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{F^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
\rightarrow Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
- It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$.This is a perfect pairing on $M^{*}(G)$.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
\rightarrow We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
\rightarrow Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
\rightarrow This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
\rightarrow It is also like the $\operatorname{man} \theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V /])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
> The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$. This is a perfect pairing on $M^{*}(G)$.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing. perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
$>$ It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.
\rightarrow The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$. This is a perfect pairing on $M^{*}(G)$.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
- Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).

This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}. \rightarrow It is also like the $\operatorname{map} \theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing

- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
$>$ The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$.This is a perfect pairing on $M^{*}(G)$.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
- Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}. $R(G)$ is the complex representation ring. This also gives a perfect pairing
\rightarrow The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory. - The proof of the theorem uses transfers and Tate spectra.

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$. This is a perfect pairing on $M^{*}(G)$.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
- Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
- It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.

[^0]
Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$.This is a perfect pairing on $M^{*}(G)$.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
- Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
- It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
\rightarrow The proof of the theorem uses transfers and Tate spectra

Duality

- Recall: for a finite groupoid G we put $M^{*}(G)=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$. We define $\theta: M^{*}(G) \rightarrow \mathbb{Q}$ by $\theta(h)=\sum_{i<r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$, where $\left\{a_{i} \mid i<r\right\}$ contains one representative of each isomorphism class. We then define $\langle f, g\rangle_{G}=\theta(f g)$.This is a perfect pairing on $M^{*}(G)$.
- The HKR theorem says $L \otimes_{E^{0}} E^{0}(B G)=L \otimes_{\mathbb{Q}} M^{*}(\Lambda G)$, where $\Lambda G=\left[\Theta^{*}, G\right]=\left[\mathbb{Z}_{p}^{n}, G\right]$ is again a finite groupoid.
- We therefore have $\theta: L \otimes_{E^{0}} E^{0}(B G) \rightarrow L$ giving a perfect pairing.
- Theorem: this comes from a map $\theta: E^{0}(B G) \rightarrow E^{0}$ which also gives a perfect pairing (at least when $E^{0}(B G)$ is a free module over E^{0}).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto\langle u,[M]\rangle$ from $H^{d}(M)$ to \mathbb{Z}.
- It is also like the map $\theta: R(G) \rightarrow \mathbb{Z}$ given by $\theta([V])=\operatorname{dim}\left(V^{G}\right)$, where $R(G)$ is the complex representation ring. This also gives a perfect pairing.
- The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- The proof of the theorem uses transfers and Tate spectra.

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$,
and also a map $f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$,
and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$.
We also want a map $f^{\top}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
\Rightarrow Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$.
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$,
giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
\Rightarrow Define $\widetilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$, so \widetilde{f} is an open embedding covering f.
- Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(\widetilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin \operatorname{image}(\widetilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Take $f=(G / H \rightarrow G / G=1)$ and apply $E G_{+} \wedge_{G}(-)$ to f^{t} and use $E G / H \simeq B H$ to get a map $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$(the transfer).

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$,
and also a map $f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$,
and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$.
We also want a map $f^{\top}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$
\Rightarrow Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$,
giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
\Rightarrow Define $\widetilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$,
so \widetilde{f} is an open embedding covering f.
- Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(\widetilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin \operatorname{image}(\widetilde{f})$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Take $f=(G / H \rightarrow G / G=1)$ and apply $E G_{+} \wedge_{G}(-)$ to f^{t} and use $E G / H \simeq B H$ to get a map $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$(the transfer).

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$
and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$
We also want a map $f^{\top}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$
- Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$,
giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
\rightarrow Define $\widetilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$,
so \widetilde{f} is an open embedding covering f.
\Rightarrow Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(\widetilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin$ image (\widetilde{f}).
- This is completely natural and so is compatible with any group actions.
\Rightarrow In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Take $f=(G / H \rightarrow G / G=1)$ and apply $E G_{+} \wedge_{G}(-)$ to f^{t} and use
$E G / H \simeq B H$ to get a $\operatorname{map} \Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$(the transfer).

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$,
and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.
\Rightarrow The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$ We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
\Rightarrow Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$

- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$,
giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
\Rightarrow Define $f: V \times X \rightarrow V \times Y$ by $f(v, x)=(s(v)+i(x), f(x))$,
so \tilde{f} is an open embedding covering f.
- Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(\widetilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin$ image (\widetilde{f}).
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Take $f=(G / H \rightarrow G / G=1)$ and apply $E G_{+} \wedge_{G}(-)$ to f^{t} and use $E G / H \simeq B H$ to get a map $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$(the transfer).

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$,
and also a map $f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$

We also want a map $f^{\top}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$
\rightarrow Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$

- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$,
giving a homeomorphism from V to an open ball of radius $1 / \sqrt{ } 2$.
\rightarrow Define $f: V \times X \rightarrow V \times Y$ by $f(v, x)=(s(v)+i(x), f(x))$,
so \tilde{f} is an open embedding covering f
\Rightarrow Define c: $S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(f(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin \operatorname{image}(f)$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$
- Take $f=(G / H \rightarrow G / G=1)$ and apply $E G_{+} \wedge_{G}(-)$ to f^{t} and use $E G / H \simeq B H$ to get a map $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$(the transfer).

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$,
and also a map $f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$.
- Put $V=\mathbb{R}[X]$, giving
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$,
giving a homeomorphism from V to an open ball of radius $1 / \sqrt{ }$.
\Rightarrow Define $f: V \times X \rightarrow V \times Y$ by $f(v, x)=(s(v)+i(x), f(x))$,
so f is an open embedding covering f.
\Rightarrow Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(f(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin \operatorname{image}(f)$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$
- Take $f=(G / H \rightarrow G / G=1)$ and apply $E G_{+} \wedge_{G}(-)$ to f^{t} and use $E G / H \simeq B H$ to get a map $\Sigma^{\infty} B G_{+} \rightarrow \sum^{\infty} B H_{+}$(the transfer)

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$,
and also a map $f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$,
giving a homeomorphism from V to an open ball of radius $1 / \sqrt{ } 2$.
\rightarrow Define $f: V \times X \rightarrow V \times Y$ by $f(v, x)=(s(v)+i(x), f(x))$,
so \tilde{f} is an open embedding covering f.
- Define $c: S^{V} \wedge Y_{1}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{1}$ by $c(f(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin \operatorname{image}(f)$.
\rightarrow This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$,
and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$.
giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$. - Define $\widetilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$.
so f is an open embedding covering f.
- Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(\tilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin \operatorname{image}(\tilde{f})$.
\Rightarrow This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$,
and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$.
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$, giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
so f is an open embedding covering f.
- Define $c: S^{V} \wedge Y=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(f(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin \operatorname{image}(f)$.
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$, and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$.
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$, giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
- Define $\tilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$, so \widetilde{f} is an open embedding covering f.
- This is completely natural and so is compatible with any group actions.
- In the morld of spectra we have a negative sphere

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$, and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$.
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$, giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
- Define $\tilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$, so \widetilde{f} is an open embedding covering f.
- Define $c: S^{\vee} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{\vee} \wedge X_{+}$ by $c(\widetilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin$ image (\widetilde{f}).
\rightarrow This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$, and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$.
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$, giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
- Define $\tilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$, so \widetilde{f} is an open embedding covering f.
- Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(\widetilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin$ image (\widetilde{f}).
- This is completely natural and so is compatible with any group actions. the smash product with this to get f

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$, and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$.
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$, giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
- Define $\tilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$, so \tilde{f} is an open embedding covering f.
- Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{\vee} \wedge X_{+}$ by $c(\widetilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin$ image (\widetilde{f}).
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.

Collapse and transfer

- Consider a map $f: X \rightarrow Y$ of finite sets.

This induces a map $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[Y]$, and also a $\operatorname{map} f^{t}: \mathbb{Z}[Y] \rightarrow \mathbb{Z}[X]$ given by $f^{t}([y])=\sum_{f(x)=y}[x]$.

- The suspension spectrum $\Sigma^{\infty} X_{+}$is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty} X_{+} \rightarrow \Sigma^{\infty} Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Put $V=\mathbb{R}[X]$, giving $i: X \rightarrow V \subset S^{V}=V \cup\{\infty\}$.
- Put $s(v)=v / \sqrt{2\left(1+\|v\|^{2}\right)}$, giving a homeomorphism from V to an open ball of radius $1 / \sqrt{2}$.
- Define $\tilde{f}: V \times X \rightarrow V \times Y$ by $\widetilde{f}(v, x)=(s(v)+i(x), f(x))$, so \tilde{f} is an open embedding covering f.
- Define $c: S^{V} \wedge Y_{+}=(V \times Y) \cup\{\infty\} \rightarrow(V \times X) \cup\{\infty\}=S^{V} \wedge X_{+}$ by $c(\widetilde{f}(v, x))=(v, x)$ and $c(v, y)=\infty$ for $(v, y) \notin$ image (\widetilde{f}).
- This is completely natural and so is compatible with any group actions.
- In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get $f^{t}: \Sigma^{\infty} Y_{+} \rightarrow \Sigma^{\infty} X_{+}$.
- Take $f=(G / H \rightarrow G / G=1)$ and apply $E G_{+} \wedge_{G}(-)$ to f^{t} and use $E G / H \simeq B H$ to get a map $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$(the transfer).

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
> There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T}$ tm, where T is any subset of G containing one element of every H-coset.
- Now let E be an even periodic ring spectrum.
\Rightarrow The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
\Rightarrow Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\prime \prime}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
- This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$.
- Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion res $_{H}^{G}: M^{G} \rightarrow M^{H}$
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
\Rightarrow Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
\Rightarrow The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
- Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
\rightarrow This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$.
- Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
\Rightarrow There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
- Now let E be an even periodic ring spectrum.
\Rightarrow The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
$>$ Put $\triangle=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\triangle}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other.
Then u is adjoint to a map $u^{\prime \prime}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
\rightarrow This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$.
$>$ Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
\rightarrow Now let E be an even periodic ring spectrum
\rightarrow The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called res $_{H}^{G}$.
\rightarrow The transfer $\sum^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
\rightarrow Formal nronerties of these mans are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
\rightarrow Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
\rightarrow This arises from a man $K \wedge B G \rightarrow F(B G, K)$ of snectra, whose cofibre is called the Tate spectrum $t_{G}(K)$
\rightarrow Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
- Now let E be an even periodic ring spectrum.
\rightarrow The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$
\rightarrow The transfer $\Sigma^{\infty} B G_{1} \rightarrow \Sigma^{\infty} B H_{1}$ gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
\rightarrow Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
$>$ Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
\rightarrow This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$.
\rightarrow Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
- Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
\Rightarrow The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
- Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$
- Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H -coset.
- Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
\rightarrow Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
- Put $\wedge=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\triangle}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
> Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^{\#}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
\rightarrow This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$.
- Theorem (Greenlees-Sadofsky): $t_{C}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
- Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H -coset.
- Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
- Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H -coset.
- Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
- Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
- Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
- Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other.
Then u is adjoint to a map $u^{\#}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
\rightarrow This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$.
- Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
- Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
- Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other.
Then u is adjoint to a map $u^{\#}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
- This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$.
\Rightarrow Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Transfers

- Let M be an abelian group with G-action, and let H be a subgroup of G.
- There is an evident inclusion $\operatorname{res}_{H}^{G}: M^{G} \rightarrow M^{H}$.
- There is a natural map $\operatorname{tr}_{H}^{G}: M^{H} \rightarrow M^{G}$ given by $\operatorname{tr}_{H}^{G}(m)=\sum_{t \in T} t m$, where T is any subset of G containing one element of every H-coset.
- Now let E be an even periodic ring spectrum.
- The inclusion $H \rightarrow G$ gives a map $B H \rightarrow B G$ and thus a ring map $E^{0}(B G) \rightarrow E^{0}(B H)$, called $\operatorname{res}_{H}^{G}$.
- The transfer $\Sigma^{\infty} B G_{+} \rightarrow \Sigma^{\infty} B H_{+}$gives a map $E^{0}(B H) \rightarrow E^{0}(B G)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(B G)$-linear.
- Formal properties of these maps are similar to those of the maps $M^{G} \rightarrow M^{H} \rightarrow M^{G}$ mentioned above.
- Put $\Delta=\{(g, g) \mid g \in G\} \leq G^{2}$ and $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in E^{0}\left(B G^{2}\right)$.
- Take $E=K=$ Morava K-theory, so $K^{*}(B G)$ and $K_{*}(B G)$ are finitely generated free modules and dual to each other.
Then u is adjoint to a map $u^{\#}: K_{*}(B G) \rightarrow K^{-*}(B G)$.
- This arises from a map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ of spectra, whose cofibre is called the Tate spectrum $t_{G}(K)$.
- Theorem (Greenlees-Sadofsky): $t_{G}(K)=0$.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$
The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{\infty L}=\lim S^{K L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that
$G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G \wedge \widetilde{E} G=F(E G, \tilde{E} G)=0$.
Using this one can identify $t_{G}(K)$ with $(\tilde{E} G \wedge F(E G+K))^{G}$
- Using $\widetilde{E} G=\underset{\longrightarrow}{\lim } S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim _{k} F\left(B G^{-k L}, K\right)$, where $B G^{-k L}$ is the Thom spectrum.
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{n}}\right)\left[x^{-1}\right]=0$ as required.
- For general G : combine fairly similar arguments with an induction on $|G|$.
- Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.
- By rearranging the argument slightly: the K-local spectrum $L_{K} \Sigma^{\infty} B G+$ is self-dual, and $E^{*}(B G)$ is self-dual provided that it is a free E^{*}-module.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{001}=\lim S^{k l}$, where $S^{k t} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that $G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G_{+} \wedge \widetilde{E} G=F(E G, \widetilde{E} G)=0$ Using this one can identify $t_{G}(K)$ with $\left(\tilde{E} G \wedge F\left(E G_{+}, K\right)\right)^{G}$
- Using $\widetilde{E} G=\lim S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim F\left(B G^{-k L}, K\right)$, where $B G^{-k L}$ is the Thom spectrum.
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{p}}\right)\left[x^{-1}\right]=0$ as required.
- For general G : combine fairly similar arguments with an induction on $|G|$.
- Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.
- By rearranging the argument slightly: the K-local spectrum $L_{K} \sum^{\infty} B G_{+}$is self-dual, and $E^{*}(B G)$ is self-dual provided that it is a free E^{*}-module.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$.
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\tilde{E} G$ is the same as $S^{\infty L}=\lim S^{k L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that $G_{+} \wedge \tilde{E} G=F\left(G_{+}, \tilde{E} G\right)=E G_{+} \wedge \tilde{E} G=F\left(E G_{+}, \tilde{E} G\right)=0$. Using this one can identify $t_{G}(K)$ with $\left(\tilde{E} G \wedge F\left(E G_{+}, K\right)\right)^{G}$
- Using $\widetilde{E} G=\lim S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim F\left(B G^{-K L}, K\right)$, where $B G^{-K L}$ is the Thom spectrum.
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{n}}\right)\left[x^{-1}\right]=0$ as required
- For general G : combine fairly similar arguments with an induction on $|G|$
- Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.
\downarrow By rearranging the argument slightly: the K-local spectrum $L_{K} \sum^{\infty} B G_{+}$is self-dual, and $E^{*}(B G)$ is self-dual provided that it is a free E^{*}-module.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$.
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{\infty L}=\lim _{\longrightarrow k} S^{k L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that
$G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G_{+} \wedge \widetilde{E} G=F\left(E G_{+}, \widetilde{E} G\right)=0$ Using this one can identify $t_{G}(K)$ with $\left(\widetilde{E} G \wedge F\left(E G_{+}, K\right)\right)$
- Using $\widetilde{E} G=\lim S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim F\left(B G^{-K L}, K\right)$, where $B G^{-K L}$ is the Thom spectrum
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{p}}\right)\left[x^{-1}\right]=0$ as required
- For general G : combine fairly similar arguments with an induction on $|G|$
- Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.
- By rearranging the argument slightly: the K-local spectrum $L_{K} \sum^{\infty} B G_{+}$is self-dual, and $E^{*}(B G)$ is self-dual provided that it is a free E^{*}-module.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$.
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{\infty L}=\lim _{\longrightarrow k} S^{k L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that
$G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G_{+} \wedge \widetilde{E} G=F\left(E G_{+}, \widetilde{E} G\right)=0$. Using this one can identify $t_{G}(K)$ with $\left(\widetilde{E} G \wedge F\left(E G_{+}, K\right)\right)^{G}$.
- Using $\tilde{E} G=\lim S^{K L}$ and $S^{K L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-K L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim F\left(B G^{-k L}, K\right)$, where $B G^{-k L}$ is the Thom spectrum.
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{n}}\right)\left[x^{-1}\right]=0$ as required.
- For general G : combine fairly similar arguments with an induction on $|G|$
- Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$.
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{\infty L}=\lim _{\longrightarrow} S^{k L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that
$G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G_{+} \wedge \widetilde{E} G=F\left(E G_{+}, \widetilde{E} G\right)=0$.
Using this one can identify $t_{G}(K)$ with $\left(\widetilde{E} G \wedge F\left(E G_{+}, K\right)\right)^{G}$.
- Using $\widetilde{E} G=\underset{\longrightarrow}{\lim } S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim _{\rightarrow} \overrightarrow{l_{k}} F\left(B G^{-k L}, K\right)$, where $B G^{-k L}$ is the Thom spectrum.
$>$ Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{n}}\right)\left[x^{-1}\right]=0$ as required
\rightarrow For general G : combine fairly similar arguments with an induction on $\mid G$
- Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.
\rightarrow By rearranging the argument slightly: the K-local spectrum $L_{K} \sum^{\infty} B G+$ is self-dual, and $E^{*}(B G)$ is self-dual provided that it is a free E^{*}-module.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$.
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{\infty L}=\lim _{\longrightarrow} S^{k L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that
$G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G_{+} \wedge \widetilde{E} G=F\left(E G_{+}, \widetilde{E} G\right)=0$.
Using this one can identify $t_{G}(K)$ with $\left(\widetilde{E} G \wedge F\left(E G_{+}, K\right)\right)^{G}$.
- Using $\widetilde{E} G=\underset{\longrightarrow}{\lim } S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim _{\longrightarrow} \vec{\longrightarrow}\left(B G^{-k L}, K\right)$, where $B G^{-k L}$ is the Thom spectrum.
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{n}}\right)\left[x^{-1}\right]=0$ as required.
\rightarrow Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$.
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{\infty L}=\lim _{\longrightarrow} S^{k L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that
$G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G_{+} \wedge \widetilde{E} G=F\left(E G_{+}, \widetilde{E} G\right)=0$. Using this one can identify $t_{G}(K)$ with $\left(\widetilde{E} G \wedge F\left(E G_{+}, K\right)\right)^{G}$.
- Using $\widetilde{E} G=\underset{\longrightarrow}{\lim } S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim _{\longrightarrow} \vec{\longrightarrow}\left(B G^{-k L}, K\right)$, where $B G^{-k L}$ is the Thom spectrum.
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{n}}\right)\left[x^{-1}\right]=0$ as required.
- For general G : combine fairly similar arguments with an induction on $|G|$.
\rightarrow Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$.
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{\infty L}=\lim _{\longrightarrow} S^{k L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that
$G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G_{+} \wedge \widetilde{E} G=F\left(E G_{+}, \widetilde{E} G\right)=0$. Using this one can identify $t_{G}(K)$ with $\left(\widetilde{E} G \wedge F\left(E G_{+}, K\right)\right)^{G}$.
- Using $\widetilde{E} G=\underset{\longrightarrow}{\lim } S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim _{\rightarrow k} \vec{F}\left(B G^{-k L}, K\right)$, where $B G^{-k L}$ is the Thom spectrum.
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{n}}\right)\left[x^{-1}\right]=0$ as required.
- For general G : combine fairly similar arguments with an induction on $|G|$.
- Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.

Sketch proof of Tate vanishing

- Claim: the cofibre $t_{G}(K)$ of the map $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is zero.
- First suppose $|G|=p$, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^{0}(B G)$, and $K^{*}(B G)=K^{*}[x] / x^{p^{n}}$.
- The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $E G=S(\infty L)$. Thus, the reduced suspension $\widetilde{E} G$ is the same as $S^{\infty L}=\lim _{\longrightarrow} S^{k L}$, where $S^{k L} \simeq S^{2 k}$ is the one-point compactification of $n L$.
- It is not hard to check that
$G_{+} \wedge \widetilde{E} G=F\left(G_{+}, \widetilde{E} G\right)=E G_{+} \wedge \widetilde{E} G=F\left(E G_{+}, \widetilde{E} G\right)=0$. Using this one can identify $t_{G}(K)$ with $\left(\widetilde{E} G \wedge F\left(E G_{+}, K\right)\right)^{G}$.
- Using $\widetilde{E} G=\lim _{\longrightarrow} S^{k L}$ and $S^{k L} \wedge F\left(E G_{+}, K\right)=F\left(S^{-k L} \wedge E G_{+}, K\right)$ we get $t_{G}(K)=\lim _{\rightarrow k} \vec{F}\left(B G^{-k L}, K\right)$, where $B G^{-k L}$ is the Thom spectrum.
- Using the fact that the Euler class of $k L$ is x^{k}, we find that $\pi_{*}\left(t_{G}(K)\right)=K^{-*}(B G)\left[x^{-1}\right]=\left(K^{*}[x] / x^{p^{n}}\right)\left[x^{-1}\right]=0$ as required.
- For general G : combine fairly similar arguments with an induction on $|G|$.
- Conclusion: $K_{*}(B G)$ maps isomorphically to $K^{*}(B G)$, which is dual to $K_{*}(B G)$, so $K^{*}(B G)$ is self-dual.
- By rearranging the argument slightly: the K-local spectrum $L_{K} \Sigma^{\infty} B G_{+}$is self-dual, and $E^{*}(B G)$ is self-dual provided that it is a free E^{*}-module.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
\Rightarrow Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha_{!}: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$.
\Rightarrow If α is an inclusion of groups, then α ! is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- Recall $u=\operatorname{tr}_{\wedge}^{G^{2}}(1) \in K^{0}\left(B G^{2}\right)=K^{0}(B G) \otimes_{K^{0}} K^{0}(B G)$.
\Rightarrow From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$.
\rightarrow Using the Mackey property: $\langle u, v\rangle_{G}=\theta(u v)$.
\Rightarrow There are similar statements for E^{*} when $E^{0}(B G)$ is free.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
\Rightarrow Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha_{!}: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$
\Rightarrow If α is an inclusion of groups, then α is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- Recall $u=\operatorname{tr}_{\wedge}^{G^{2}}(1) \in K^{0}\left(B G^{2}\right)=K^{0}(B G) \otimes_{K_{0}} K^{0}(B G)$.
\Rightarrow From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$.
\checkmark Using the Mackey property: $\langle u, v\rangle_{G}=\theta(u v)$.
\Rightarrow There are similar statements for E^{*} when $E^{0}(B G)$ is free.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha_{!}: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$.
\Rightarrow If α is an inclusion of groups, then $\alpha!$ is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- Recall $u=\operatorname{tr}_{\wedge}^{G^{2}}(1) \in K^{0}\left(B G^{2}\right)=K^{0}(B G) \otimes_{K_{0}} K^{0}(B G)$
\Rightarrow From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$
\rightarrow Using the Mackey property: $\langle u, v\rangle_{G}=\theta(u v)$.
\rightarrow There are similar statements for E^{*} when $E^{0}(B G)$ is free.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha!: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$.
- If α is an inclusion of groups, then α ! is just the transfer.
\rightarrow Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- Recall $u=\operatorname{tr}_{\triangle}^{G^{2}}(1) \in K^{0}\left(B G^{2}\right)=K^{0}(B G) \otimes \kappa_{0} K^{0}(B G)$
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$
\rightarrow Using the Mackey property: $\langle u, v\rangle_{G}=\theta(u v)$.
\rightarrow There are similar statements for E^{*} when $E^{0}(B G)$ is free.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha_{!}: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$.
- If α is an inclusion of groups, then α ! is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.
\rightarrow From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$.
$>$ Using the Mackey property: $\langle u, v\rangle_{G}=\theta(u v)$.
\rightarrow There are similar statements for E^{*} when $E^{0}(B G)$ is free.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha_{!}: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$.
- If α is an inclusion of groups, then α ! is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- Recall $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in K^{0}\left(B G^{2}\right)=K^{0}(B G) \otimes_{K^{0}} K^{0}(B G)$.

> From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$.

- Using the Mackey property: $\langle u, v\rangle_{G}=\theta(u v)$.

There are similar statements for E^{*} when $E^{0}(B G)$ is free.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha!: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$.
- If α is an inclusion of groups, then α ! is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- Recall $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in K^{0}\left(B G^{2}\right)=K^{0}(B G) \otimes_{K^{0}} K^{0}(B G)$.
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha!: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$.
- If α is an inclusion of groups, then α ! is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- Recall $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in K^{0}\left(B G^{2}\right)=K^{0}(B G) \otimes_{K^{0}} K^{0}(B G)$.
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$.
- Using the Mackey property: $\langle u, v\rangle_{G}=\theta(u v)$.

More about duality

- We have shown that $K^{*}(B G)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha: G \rightarrow H$ induces $\alpha^{*}: K^{*}(B H) \rightarrow K^{*}(B G)$. As everything is self-dual, there is a unique $\alpha!: K^{*}(B G) \rightarrow K^{*}(B H)$ adjoint to α^{*}, i.e. $\left\langle\alpha_{!}(a), b\right\rangle_{H}=\left\langle a, \alpha^{*}(b)\right\rangle_{G}$ for $a \in K^{*}(B G)$ and $b \in K^{*}(B H)$.
- If α is an inclusion of groups, then α ! is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- Recall $u=\operatorname{tr}_{\Delta}^{G^{2}}(1) \in K^{0}\left(B G^{2}\right)=K^{0}(B G) \otimes_{K^{0}} K^{0}(B G)$.
- From the duality theorem it follows that there is a unique Frobenius form $\theta: K^{0}(B G) \rightarrow K^{0}$ such that $(\theta \otimes 1)(u)=1$ in $K^{0}(B G)$.
- Using the Mackey property: $\langle u, v\rangle_{G}=\theta(u v)$.
- There are similar statements for E^{*} when $E^{0}(B G)$ is free.

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+F y)=\log _{F}(x)+\log _{F}(y)$.
$>$ The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0}\|x\|$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{F}(x)\right)$ to be the coefficient of $x^{-1} d x$.
Theorem: the Frobenius form $\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x \rrbracket /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
\Rightarrow For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$).
\rightarrow Open problem: give a residue formula for $\theta: E^{0}\left(B^{k} A\right) \rightarrow E^{0}$.

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+F y)=\log _{F}(x)+\log _{F}(y)$.
- The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0}[x]$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{f}(x)\right)$ to be the coefficient of $x^{-1} d x$.
- Theorem: the Frobenius form $\left.\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x\right] /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$).
- Open problem: give a residue formula for $\theta: E^{0}\left(B^{k} A\right) \rightarrow E^{0}$

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+\digamma y)=\log _{\digamma}(x)+\log _{\digamma}(y)$.
\Rightarrow The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0} \llbracket x \rrbracket$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{f}(x)\right)$ to be the coefficient of $x^{-1} d x$
- Theorem: the Frobenius form $\left.\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x\right] /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
\Rightarrow Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$)
\rightarrow Open problem: give a residue formula for $\theta: E^{0}\left(B^{k} A\right) \rightarrow E^{0}$

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+\digamma y)=\log _{\digamma}(x)+\log _{\digamma}(y)$.
- The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0}[x]$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{f}(x)\right)$ to be the coefficient of $x^{-1} d x$.
- Theorem: the Frobenius form $\left.\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x\right] /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
\rightarrow For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
\Rightarrow Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$)
\rightarrow Open problem: give a residue formula for $\theta: E^{0}\left(B^{k} A\right) \rightarrow E^{0}$

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+\digamma y)=\log _{\digamma}(x)+\log _{\digamma}(y)$.
- The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0} \llbracket x \rrbracket$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{F}(x)\right)$ to be the coefficient of $x^{-1} d x$.
- Theorem: the Frobenius form $\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0}[x] /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$)

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}\left(x+{ }_{F} y\right)=\log _{F}(x)+\log _{F}(y)$.
- The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0} \llbracket x \rrbracket$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{F}(x)\right)$ to be the coefficient of $x^{-1} d x$.
- Theorem: the Frobenius form $\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x \rrbracket /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$).

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+F y)=\log _{F}(x)+\log _{F}(y)$.
- The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0} \llbracket x \rrbracket$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{F}(x)\right)$ to be the coefficient of $x^{-1} d x$.
- Theorem: the Frobenius form $\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x \rrbracket /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
\rightarrow Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$)

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+F y)=\log _{F}(x)+\log _{F}(y)$.
- The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0} \llbracket x \rrbracket$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{F}(x)\right)$ to be the coefficient of $x^{-1} d x$.
- Theorem: the Frobenius form $\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x \rrbracket /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
\rightarrow Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$)

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+F y)=\log _{F}(x)+\log _{F}(y)$.
- The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0} \llbracket x \rrbracket$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{F}(x)\right)$ to be the coefficient of $x^{-1} d x$.
- Theorem: the Frobenius form $\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x \rrbracket /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $\left.k>n\right)$.
\rightarrow Open problem: give a residue formula for $\theta: E^{0}\left(B^{k} A\right) \rightarrow E^{0}$.

Duality in the abelian case

- Let E be Morava E-theory.
- There is a power series $\log _{F}(x)=\sum_{k>0} m_{k} x^{k}$ with $m_{1}=1$ and $m_{k} \in \mathbb{Q} \otimes E^{0}$ and $\log _{F}(x+F y)=\log _{F}(x)+\log _{F}(y)$.
- The series $d \log _{F}(x)=\sum_{k} k m_{k} x^{k-1} d x$ actually lies in $E^{0} \llbracket x \rrbracket . d x$.
- Given any $f(x) \in E^{0} \llbracket x \rrbracket$ we can expand $f(x) \omega /\left[p^{m}\right]_{F}(x)$ in positive and negative powers of x, and define $\rho_{m}(f(x))=\operatorname{res}\left(f(x) \omega /\left[p^{m}\right]_{F}(x)\right)$ to be the coefficient of $x^{-1} d x$.
- Theorem: the Frobenius form $\theta: E^{0}\left(B C_{p^{m}}\right)=E^{0} \llbracket x \rrbracket /\left[p^{m}\right]_{F}(x) \rightarrow E^{0}$ is induced by ρ_{m}.
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- Theorem (Hopkins-Lurie): for all k the space $B^{k} A=K(k, A)$ has $E^{*}\left(B^{k} A\right)$ naturally self-dual (but it is trivial for $k>n$).
- Open problem: give a residue formula for $\theta: E^{0}\left(B^{k} A\right) \rightarrow E^{0}$.

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
\Rightarrow This has addition $[\mathrm{V}]+[\mathrm{W}]=[\mathrm{V} \oplus \mathrm{W}]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
\checkmark There are also operations λ^{k} sending $[V]$ to $\left[\Lambda^{k} V\right]$, where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$.
\Rightarrow If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
- The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\coprod_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\coprod_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\coprod_{k} B U(k)\right)\right)$ is a semiring object in the category of schemes, with λ-operations.
\Rightarrow For divisors $D=\sum_{i<r}\left[a_{i}\right]$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D E=\sum_{i, j}\left[a_{i}+b_{j}\right]$ and $\lambda^{k} D=\sum_{i_{1}<\cdots<i_{k}<r}\left[a_{i_{1}}+\cdots+a_{i_{k}}\right]$.
- The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g. $\psi^{2}(x)=x^{2}-2 \lambda^{2}(x)$ and $\psi^{3}(x)=x^{3}-3 x \lambda^{2}(x)+3 \lambda^{3}(x)$.
These are ring maps with $\psi^{k} \psi^{m}=\psi^{k m}$.

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
\Rightarrow This has addition $[\mathrm{V}]+[\mathrm{W}]=[\mathrm{V} \oplus \mathrm{W}]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
\checkmark There are also operations λ^{k} sending $[V]$ to $\left[\Lambda^{k} V\right]$, where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$.
\Rightarrow If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
- The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\coprod_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\coprod_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\coprod_{k} B U(k)\right)\right)$ is a semiring object in the category of schemes, with λ-operations.
\Rightarrow For divisors $D=\sum_{i<r}\left[a_{i}\right]$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D E=\sum_{i, j}\left[a_{i}+b_{j}\right]$ and $\lambda^{k} D=\sum_{i_{1}<\cdots<i_{k}<r}\left[a_{i_{1}}+\cdots+a_{i_{k}}\right]$
- The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g. $\psi^{2}(x)=x^{2}-2 \lambda^{2}(x)$ and $\psi^{3}(x)=x^{3}-3 x \lambda^{2}(x)+3 \lambda^{3}(x)$.
These are ring maps with $\psi^{k} \psi^{m}=\psi^{k m}$.

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
- This has addition $[V]+[W]=[V \oplus W]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
- There are also operations λ^{k} sending $[V]$ to $\left[\Lambda^{k} V\right]$, where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
- The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\coprod_{k \geq 0} \operatorname{Div}_{k}(\mathbb{G})=\coprod_{k>0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\Pi_{k} B U(k)\right)\right)$
is a semiring object in the category of schemes, with λ-operations.
- For divisors $D=\sum_{i<r}\left[a_{i}\right]$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D E=\sum_{i, j}\left[a_{i}+b_{j}\right]$ and $\lambda^{k} D=\sum_{i_{1}<\cdots<i_{k}<r}\left[a_{i_{1}}+\cdots+a_{i_{k}}\right]$
- The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g. $\psi^{2}(x)=x^{2}-2 \lambda^{2}(x)$ and $\psi^{3}(x)=x^{3}-3 x \lambda^{2}(x)+3 \lambda^{3}(x)$ These are ring maps with $\psi^{k} \psi^{m}=\psi^{k m}$.

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
- This has addition $[V]+[W]=[V \oplus W]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
- There are also operations λ^{k} sending [V] to $\left[\Lambda^{k} V\right.$], where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
- The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\amalg_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\amalg_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\amalg_{k} B U(k)\right)\right)$
is a semiring object in the category of schemes, with λ-operations.
- For divisors $D=\sum_{i<\left[a_{i}\right]}$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D F=\sum_{i j}\left[a_{i}+b_{j}\right]$ and $\lambda^{k} D=\sum_{i_{1}<\cdots<i_{k}<r}\left[a_{i_{1}}+\cdots+a_{i_{k}}\right]$
\rightarrow The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g. $\psi^{2}(x)=x^{2}-2 \lambda^{2}(x)$ and $\psi^{3}(x)=x^{3}-3 x \lambda^{2}(x)+3 \lambda^{3}(x)$.
These are ring maps with $\psi^{k} \psi^{m}=\psi^{k m}$

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
- This has addition $[V]+[W]=[V \oplus W]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
- There are also operations λ^{k} sending [V] to $\left[\Lambda^{k} V\right.$], where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$.
\rightarrow If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
> The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\amalg_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\amalg_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\amalg_{k} B U(k)\right)\right)$
is a semiring object in the category of schemes, with λ-operations.
- For divisors $D=\sum_{i<r}\left[a_{i}\right]$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D E=\sum_{i j}\left[a_{i}+b_{j}\right]$
\rightarrow The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g. These are ring maps with $\psi^{k} \psi^{m}=\psi^{k m}$

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
- This has addition $[V]+[W]=[V \oplus W]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
- There are also operations λ^{k} sending [V] to $\left[\Lambda^{k} V\right.$], where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$.
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.

- The scheme

$\operatorname{Div}^{+}(\mathbb{G})=\coprod_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\coprod_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\coprod_{k} B U(k)\right)\right)$ is a semiring object in the category of schemes, with λ-operations. \Rightarrow For divisors $D=\sum_{i<r}\left[a_{i}\right]$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D E=\sum_{i, j}\left[a_{i}+b_{j}\right]$ - The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g. These are ring maps with

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
- This has addition $[V]+[W]=[V \oplus W]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
- There are also operations λ^{k} sending [V] to $\left[\Lambda^{k} V\right.$], where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$.
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
- The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\coprod_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\coprod_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\coprod_{k} B U(k)\right)\right)$ is a semiring object in the category of schemes, with λ-operations.

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
- This has addition $[V]+[W]=[V \oplus W]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
- There are also operations λ^{k} sending [V] to $\left[\Lambda^{k} V\right.$], where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$.
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
- The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\coprod_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\coprod_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\coprod_{k} B U(k)\right)\right)$ is a semiring object in the category of schemes, with λ-operations.
- For divisors $D=\sum_{i<r}\left[a_{i}\right]$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D E=\sum_{i, j}\left[a_{i}+b_{j}\right]$ and $\lambda^{k} D=\sum_{i_{1}<\cdots<i_{k}<r}\left[a_{i_{1}}+\cdots+a_{i_{k}}\right]$.
\rightarrow The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g.

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
- This has addition $[V]+[W]=[V \oplus W]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
- There are also operations λ^{k} sending [V] to $\left[\Lambda^{k} V\right.$], where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$.
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
- The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\coprod_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\coprod_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\amalg_{k} B U(k)\right)\right)$ is a semiring object in the category of schemes, with λ-operations.
- For divisors $D=\sum_{i<r}\left[a_{i}\right]$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D E=\sum_{i, j}\left[a_{i}+b_{j}\right]$ and $\lambda^{k} D=\sum_{i_{1}<\cdots<i_{k}<r}\left[a_{i_{1}}+\cdots+a_{i_{k}}\right]$.
- The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g. $\psi^{2}(x)=x^{2}-2 \lambda^{2}(x)$ and $\psi^{3}(x)=x^{3}-3 x \lambda^{2}(x)+3 \lambda^{3}(x)$.

Semirings with λ-operations

- The representation semiring $R_{+}(G)$ is the set of isomorphism classes of complex representations.
- This has addition $[V]+[W]=[V \oplus W]$ and multiplication $[V][W]=[V \otimes W]$ but no subtraction.
- There are also operations λ^{k} sending [V] to $\left[\Lambda^{k} V\right.$], where $\Lambda^{k} V$ is the k^{\prime} th exterior power of V.
- We also have a ring $R(G)$ of virtual representations, which is the group completion of $R(G)$.
- If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_{+}(G) \simeq \mathbb{N}^{h}$ and $R(G) \simeq \mathbb{Z}^{h}$ additively.
- The scheme
$\operatorname{Div}^{+}(\mathbb{G})=\coprod_{k \geq 0} \operatorname{Div}_{k}^{+}(\mathbb{G})=\coprod_{k \geq 0} \mathbb{G}^{k} / \Sigma_{k}=\operatorname{spf}\left(E^{0}\left(\amalg_{k} B U(k)\right)\right)$ is a semiring object in the category of schemes, with λ-operations.
- For divisors $D=\sum_{i<r}\left[a_{i}\right]$ and $E=\sum_{j<s}\left[b_{j}\right]$ we have $D E=\sum_{i, j}\left[a_{i}+b_{j}\right]$ and $\lambda^{k} D=\sum_{i_{1}<\cdots<i_{k}<r}\left[a_{i_{1}}+\cdots+a_{i_{k}}\right]$.
- The λ operations on $R_{+}(G)$ induce Adams operations on $R(G)$, e.g. $\psi^{2}(x)=x^{2}-2 \lambda^{2}(x)$ and $\psi^{3}(x)=x^{3}-3 x \lambda^{2}(x)+3 \lambda^{3}(x)$.
These are ring maps with $\psi^{k} \psi^{m}=\psi^{k m}$.

Chern approximations

- We define $\mathrm{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\mathrm{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
\Rightarrow Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso.
However, this fails for the symmetric group Σ_{6} when $p=n=2$. It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$.

Chern approximations

- We define $\mathrm{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\mathrm{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{00}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso.
However, this fails for the symmetric group Σ_{6} when $p=n=2$. It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$.

Chern approximations

- We define $\operatorname{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\mathrm{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso. However, this fails for the symmetric group Σ_{σ} when $p=n=2$. It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$

Chern approximations

- We define $\operatorname{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\mathrm{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
\Rightarrow If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
\rightarrow If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso. However, this fails for the symmetric group Σ_{6} when $p=n=2$. It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$

Chern approximations

- We define $\mathrm{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\mathrm{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
\rightarrow There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
\rightarrow If the chromatic height n is one, then α_{G} is an isomornhism for all G This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso. However, this fails for the symmetric group \sum_{6} when $p=n=2$. It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$

Chern approximations

- We define $\mathrm{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\operatorname{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
\Rightarrow If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
\rightarrow If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso. However, this fails for the symmetric group Σ_{6} when $p=n=2$. It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$

Chern approximations

- We define $\mathrm{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\operatorname{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
\rightarrow If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso. However, this fails for the symmetric group Σ_{6} when $p=n=2$. It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$

Chern approximations

- We define $\mathrm{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\operatorname{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso. However, this fals for the symmetric group Σ_{6} when $p=n=2$.
It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$

Chern approximations

- We define $\mathrm{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\operatorname{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso. However, this fails for the symmetric group Σ_{6} when $p=n=2$.

Chern approximations

- We define $\mathrm{Ch}(G)$ to be the scheme of morphism $R_{+}(G) \rightarrow \operatorname{Div}^{+}(\mathbb{G})$ of λ-semirings, and $C(E, G)=\mathcal{O}_{\operatorname{Ch}(G)}$.
- If we understand everything about $R_{+}(G)$ then we can write down a presentation of $C(E, G)$ by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- Like $E^{0}(B G)$, the ring $C(E, G)$ is finitely generated as an E^{0}-module.
- There is a natural map $\alpha_{G}: C(E, G) \rightarrow E^{0}(B G)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- If the chromatic height n is one, then α_{G} is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of $K U$ and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_{G} is iso.
However, this fails for the symmetric group Σ_{6} when $p=n=2$. It also fails for certain central extensions $C_{p} \rightarrow G \rightarrow C_{p}^{2 d}$ with $d>1$.

The group $G=\Sigma_{4}$ with $n=p=2$

The character table of Σ_{4} is as follows:

class	size	1	ϵ	σ	ρ	$\epsilon \rho$
1^{4}	1	1	1	2	3	3
$1^{2} 2$	6	1	-1	0	1	-1
2^{2}	3	1	1	2	-1	-1
13	8	1	1	-1	0	0
4	6	1	-1	0	-1	1

The ring structure, Adams operations and λ-operations are described in the following table.

$\operatorname{Ch}\left(\Sigma_{4}\right)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times \operatorname{Div}_{3}^{+}(\mathbb{G})$ such that
\square
\square

The group $G=\Sigma_{4}$ with $n=p=2$

The character table of Σ_{4} is as follows:

class	size	1	ϵ	σ	ρ	$\epsilon \rho$
1^{4}	1	1	1	2	3	3
$1^{2} 2$	6	1	-1	0	1	-1
2^{2}	3	1	1	2	-1	-1
13	8	1	1	-1	0	0
4	6	1	-1	0	-1	1

The ring structure, Adams operations and λ-operations are described in the following table.

$$
\begin{array}{lll}
\epsilon^{2}=1 & \psi^{k}(\epsilon)=\epsilon^{k} & \lambda^{2}(\sigma)=\epsilon \\
\epsilon \sigma=\sigma & \psi^{2}(\sigma)=1-\epsilon+\sigma & \lambda^{2}(\rho)=\epsilon \rho \\
\sigma^{2}=1+\epsilon+\sigma & \psi^{3}(\sigma)=1+\epsilon & \lambda^{3}(\rho)=\epsilon \\
\sigma \rho=\rho+\epsilon \rho & \psi^{2}(\rho)=1+\sigma+\rho-\epsilon \rho & \\
\rho^{2}=1+\sigma+\rho+\epsilon \rho & \psi^{3}(\rho)=1+\epsilon-\sigma+\rho . &
\end{array}
$$

$\operatorname{Ch}\left(\Sigma_{4}\right)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times \operatorname{Div}_{3}^{+}(\mathbb{G})$ such that

The group $G=\Sigma_{4}$ with $n=p=2$

The character table of Σ_{4} is as follows:

class	size	1	ϵ	σ	ρ	$\epsilon \rho$
1^{4}	1	1	1	2	3	3
$1^{2} 2$	6	1	-1	0	1	-1
2^{2}	3	1	1	2	-1	-1
13	8	1	1	-1	0	0
4	6	1	-1	0	-1	1

The ring structure, Adams operations and λ-operations are described in the following table.

$$
\begin{array}{lll}
\epsilon^{2}=1 & \psi^{k}(\epsilon)=\epsilon^{k} & \lambda^{2}(\sigma)=\epsilon \\
\epsilon \sigma=\sigma & \psi^{2}(\sigma)=1-\epsilon+\sigma & \lambda^{2}(\rho)=\epsilon \rho \\
\sigma^{2}=1+\epsilon+\sigma & \psi^{3}(\sigma)=1+\epsilon & \lambda^{3}(\rho)=\epsilon \\
\sigma \rho=\rho+\epsilon \rho & \psi^{2}(\rho)=1+\sigma+\rho-\epsilon \rho & \\
\rho^{2}=1+\sigma+\rho+\epsilon \rho & \psi^{3}(\rho)=1+\epsilon-\sigma+\rho . &
\end{array}
$$

$\operatorname{Ch}\left(\Sigma_{4}\right)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times \operatorname{Div}_{3}^{+}(\mathbb{G})$ such that

$$
2 d=0 \quad \lambda^{3}(D)=[0] \quad \psi^{-1}(D)=D \quad \psi^{2}(D)+D=2[0]+[d]+[d] D
$$

The group $G=\Sigma_{4}$ with $n=p=2$

$\operatorname{Ch}\left(\Sigma_{4}\right)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times \operatorname{Div}_{3}^{+}(\mathbb{G})$ such that
$2 d=0 \quad \lambda^{3}(D)=[0] \quad \psi^{-1}(D)=D \quad \psi^{2}(D)+D=2[0]+[d]+[d] D$
The formal group law for $n=p=2$ satisfies

$$
\begin{aligned}
{[2](x) } & =x^{4} \\
{[-1](x) } & =x+x^{4}+x^{10}+x^{16}+x^{22} \quad\left(\bmod x^{32}\right) \\
x+F y & =x+y+x^{2} y^{2} \quad\left(\bmod x^{4} y^{4}\right)
\end{aligned}
$$

$K^{0}\left(B \Sigma_{4}\right)=C\left(K, \Sigma_{4}\right)=\mathbb{F}_{2}\left[w, c_{2}, c_{3}\right] / J$ where

$$
J=\left(w^{4}, c_{3}^{2}, c_{2} c_{3}, c_{2}^{4}+w^{2} c_{2}^{3}+w c_{2}^{2}+w^{2} c_{3}, w c_{2}^{3}+w^{2} c_{2}+w c_{3}\right)
$$

The following 17 monomials form a basis for this ring over \mathbb{F}_{2} :

1	c_{2}	c_{2}^{2}	c_{2}^{3}
w	$w c_{2}$	$w c_{2}^{2}$	
w^{2}	$w^{2} c_{2}$	$w^{2} c_{2}^{2}$	
w^{3}	$w^{3} c_{2}$	$w^{3} c_{2}^{2}$	
$w^{2} c_{3}$			
		$w^{3} c_{3}$	

The group $G=\Sigma_{4}$ with $n=p=2$

$\operatorname{Ch}\left(\Sigma_{4}\right)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times \operatorname{Div}_{3}^{+}(\mathbb{G})$ such that $2 d=0 \quad \lambda^{3}(D)=[0] \quad \psi^{-1}(D)=D \quad \psi^{2}(D)+D=2[0]+[d]+[d] D$

The formal group law for $n=p=2$ satisfies

$K^{0}\left(B \Sigma_{4}\right)=C\left(K, \Sigma_{4}\right)=\mathbb{F}_{2}\left[w, c_{2}, c_{3}\right] / J$ where

The following 17 monomials form a basis for this ring over \mathbb{F}_{2} :

The group $G=\Sigma_{4}$ with $n=p=2$

$\mathrm{Ch}\left(\Sigma_{4}\right)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times \operatorname{Div}_{3}^{+}(\mathbb{G})$ such that

$$
2 d=0 \quad \lambda^{3}(D)=[0] \quad \psi^{-1}(D)=D \quad \psi^{2}(D)+D=2[0]+[d]+[d] D
$$

The formal group law for $n=p=2$ satisfies

$$
\begin{aligned}
{[2](x) } & =x^{4} \\
{[-1](x) } & =x+x^{4}+x^{10}+x^{16}+x^{22} \quad\left(\bmod x^{32}\right) \\
x+F y & =x+y+x^{2} y^{2} \quad\left(\bmod x^{4} y^{4}\right) .
\end{aligned}
$$

$K^{0}\left(B \Sigma_{4}\right)=C\left(K, \Sigma_{4}\right)=\mathbb{F}_{2}\left[w, c_{2}, c_{3}\right] / J$ where

The following 17 monomials form a basis for this ring over \mathbb{F}_{2}

The group $G=\Sigma_{4}$ with $n=p=2$

$\mathrm{Ch}\left(\Sigma_{4}\right)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times \operatorname{Div}_{3}^{+}(\mathbb{G})$ such that

$$
2 d=0 \quad \lambda^{3}(D)=[0] \quad \psi^{-1}(D)=D \quad \psi^{2}(D)+D=2[0]+[d]+[d] D
$$

The formal group law for $n=p=2$ satisfies

$$
\begin{gathered}
{[2](x)=x^{4}} \\
{[-1](x)=x+x^{4}+x^{10}+x^{16}+x^{22} \quad\left(\bmod x^{32}\right)} \\
x+F y=x+y+x^{2} y^{2} \quad\left(\bmod x^{4} y^{4}\right) \\
K^{0}\left(B \Sigma_{4}\right)=C\left(K, \Sigma_{4}\right)=\mathbb{F}_{2}\left[w, c_{2}, c_{3}\right] / J \text { where } \\
J=\left(w^{4}, c_{3}^{2}, c_{2} c_{3}, c_{2}^{4}+w^{2} c_{2}^{3}+w c_{2}^{2}+w^{2} c_{3}, w c_{2}^{3}+w^{2} c_{2}+w c_{3}\right) .
\end{gathered}
$$

The following 17 monomials form a basis for this ring over \mathbb{F}_{2}

The group $G=\Sigma_{4}$ with $n=p=2$

$\mathrm{Ch}\left(\Sigma_{4}\right)$ is the scheme of pairs $(d, D) \in \mathbb{G} \times \operatorname{Div}_{3}^{+}(\mathbb{G})$ such that

$$
2 d=0 \quad \lambda^{3}(D)=[0] \quad \psi^{-1}(D)=D \quad \psi^{2}(D)+D=2[0]+[d]+[d] D
$$

The formal group law for $n=p=2$ satisfies

$$
\begin{aligned}
{[2](x) } & =x^{4} \\
{[-1](x) } & =x+x^{4}+x^{10}+x^{16}+x^{22} \quad\left(\bmod x^{32}\right) \\
x+F y & =x+y+x^{2} y^{2} \quad\left(\bmod x^{4} y^{4}\right) .
\end{aligned}
$$

$$
K^{0}\left(B \Sigma_{4}\right)=C\left(K, \Sigma_{4}\right)=\mathbb{F}_{2}\left[w, c_{2}, c_{3}\right] / J \text { where }
$$

$$
J=\left(w^{4}, c_{3}^{2}, c_{2} c_{3}, c_{2}^{4}+w^{2} c_{2}^{3}+w c_{2}^{2}+w^{2} c_{3}, w c_{2}^{3}+w^{2} c_{2}+w c_{3}\right) .
$$

The following 17 monomials form a basis for this ring over \mathbb{F}_{2} :

1	c_{2}	c_{2}^{2}	c_{2}^{3}	c_{3}
w	$w c_{2}$	$w c_{2}^{2}$		$w c_{3}$
w^{2}	$w^{2} c_{2}$	$w^{2} c_{2}^{2}$		$w^{2} c_{3}$
w^{3}	$w^{3} c_{2}$	$w^{3} c_{2}^{2}$		$w^{3} c_{3}$

[^0]: - The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory. - The proof of the theorem uses transfers and Tate spectra

