Chromatic cohomology of finite groups 3

Neil Strickland

December 4, 2023

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
\Rightarrow For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, \underline{W})}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(\bar{V})\right)$.
- We also have a bundle R_{k} over $\mathrm{Flag}_{k}(V)$ with $\left(R_{k}\right)_{(a, W)}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag ${ }_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
$>$ For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$. We then have $E^{0}\left(F \operatorname{lag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / /$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times{ }_{G} \mathbb{C}[G]$ over $B G$ and a space $\operatorname{Flag}_{n}(V)$ with $E^{0}\left(F \operatorname{lag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$.
$\Rightarrow \operatorname{Flag}_{n}(V)=E G \times_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.
- Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$.

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
$\Rightarrow \operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, \underline{W})}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(V)\right)$
\Rightarrow We also have a bundle R_{k} over $\operatorname{Flag}_{k}(V)$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag $_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
\checkmark By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(F_{\operatorname{lag}}^{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$.We then have $E^{0}\left(\operatorname{Flag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times{ }_{G} \mathbb{C}[G]$ over $B G$ and a space Flag $_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$
$\Rightarrow \operatorname{Flag}_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$
- Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(W)$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$.

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
\Rightarrow For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, W)}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(\bar{V})\right)$
\rightarrow We also have a bundle R_{k} over $\operatorname{Flag}_{k}(V)$ with $\left(R_{k}\right)_{(a, W)}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag ${ }_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\right.$ Flag $\left._{k}(V)\right)$ over $E^{0}(X)$.
\rightarrow For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$. We then have $E^{0}\left(F \operatorname{lag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / /$ as rings.
\triangleright Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times{ }_{G} \mathbb{C}[G]$ over $B G$ and a space Flag $_{n}(V)$ with
$E^{0}\left(F \operatorname{lag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$
$\Rightarrow \operatorname{Flag}_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$
- Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$.

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, W)}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(V)\right)$.
- We also have a bundle R_{k} over Flag ${ }_{k}(V)$ with $\left(R_{k}\right)_{(a, w)}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag $_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\mathrm{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let l be the ideal generated by the coefficients of $r(t)$. We then have $E^{0}\left(\mathrm{Flag}_{k}\left(V^{\prime}\right)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times G \mathbb{C}[G]$ over $B G$ and a space $\mathrm{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$
- Flag $_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$

Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, W)}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(\bar{V})\right)$.
- We also have a bundle R_{k} over $^{\operatorname{Flag}}{ }_{k}(V)$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and $\mathrm{Flag}_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
$0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\mathrm{Flag}_{k}(V)\right)$ over $E^{0}(X)$
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$ then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$. We then have $E^{0}\left(\operatorname{Flag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bund le $V=E G \times G \mathbb{C}[G]$ over $B G$ and a space $\mathrm{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$
- Flag $_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$

Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{x}\right)^{n}$

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, W)}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(V)\right)$.
- We also have a bundle R_{k} over $^{\operatorname{Flag}}\left(\mathrm{K}(V)\right.$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and $\mathrm{Flag}_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$
with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$. We then have $E^{0}\left(F \operatorname{lag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / /$ as rings.
\rightarrow Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times G \mathbb{C}[G]$ over $B G$ and a space $\mathrm{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n]}$
$\Rightarrow \operatorname{Flag}_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$
Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, W)}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(V)\right)$.
- We also have a bundle R_{k} over $^{\operatorname{Flag}}\left(\mathrm{K}(V)\right.$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and $\mathrm{Flag}_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$. We then have $E^{0}\left(\operatorname{Flag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a buncle $V=E G \times G \mathbb{C}[G]$ over $B G$ and a space $\mathrm{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n}$
- $\operatorname{Flag}_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$

Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{n=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, W)}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(V)\right)$.
- We also have a bundle R_{k} over $^{\operatorname{Flag}}\left(\mathrm{K}(V)\right.$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and $\mathrm{Flag}_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$

```
generated by the coefficients
```

\rightarrow Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times_{G} \mathbb{C}[G]$ over $B G$ and a space Flag $_{n}(V)$ with $E^{0}\left(F \operatorname{lag}_{n}(V)\right) \simeq E^{0}(B G)^{n}$.
$\Rightarrow \operatorname{Flag}_{n}(V)=E G \times_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$
Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, W)}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(V)\right)$.
- We also have a bundle R_{k} over $^{\operatorname{Flag}}\left(\mathrm{k} ~(V)\right.$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and $\mathrm{Flag}_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\right.$ Flag $\left._{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let l be the ideal generated by the coefficients of $r(t)$.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times G \mathbb{C}[G]$ over $B G$ and a space $\mathrm{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$.

Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, \underline{W})}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(\bar{V})\right)$.
- We also have a bundle R_{k} over $\operatorname{Flag}_{k}(V)$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag $_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$.We then have $E^{0}\left(\operatorname{Flag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings. $V=E G \times{ }_{G} \mathbb{C}[G]$ over $B G$ and a space Flag $_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$.

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, \underline{W})}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(\bar{V})\right)$.
- We also have a bundle R_{k} over $\operatorname{Flag}_{k}(V)$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag $_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$.We then have $E^{0}\left(\operatorname{Flag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times{ }_{G} \mathbb{C}[G]$ over $B G$ and a space $\operatorname{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$.

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, \underline{W})}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(\bar{V})\right)$.
- We also have a bundle R_{k} over $\operatorname{Flag}_{k}(V)$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag $_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$.We then have $E^{0}\left(\operatorname{Flag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times{ }_{G} \mathbb{C}[G]$ over $B G$ and a space $\operatorname{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$.
- $\operatorname{Flag}_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, \underline{W})}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(\bar{V})\right)$.
- We also have a bundle R_{k} over $\operatorname{Flag}_{k}(V)$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag $_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$.We then have $E^{0}\left(\operatorname{Flag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times{ }_{G} \mathbb{C}[G]$ over $B G$ and a space $\operatorname{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$.
- $\operatorname{Flag}_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.
- Key fact: all stabiliser groups in F are abelian.

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- $\operatorname{Flag}_{k}(V)=\left\{\left(a, W_{0}, \ldots, W_{k}\right) \mid x \in X, W_{i}<W_{i+1} \leq V_{a}, \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- For $0 \leq i<k$ we have a line bundle $\left(Q_{i}\right)_{(a, \underline{W})}=W_{i+1} / W_{i}$ and an Euler class $x_{i}=e\left(Q_{i}\right) \in E^{0}\left(\operatorname{Flag}_{k}(\bar{V})\right)$.
- We also have a bundle R_{k} over $\operatorname{Flag}_{k}(V)$ with $\left(R_{k}\right)_{(a, \underline{W})}=V_{a} / W_{k}$ (so $\operatorname{dim}\left(R_{k}\right)=d-k$), and Flag $_{k+1}(V)$ is the projective bundle $P\left(R_{k}\right)$.
- By induction based on this: the set of monomials $x^{\alpha}=\prod_{i<k} x_{i}^{\alpha_{i}}$ with $0 \leq \alpha_{i}<d-i$ is a basis for $E^{0}\left(\operatorname{Flag}_{k}(V)\right)$ over $E^{0}(X)$.
- For the ring structure: put $g_{k}(t)=\prod_{i<k}\left(t-x_{i}\right) \in E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right]$, then divide $f_{V}(t)$ by $g(t)$ with remainder to get $f_{V}(t)=g(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$, then let I be the ideal generated by the coefficients of $r(t)$.We then have $E^{0}\left(\operatorname{Flag}_{k}(V)\right)=E^{0}(X)\left[x_{0}, \ldots, x_{k-1}\right] / I$ as rings.
- Let G be a group with $|G|=n$. The representation $\mathbb{C}[G]$ gives a bundle $V=E G \times G \mathbb{C}[G]$ over $B G$ and a space $\operatorname{Flag}_{n}(V)$ with $E^{0}\left(\operatorname{Flag}_{n}(V)\right) \simeq E^{0}(B G)^{n!}$.
- $\operatorname{Flag}_{n}(V)=E G \times{ }_{G} F$, where $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.
- Key fact: all stabiliser groups in F are abelian. Indeed, $\operatorname{stab}_{G}(\underline{W})$ injects in the abelian group $\prod_{i=0}^{n-1} \operatorname{Aut}\left(W_{i+1} \ominus W_{i}\right)=\left(\mathbb{C}^{\times}\right)^{n}$.

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
\Rightarrow Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
\Rightarrow If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
\checkmark In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W+$ for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right)
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.

- Now remove the abelian stabiliser condition.
- Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.
- Then $X \times F$ has abelian stabilisers, so $A^{*}=E^{*}\left((X \times F)_{h G}\right)$ is finitely generated; enough to show that $B^{*}=E^{*}\left(X_{h G}\right)$ is a retract of this.
- But $(X \times F)_{h G}$ is $\operatorname{Flag}_{n}(V)$ for a bundle V over $B G$, so $A^{*} \simeq\left(B^{*}\right)^{n!}$, so B^{*} is a retract of $A^{*} \square$.

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
\Rightarrow Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
\Rightarrow If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
\rightarrow In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W+$ for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right) .
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.
\Rightarrow Now remove the abelian stabiliser condition.

- Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$
- Then $X \times F$ has abelian stabilisers, so $A^{*}=E^{*}\left((X \times F)_{h G}\right)$ is finitely generated; enough to show that $B^{*}=E^{*}\left(X_{h G}\right)$ is a retract of this.
- But $(X \times F)_{h G}$ is $\operatorname{Flag}_{n}(V)$ for a bundle V over $B G$, so $A^{*} \simeq\left(B^{*}\right)^{n!}$, so B^{*} is a retract of A

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
\Rightarrow If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation
- If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
\checkmark In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W_{+}$for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right)
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.
\Rightarrow Now remove the abelian stabiliser condition.

- Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$
- Then $X \times F$ has abelian stabilisers, so $A^{*}=E^{*}\left((X \times F)_{h G}\right)$ is finit ely generated; enough to show that $B^{*}=E^{*}\left(X_{h G}\right)$ is a retract of this.
- But $(X \times F)_{h G}$ is $\operatorname{Flag}_{n}(V)$ for a bundle V over $B G$, so $A^{*} \simeq\left(B^{*}\right)^{n!}$, so B^{*} is a retract of A

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.

```
> If X is just a finite discrete G-set then it is a disjoint union of G/H's and
the same applies.
> In general, if }\mp@subsup{X}{}{k}\mathrm{ is the k-skeleton of X then }\mp@subsup{X}{}{k}/\mp@subsup{X}{}{k-1}=\mp@subsup{\sum}{}{k}W+\mathrm{ for some
finite G-set W, giving an exact sequence of E*(1)-modules
```

 As \(E^{*}(1)\) is noetherian, it follows inductively that \(E^{*}\left(X_{h G}^{k}\right)\) is finitely
 generated for all \(k\), so \(E^{*}\left(X_{h G}\right)\) is finitely generated.
 \rightarrow Now remove the abelian stabiliser condition.

- Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$
- Then $X \times F$ has abelian stabilisers, so $A^{*}=E^{*}\left((X \times F)_{h G}\right)$ is finitely
generated; enough to show that $B^{*}=E^{*}\left(X_{h G}\right)$ is a retract of this.
\rightarrow But

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
- If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
\rightarrow In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W_{+}$for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.

\rightarrow Now remove the abelian stabiliser condition.
$>$ Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.

- Then $X \times F$ has abelian stabilisers, so $A^{*}=E^{*}\left((X \times F)_{h G}\right)$ is finitely generated; enough to show that $B^{*}=E^{*}\left(X_{h G}\right)$ is a retract of this.

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
- If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
- In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W_{+}$for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right)
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.
\rightarrow Now remove the abelian stabiliser condition.
\Rightarrow Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.

- Then $X \times F$ has abelian stabilisers, so $A^{*}=E^{*}\left((X \times F)_{h G}\right)$ is finitely generated; enough to show that $B^{*}=E^{*}\left(X_{h G}\right)$ is a retract of this.

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
- If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
- In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W_{+}$for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right)
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
- If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
- In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W_{+}$for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right)
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.

- Now remove the abelian stabiliser condition.

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
- If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
- In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W_{+}$for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right)
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.

- Now remove the abelian stabiliser condition.
- Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
- If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
- In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W_{+}$for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right)
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.

- Now remove the abelian stabiliser condition.
- Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.
- Then $X \times F$ has abelian stabilisers, so $A^{*}=E^{*}\left((X \times F)_{h G}\right)$ is finitely generated; enough to show that $B^{*}=E^{*}\left(X_{h G}\right)$ is a retract of this.

Finiteness

- Theorem: if X is a finite simplicial complex with simplicial G-action, then the ring $E^{*}\left(E G \times{ }_{G} X\right)=E^{*}\left(X_{h G}\right)$ is finitely generated as an E^{*}-module.
- Proof: First treat the case $\operatorname{stab}_{G}(x)$ is abelian for all $x \in X$.
- If $X=G / H$ then H must be abelian and $X_{h G}=B H$ and $E^{*}(B H)$ is finitely generated by previous calculation.
- If X is just a finite discrete G-set then it is a disjoint union of G / H 's and the same applies.
- In general, if X^{k} is the k-skeleton of X then $X^{k} / X^{k-1}=\Sigma^{k} W_{+}$for some finite G-set W, giving an exact sequence of $E^{*}(1)$-modules

$$
E^{*-k}\left(W_{h G}\right) \rightarrow E^{*}\left(X_{h G}^{k}\right) \rightarrow E^{*}\left(X_{h G}^{k-1}\right)
$$

As $E^{*}(1)$ is noetherian, it follows inductively that $E^{*}\left(X_{h G}^{k}\right)$ is finitely generated for all k, so $E^{*}\left(X_{h G}\right)$ is finitely generated.

- Now remove the abelian stabiliser condition.
- Put $n=|G|$ and $F=\left\{\left(W_{0}, \ldots, W_{n}\right) \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$.
- Then $X \times F$ has abelian stabilisers, so $A^{*}=E^{*}\left((X \times F)_{h G}\right)$ is finitely generated; enough to show that $B^{*}=E^{*}\left(X_{h G}\right)$ is a retract of this.
- But $(X \times F)_{h G}$ is $\operatorname{Flag}_{n}(V)$ for a bundle V over $B G$, so $A^{*} \simeq\left(B^{*}\right)^{n!}$, so B^{*} is a retract of $A^{*} \square$.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
- Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
\Rightarrow A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
- This again gives spaces $\mathrm{Flag}_{火}(V)$ and $P(V)=\operatorname{Flag}_{1}(V)$ over $B G$.
\Rightarrow Given groupoids G and H, the functor category $[G, H]$ is also a groupoid.
- If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $[G, H]$ are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$.
\Rightarrow So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
\checkmark Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
\Rightarrow This again gives spaces $\operatorname{Flag}_{k}(V)$ and $P(V)=\operatorname{Flag}_{1}(V)$ over $B G$
- Given groupoids G and H, the functor category $[G, H]$ is also a groupoid.
- If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in [G,H] are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$
- So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$
\downarrow Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
- This again gives spaces $\operatorname{Flag}_{k}(V)$ and $P(V)=\operatorname{Flag}_{1}(V)$ over $B G$.
\Rightarrow Given groupoids G and H, the functor category $[G, H]$ is also a groupoid
- If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $\left[G, H\right.$] are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$
\Rightarrow So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
$>$ If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
\Rightarrow This again gives spaces $\operatorname{Flag}_{k}(V)$ and $P(V)=\mathrm{Flag}_{1}(V)$ over $B G$.
- Given groupoids G and H, the functor category $[G, H]$ is also a groupoid.
- If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $\left[G, H\right.$] are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$
- So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
\Rightarrow Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category ν of finite-dimensional complex vector spaces.
- This again gives spaces $\operatorname{Flag}_{k}(V)$ and $P(V)=\mathrm{Flag}_{1}(V)$ over $B G$.
- Given groupoids G and H, the functor category $[G, H]$ is also a groupoid
$>$ If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $[G, H]$ are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$.
- So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
- Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
\rightarrow Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
$>$ This again gives spaces $\operatorname{Flag}_{k}(V)$ and $P(V)=\mathrm{Flag}_{1}(V)$ over $B G$.
- Given groupoids G and H, the functor category $[G, H]$ is also a groupoid. - If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $[G, H]$ are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$.
- So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
- Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
> \Rightarrow A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
> - This again gives spaces $\operatorname{Flag}_{k}(V)$ and $P(V)=\operatorname{Flag}_{1}(V)$ over $B G$.
> - Given groupoids G and H, the functor category $[G, H$] is also a groupoid. \checkmark If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $[G, H]$ are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$.
> \Rightarrow So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
- Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
$>$ This again gives spaces $\operatorname{Flag}_{k}(V)$ and $P(V)=\mathrm{Flag}_{1}(V)$ over $B G$.
- Given groupoids G and H, the functor category $[G, H]$ is also a groupoid. - If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $[G, H]$ are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$. - So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
- Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
- This again gives spaces $\mathrm{Flag}_{k}(V)$ and $P(V)=\mathrm{Flag}_{1}(V)$ over $B G$.
$>$ Given groupoids G and H, the functor category $[G, H]$ is also a groupoid. - If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $[G, H]$ are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$. \rightarrow So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
- Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
- This again gives spaces $\mathrm{Flag}_{k}(V)$ and $P(V)=\mathrm{Flag}_{1}(V)$ over $B G$.
- Given groupoids G and H, the functor category $[G, H]$ is also a groupoid.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
- Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
- This again gives spaces $\mathrm{Flag}_{k}(V)$ and $P(V)=\mathrm{Flag}_{1}(V)$ over $B G$.
- Given groupoids G and H, the functor category $[G, H]$ is also a groupoid.
- If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $[G, H]$ are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- A groupoid is a category G in which all morphisms are invertible.
- Say G is finite if all Hom sets $G(a, b)$ are finite, and the set $\pi_{0}(G)$ of isomorphism classes is finite.
- If so, we can choose a_{1}, \ldots, a_{m} containing one element of each isomorphism class, and put $G_{i}=G\left(a_{i}, a_{i}\right)$, and we get $B G \simeq \coprod_{i} B G_{i}$.
- Thus $E^{*}(B G)=\prod_{i} E^{*}\left(B G_{i}\right)$, which is a finitely generated E^{*}-module.
- Any group can be regarded as a groupoid with one object.
- A representation of G is a functor V from G to the category \mathcal{V} of finite-dimensional complex vector spaces.
- This again gives spaces $\mathrm{Flag}_{k}(V)$ and $P(V)=\mathrm{Flag}_{1}(V)$ over $B G$.
- Given groupoids G and H, the functor category $[G, H]$ is also a groupoid.
- If G, H are groups then $\operatorname{obj}([G, H])=\operatorname{Hom}(G, H)$ and morphisms $\alpha \rightarrow \beta$ in $[G, H]$ are elements $h \in H$ with $\beta(g)=h \alpha(g) h^{-1}$ for all $g \in G$.
- So $\alpha \simeq \beta$ iff α and β are conjugate, and $\pi_{0}([G, H])$ is the set of conjugacy classes of homomorphisms.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
\Rightarrow Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
\Rightarrow Given $q: G \rightarrow H$ we define $q!: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q!: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
- This is compatible with the isomorphisms
$M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$ where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
\Rightarrow This is compatible with the isomorphisms $M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so ([a], $[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
- This is compatible with the isomorphisms $M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so ([a], $[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$. $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so
\Rightarrow This is compatible with the isomorphisms
$M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so ([a], $[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
\Rightarrow This is compatible with the isomorphisms
$M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
- This is compatible with the isomorphisms
$M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \|^{\times}$and $g(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
$-P_{\text {ut }} \mathbb{Z}_{1} / p^{\infty}=\lim \mathbb{Z} / n^{k}=\mathbb{\pi}\left[\frac{1}{p}\right] / \mathbb{\pi}=\mathbb{T} / \mathbb{T}_{(p)}=\mathbb{D}_{p} / \mathbb{T}_{p}=U_{k} \sqrt[p_{2}^{k}]{1} \subset S^{1}$ (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
\Rightarrow Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\rightarrow}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $F^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=F^{0} \|_{x_{1}}, \ldots x_{\pi} \pi /\left(g_{k}\left(x_{1}\right) \ldots \sigma_{k}\left(x_{n}\right)\right)$. there is a canonical map ϕ_{k} from this to L
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
\Rightarrow Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
\Rightarrow Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0}[x]^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{O} \otimes E^{0}$ by adioining a full set of roots of $g_{k}(x)$ for all k
\Rightarrow Put $\mathbb{Z} / p^{\infty}=\lim _{\longrightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\cup_{k} \sqrt[p^{k}]{1} \subset S^{1}$
(Exercise: $\left.\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right).\right)$
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim \left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
\Rightarrow Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
\checkmark Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
\Rightarrow Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k \triangleright Put $\mathbb{Z} / p^{\infty}=\lim _{\longrightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$ $\left(\right.$ Exercise: $\left.\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right).\right)$
\Rightarrow Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
\Rightarrow Put $\wedge G=\left[\Theta^{*}, G\right]=\lim \left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
\Rightarrow Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
(Exercise: $\left.\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right).\right)$
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$,
iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim \left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
\Rightarrow Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{-k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$.
(Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$,
iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$
\Rightarrow Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim \left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \Pi_{x_{1}}, \ldots, x_{n} \pi /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$
\Rightarrow Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. $\left(\right.$ Exercise: $\left.\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right).\right)$
iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
\Rightarrow Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\longrightarrow}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
\Rightarrow Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\longrightarrow}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
$-\operatorname{Recal!} E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \|_{x_{1}}, \ldots x_{n} \pi /\left(g_{k}\left(x_{1}\right) \ldots \sigma_{k}\left(x_{n}\right)\right)$. there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
\Rightarrow Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right) ;$ there is a canonical map ϕ_{k} from this to L.
\Rightarrow Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\rightarrow k}\left[\Theta^{*} / p^{k}, G\right]$

$$
C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)
$$

\Rightarrow Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right)\right.$, there is a canonical map ϕ_{k} from this to L.
\rightarrow Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}\left(B_{u}\right): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.

- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\Lambda G=\left[\Theta^{*}, G\right]=\lim _{\lim _{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$. there is a canonical map ϕ_{k} from this to L.
\rightarrow Thus any $u: \Theta^{*} / n^{k} \rightarrow G$ gives or $^{\circ} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\Lambda G=\left[\Theta^{*}, G\right]=\lim _{\rightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.

[^0]
Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\longrightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, iso to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme $\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\longrightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
\Rightarrow Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have projections $p:(Z \times F)_{h G} \rightarrow Z_{h G}$ and $q_{0}, q_{1}:\left(Z \times F^{2}\right)_{h G} \rightarrow(Z \times F)_{h G}$
- We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis $e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(e_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$.
- It follows that the diagram $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ is an equaliser.
- Deduce the general case from this.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
\Rightarrow Deduce by Mayer- Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
Let $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have projections $p:(Z \times F)_{h G} \rightarrow Z_{h G}$ and $q_{0}, q_{1}:\left(Z \times F^{2}\right)_{h G} \rightarrow(Z \times F)_{h G}$
- We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis $e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(\epsilon_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$.
- It follows that the diagram $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ is an equaliser.
- Deduce the general case from this.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
\Rightarrow Deduce by Mayer- Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
Let $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have projections $p:(Z \times F)_{h G} \rightarrow Z_{h G}$ and $q_{0}, q_{1}:\left(Z \times F^{2}\right)_{h G} \rightarrow(Z \times F)_{h G}$
- We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis $e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(\epsilon_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$
- It follows that the diagram $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ is an equaliser.
- Deduce the general case from this.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.

Let $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have projections $p:(Z \times F)_{h G} \rightarrow Z_{h G}$ and $q_{0}, q_{1}:\left(Z \times F^{2}\right)_{h G} \rightarrow(Z \times F)_{h G}$

- We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis
$e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(e_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$
$>$ It follows that the diagram $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ is an equaliser.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, Z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.

\rightarrow We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis $e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(e_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$
- It follows that the diagram $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ is an equaliser.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have projections $p:(Z \times F)_{h G} \rightarrow Z_{h G}$ and $q_{0}, q_{1}:\left(Z \times F^{2}\right)_{h G} \rightarrow(Z \times F)_{h G}$
$>$ We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis
$e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(e_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$
- It follows that the diagram $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ is an equaliser.
- Deduce the general case from this.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have projections $p:(Z \times F)_{h G} \rightarrow Z_{h G}$ and $q_{0}, q_{1}:\left(Z \times F^{2}\right)_{h G} \rightarrow(Z \times F)_{h G}$
- We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis $e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(e_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$.
is an equaliser.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have projections $p:(Z \times F)_{h G} \rightarrow Z_{h G}$ and $q_{0}, q_{1}:\left(Z \times F^{2}\right)_{h G} \rightarrow(Z \times F)_{h G}$
- We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis $e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(e_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$.
- It follows that the diagram $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ is an equaliser.
- Deduce the general case from this.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let $F=\left\{\underline{W} \mid W_{0}<\cdots<W_{n}=\mathbb{C}[G]\right\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have projections $p:(Z \times F)_{h G} \rightarrow Z_{h G}$ and $q_{0}, q_{1}:\left(Z \times F^{2}\right)_{h G} \rightarrow(Z \times F)_{h G}$
- We saw before that $E^{*}\left((Z \times F)_{h G}\right)$ has a canonical basis $e_{1}=1, e_{2}, \ldots, e_{n!}$ over $E^{*}\left(Z_{h G}\right)$. Similarly, the elements $q_{0}^{*}\left(e_{i}\right) q_{1}^{*}\left(e_{j}\right)$ form a basis for $E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ over $E^{*}\left(Z_{h G}\right)$.
- It follows that the diagram $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$ is an equaliser.
- Deduce the general case from this.

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{S}=E^{0}$
\Rightarrow Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
\Rightarrow Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$).
- There is a sum operation for divisors: if $\mathcal{O}_{D_{i}}=\mathcal{O}_{T} \llbracket x \rrbracket / f_{i}(x)$ for $i=0,1$ then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this: $D_{V_{0} \oplus V_{1}}=D_{V_{0}}+D_{V_{1}}$
\Rightarrow An element $a \in \mathbb{G}$ gives a divisor [a] of degree one.
A list a_{1}, \ldots, a_{d} gives a divisor $\sum_{i}\left[a_{i}\right]$ of degree d, symmetric in a_{1}, \ldots, a_{d} Using this: $\operatorname{Div}_{d}^{+}(\mathbb{G})=\mathbb{G}^{d} / \Sigma_{d}$.

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with c_{i} in the maximal ideal for $i>0$
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\left.\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x\right] /\left[p^{k}\right] E(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$
- More generally, for $T \rightarrow S$, a divisor of degreed on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$)
- There is a sum operation for divisors: if $\mathcal{O}_{D_{i}}=\mathcal{O}_{T} \llbracket x \rrbracket / f_{i}(x)$ for $i=0,1$ then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this: $D_{V_{0} \oplus V_{1}}=D_{V_{0}}+D_{V_{1}}$
- An element $a \in \mathbb{G}$ gives a divisor [a] of degree one.

A list a_{1}, \ldots, a_{d} gives a divisor $\sum_{i}\left[a_{i}\right]$ of degree d, symmetric in a_{1}, \ldots, a_{d} Using this: $\operatorname{Div}_{d}^{+}(\mathbb{G})=\mathbb{G}^{d} / \Sigma_{d}$

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0}[x] /\left[p^{k}\right] E(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$)
- There is a sum operation for divisors: if $O_{D_{i}}=O_{T} \llbracket x \rrbracket / f_{i}(x)$ for $i=0,1$ then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this: $D_{V_{0} \oplus V_{1}}=D_{V_{0}}+D_{V_{1}}$
- An element $a \in \mathbb{G}$ gives a divisor [a] of degree one.
 Using this: $\operatorname{Div}_{d}^{+}(\mathbb{G})=\mathbb{G}^{d} / \Sigma_{d}$

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$.
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$).
- There is a sum operation for divisors: if $\mathcal{O}_{D_{i}}=\mathcal{O}_{T} \llbracket x \rrbracket / f_{i}(x)$ for $i=0,1$ then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this:
- An element $a \in \mathbb{G}$ gives a divisor [a] of degree one A list a_{1}, \ldots, a_{d} gives a divisor $\sum_{i}\left[a_{i}\right]$ of degree d, symmetric in a_{1}, Using this: $\operatorname{Div}_{d}^{+}(\mathbb{G})=\mathbb{G}^{d} / \Sigma_{d}$

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$.
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$). then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this:
$>$ An element $a \in \mathbb{G}$ gives a divisor [a] of degree one. A list a_{1}, \ldots, a_{d} gives a divisor $\sum_{i}\left[a_{i}\right]$ of degree d, symmetric in a_{1}, Using this:

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$.
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$.
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$).
\rightarrow An element $a \in \mathbb{G}$ gives a divisor $[a]$ of degree one. A list $a_{1} \ldots . a_{d}$ gives a divisor $\sum,\left[a_{i}\right]$ of degree d svmmetric in a_{1} Using this:

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$.
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$).
- There is a sum operation for divisors: if $\mathcal{O}_{D_{i}}=\mathcal{O}_{T} \llbracket x \rrbracket / f_{i}(x)$ for $i=0,1$ then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this: $D_{V_{0} \oplus V_{1}}=D_{V_{0}}+D_{V_{1}}$.

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$.
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$).
- There is a sum operation for divisors: if $\mathcal{O}_{D_{i}}=\mathcal{O}_{T} \llbracket x \rrbracket / f_{i}(x)$ for $i=0,1$ then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this: $D_{V_{0} \oplus V_{1}}=D_{V_{0}}+D_{V_{1}}$.
- An element $a \in \mathbb{G}$ gives a divisor [a] of degree one.

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$.
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$).
- There is a sum operation for divisors: if $\mathcal{O}_{D_{i}}=\mathcal{O}_{T} \llbracket x \rrbracket / f_{i}(x)$ for $i=0,1$ then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this: $D_{V_{0} \oplus V_{1}}=D_{V_{0}}+D_{V_{1}}$.
- An element $a \in \mathbb{G}$ gives a divisor [a] of degree one.

A list a_{1}, \ldots, a_{d} gives a divisor $\sum_{i}\left[a_{i}\right]$ of degree d, symmetric in a_{1}, \ldots, a_{d}.

Divisors and vector bundles

- A divisor of degree d on $\mathbb{G}=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket\right)$ is a closed subscheme $D<\mathbb{G}$ such that \mathcal{O}_{D} is free of rank d as a module over $\mathcal{O}_{s}=E^{0}$.
- Equivalently, $\mathcal{O}_{D}=E^{0} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} X^{d-i}$ with c_{i} in the maximal ideal for $i>0$.
- $\left[p^{k}\right]_{E}(x)$ is a unit multiple of a polynomial of degree $p^{n k}$, so the scheme $\mathbb{G}\left[p^{k}\right]=\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)=\operatorname{spf}\left(E^{0} \llbracket x \rrbracket /\left[p^{k}\right]_{E}(x)\right)=\operatorname{spf}\left(E^{0}\left(B C_{p^{k}}\right)\right)$ is a divisor of degree $p^{n k}$.
- More generally, for $T \rightarrow S$, a divisor of degree d on \mathbb{G} over T is a closed subscheme $D<T \times{ }_{S} \mathbb{G}$ such that \mathcal{O}_{D} is free of rank d over \mathcal{O}_{T}.
- Equivalently, $\mathcal{O}_{D}=\mathcal{O}_{T} \llbracket x \rrbracket / f(x)$ for some monic polynomial $f(x)=\sum_{i=0}^{d} c_{i} x^{d-i}$ with $c_{i} \in \mathcal{O}_{T}$ topologically nilpotent for $i>0$.
- Example: if $V \rightarrow Z$ is a complex bundle of dimension d, then the scheme $D_{V}=\operatorname{spf}\left(E^{0}(P(V))\right)$ is a divisor of degree d on \mathbb{G} over $\operatorname{spf}\left(E^{0}(Z)\right)$ (by earlier calculation of $E^{0}(P(V))$).
- There is a sum operation for divisors: if $\mathcal{O}_{D_{i}}=\mathcal{O}_{T} \llbracket x \rrbracket / f_{i}(x)$ for $i=0,1$ then $\mathcal{O}_{D_{0}+D_{1}}=\mathcal{O}_{T} \llbracket x \rrbracket /\left(f_{0}(x) f_{1}(x)\right)$. For this: $D_{V_{0} \oplus V_{1}}=D_{V_{0}}+D_{V_{1}}$.
- An element $a \in \mathbb{G}$ gives a divisor [a] of degree one.

A list a_{1}, \ldots, a_{d} gives a divisor $\sum_{i}\left[a_{i}\right]$ of degree d, symmetric in a_{1}, \ldots, a_{d}. Using this: $\operatorname{Div}_{d}^{+}(\mathbb{G})=\mathbb{G}^{d} / \Sigma_{d}$.

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define Level $\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ anc $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$.
\Rightarrow Let U be the set of all terms $\sum_{i<s}^{F}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.
\Rightarrow Put $g(t)=\prod_{u \in U}(t-u)$ and $[p]_{E}(t)=q(t) g(t)+r(t)$ with $\operatorname{deg}(r(t)))<s$. Let I be the ideal generated by the coefficients of $r(t)$, and $D_{A}=D_{A}^{\prime} / l$, and $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\operatorname{spf}\left(D_{A}\right)$.
- Schematically:
$\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{0 \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$.
\Rightarrow From HKR: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A \leq G} \mathbb{Q} \otimes D_{A}\right)^{G}$
\Rightarrow There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A \leq G} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.

Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?

- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define $\operatorname{Level}\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}}+1}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ and $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$
- Let U be the set of all terms $\sum_{i<s}^{F}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.
- Put $g(t)=\prod_{u \in U}(t-u)$ and $[p]_{E}(t)=q(t) g(t)+r(t)$ with $\operatorname{deg}(r(t)))<s$. Let I be the ideal generated by the coefficients of $r(t)$, and $D_{A}=D_{A}^{\prime} / 1$, and Level $\left(A^{*}, \mathbb{C}\right)=\operatorname{spf}\left(D_{A}\right)$.
- Schematically:
$\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$.
- From HKR: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\Pi_{A \leq G} \mathbb{Q} \otimes D_{A}\right)^{G}$
- There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A \leq G} u_{k}^{-1} D_{k, A}\right)^{6}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define Level $\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
\downarrow Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ anc $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$
\Rightarrow Let U be the set of all terms $\sum_{i<s}^{r}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.
- Put $g(t)=\prod_{u \in U}(t-u)$ and $[p]_{E}(t)=q(t) g(t)+r(t)$ with $\operatorname{deg}(r(t)))<s$. Let I be the ideal generated by the coefficients of $r(t)$, and $D_{A}=D_{A}^{\prime} / l$, and $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\operatorname{spf}\left(D_{A}\right)$
- Schematically:
$\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$
- From HKR: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\Pi_{A \leq G} \mathbb{Q} \otimes D_{A}\right)$
- There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A \leq G} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton)

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define Level $\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ and $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$
\Rightarrow Let U be the set of all terms $\sum_{i<s}^{F}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.
\triangleright Put $g(t)=\prod_{u \in U}(t-u)$ and $[p]_{E}(t)=q(t) g(t)+r(t)$ with $\operatorname{deg}(r(t)))<s$. Let I be the ideal generated by the coefficients of $r(t)$, and $D_{A}=D_{A}^{\prime} / l$, and $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\operatorname{spf}^{\prime}\left(D_{A}\right)$
- Schematically:
$\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$
- From HKR: $Q \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\Pi_{A \leq G} Q \otimes D_{A}\right)$
\Rightarrow There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A \leq G} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define $\operatorname{Level}\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.

- Schematically: $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$
\Rightarrow From HKR: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A \leq G} \mathbb{Q} \otimes D_{A}\right)$ which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define $\operatorname{Level}\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ and $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$.

- Schematically:
$\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$
- From HKR: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\Pi_{A \leq G} \mathbb{Q} \otimes D_{A}\right)$

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define $\operatorname{Level}\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ and $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$.
- Let U be the set of all terms $\sum_{i<s}^{F}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.

- Schematically: $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$
\square which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define $\operatorname{Level}\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ and $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$.
- Let U be the set of all terms $\sum_{i<s}^{F}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.
- Put $g(t)=\prod_{u \in U}(t-u)$ and $[p]_{E}(t)=q(t) g(t)+r(t)$ with $\operatorname{deg}(r(t)))<s$. Let l be the ideal generated by the coefficients of $r(t)$, and $D_{A}=D_{A}^{\prime} / I$, and $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\operatorname{spf}\left(D_{A}\right)$.
\rightarrow Schematically: $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$ - From I'MRR:OO $E^{0}(B C)=u_{0}^{-1} E^{0}(B C) \simeq\left(\Pi_{A \subset Q} O Q D_{A}\right)$ which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define $\operatorname{Level}\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ and $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$.
- Let U be the set of all terms $\sum_{i<s}^{F}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.
- Put $g(t)=\prod_{u \in U}(t-u)$ and $[p]_{E}(t)=q(t) g(t)+r(t)$ with $\operatorname{deg}(r(t)))<s$. Let l be the ideal generated by the coefficients of $r(t)$, and $D_{A}=D_{A}^{\prime} / I$, and $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\operatorname{spf}\left(D_{A}\right)$.
- Schematically:
$\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$.
- From HKR: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\Pi_{A \leq G} \mathbb{Q} \otimes D_{A}\right)$

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define $\operatorname{Level}\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ and $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$.
- Let U be the set of all terms $\sum_{i<s}^{F}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.
- Put $g(t)=\prod_{u \in U}(t-u)$ and $[p]_{E}(t)=q(t) g(t)+r(t)$ with $\operatorname{deg}(r(t)))<s$. Let l be the ideal generated by the coefficients of $r(t)$, and $D_{A}=D_{A}^{\prime} / I$, and $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\operatorname{spf}\left(D_{A}\right)$.
- Schematically:
$\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$.
- From HKR: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A \leq G} \mathbb{Q} \otimes D_{A}\right)^{G}$.

Level structures

- We have identified $\operatorname{spf}\left(E^{0}(B A)\right)$ with $\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- Is there a subscheme of monomorphisms from A^{*} to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that $\mathbb{Z} \rightarrow \mathbb{Q}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are epimorphisms, but behave quite differently.
- We will define $\operatorname{Level}\left(A^{*}, \mathbb{G}\right) \subseteq \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$ which is motivated by the above; but do not take the analogy too seriously.
- Write $A=\prod_{i=0}^{s-1} C_{p^{m_{i}+1}}$, put $D_{A}^{\prime}=E^{0} \llbracket x_{i} \mid i<s \rrbracket$ and $y_{i}=\left[p^{m_{i}}\right]\left(x_{i}\right) \in R^{\prime}$.
- Let U be the set of all terms $\sum_{i<s}^{F}\left[k_{i}\right]_{E}\left(y_{i}\right)$ with $0 \leq k_{i}<p$ for all i.
- Put $g(t)=\prod_{u \in U}(t-u)$ and $[p]_{E}(t)=q(t) g(t)+r(t)$ with $\operatorname{deg}(r(t)))<s$. Let I be the ideal generated by the coefficients of $r(t)$, and $D_{A}=D_{A}^{\prime} / I$, and $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\operatorname{spf}\left(D_{A}\right)$.
- Schematically: $\operatorname{Level}\left(A^{*}, \mathbb{G}\right)=\left\{\phi \in \operatorname{Hom}\left(A^{*}, \mathbb{G}\right) \mid \sum_{\alpha \in A^{*}[p]}[\phi(\alpha)] \leq \mathbb{G}[p]\right\}$.
- From HKR: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A \leq G} \mathbb{Q} \otimes D_{A}\right)^{G}$.
- There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A \leq G} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

[^0]: - Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

