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Flag manifolds

▶ Again let V → X be a complex vector bundle of dimension d .

▶ Flagk(V ) = {(a,W0, . . . ,Wk) | x ∈ X ,Wi < Wi+1 ≤ Va, dim(Wi ) = i}.
▶ For 0 ≤ i < k we have a line bundle (Qi )(a,W ) = Wi+1/Wi

and an Euler class xi = e(Qi ) ∈ E 0(Flagk(V )).

▶ We also have a bundle Rk over Flagk(V ) with (Rk)(a,W ) = Va/Wk

(so dim(Rk) = d − k), and Flagk+1(V ) is the projective bundle P(Rk).

▶ By induction based on this: the set of monomials xα =
∏

i<k x
αi
i with

0 ≤ αi < d − i is a basis for E 0(Flagk(V )) over E 0(X ).

▶ For the ring structure: put gk(t) =
∏

i<k(t − xi ) ∈ E 0(X )[x0, . . . , xk−1],
then divide fV (t) by g(t) with remainder to get fV (t) = g(t)q(t) + r(t)
with deg(r(t)) < k, then let I be the ideal generated by the coefficients of
r(t).We then have E 0(Flagk(V )) = E 0(X )[x0, . . . , xk−1]/I as rings.

▶ Let G be a group with |G | = n. The representation C[G ] gives a bundle
V = EG ×G C[G ] over BG and a space Flagn(V ) with
E 0(Flagn(V )) ≃ E 0(BG)n!.

▶ Flagn(V ) = EG ×G F , where F = {W | W0 < · · · < Wn = C[G ]}.
▶ Key fact: all stabiliser groups in F are abelian. Indeed, stabG (W ) injects

in the abelian group
∏n−1

i=0 Aut(Wi+1 ⊖Wi ) = (C×)n.
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Finiteness

▶ Theorem: if X is a finite simplicial complex with simplicial G -action, then
the ring E∗(EG ×G X ) = E∗(XhG ) is finitely generated as an E∗-module.

▶ Proof: First treat the case stabG (x) is abelian for all x ∈ X .

▶ If X = G/H then H must be abelian and XhG = BH and E∗(BH) is
finitely generated by previous calculation.

▶ If X is just a finite discrete G -set then it is a disjoint union of G/H’s and
the same applies.

▶ In general, if X k is the k-skeleton of X then X k/X k−1 = ΣkW+ for some
finite G -set W , giving an exact sequence of E∗(1)-modules

E∗−k(WhG ) → E∗(X k
hG ) → E∗(X k−1

hG ).

As E∗(1) is noetherian, it follows inductively that E∗(X k
hG ) is finitely

generated for all k, so E∗(XhG ) is finitely generated.

▶ Now remove the abelian stabiliser condition.

▶ Put n = |G | and F = {(W0, . . . ,Wn) | W0 < · · · < Wn = C[G ]}.
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Finite groupoids

▶ Many things about Morava E -theory are more convenient using groupoids.

▶ A groupoid is a category G in which all morphisms are invertible.

▶ Say G is finite if all Hom sets G(a, b) are finite,
and the set π0(G) of isomorphism classes is finite.

▶ If so, we can choose a1, . . . , am containing one element of each
isomorphism class, and put Gi = G(ai , ai ), and we get BG ≃

∐
i BGi .

▶ Thus E∗(BG) =
∏

i E
∗(BGi ), which is a finitely generated E∗-module.

▶ Any group can be regarded as a groupoid with one object.

▶ A representation of G is a functor V from G to the category V of
finite-dimensional complex vector spaces.

▶ This again gives spaces Flagk(V ) and P(V ) = Flag1(V ) over BG .

▶ Given groupoids G and H, the functor category [G ,H] is also a groupoid.

▶ If G ,H are groups then obj([G ,H]) = Hom(G ,H) and morphisms α → β
in [G ,H] are elements h ∈ H with β(g) = hα(g)h−1 for all g ∈ G .

▶ So α ≃ β iff α and β are conjugate, and π0([G ,H]) is the set of conjugacy
classes of homomorphisms.
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Naive groupoid duality

▶ For a finite groupoid G put M(G) = Q{π0(G)} and
M∗(G) = Hom(M(G),Q) = Map(π0(G),Q).

▶ Define an inner product on M(G) by ([a], [b])G = |G(a, b)|
(so ([a], [b]) = 0 unless a ≃ b).

▶ The induced inner product on M∗(G) is
⟨f , g⟩G =

∑r
i=1 |G(ai , ai )|−1f (ai )g(ai ),

where a1, . . . , ar contains one member of each isomorphism class.

▶ This is also ⟨f , g⟩G = θ(fg), where θ(h) =
∑

i |G(ai , ai )|−1h(ai ).

▶ Given q : G → H we define q! : M(G) → M(H) by q!([a]) = [q(a)], and
q∗ : M∗(H) → M∗(G) by q∗(g)(a) = g(q(a)).

▶ Define q∗ : M(H) → M(G) and q! : M
∗(G) → M∗(H) to be adjoint, so

(q!(u), v)H = (u, q∗(v))G and ⟨q!(f ), g⟩H = ⟨f , q∗(g)⟩G .
▶ This is compatible with the isomorphisms

M(G) ≃ M∗(G) ≃ Hom(M(G),Q).
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Generalised characters

▶ Fix a prime p and n > 0 and let E be Morava E -theory.

▶ Then [pk ]E (x) = gk(x)hk(x), where hk(x) ∈ E 0[[x ]]× and gk(x) ∈ E 0[x ] is
a monic polynomial of degree pnk and E 0(BCpk ) = E 0[x ]/gk(x).

▶ Construct L from Q⊗ E 0 by adjoining a full set of roots of gk(x) for all k.

▶ Put Z/p∞ = lim
−→k

Z/pk = Z[ 1
p
]/Z = Q/Z(p) = Qp/Zp =

⋃
k

pk
√
1 ⊂ S1.

(Exercise: Hom(Z/p∞,Z/p∞) ≃ Zp ≃ Hom(Z/p∞,S1).)

▶ Put Θ = {all roots of all gk(x)} ⊂ L. This is a group under +E ,
iso to (Z/p∞)n, analogous to the formal group scheme spf(E 0(CP∞)).

▶ Put Θ∗ = Hom(Θ, S1) ≃ Zn
p, regarded as a groupoid with one object.

▶ Put ΛG=[Θ∗,G ]=lim
−→k

[Θ∗/pk ,G ], C(G)=L⊗M∗ΛG=Map(π0ΛG , L).

▶ Recall E 0(B(Θ∗/pk)) = E 0[[x1, . . . , xn]]/(gk(x1), . . . , gk(xn));
there is a canonical map ϕk from this to L.

▶ Thus any u : Θ∗/pk → G gives ϕk ◦ E 0(Bu) : E 0BG → L.
Assembling these gives χ : L⊗E0 E 0(BG) → C(G).

▶ Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
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1 ⊂ S1.

(Exercise: Hom(Z/p∞,Z/p∞) ≃ Zp ≃ Hom(Z/p∞,S1).)

▶ Put Θ = {all roots of all gk(x)} ⊂ L. This is a group under +E ,
iso to (Z/p∞)n, analogous to the formal group scheme spf(E 0(CP∞)).

▶ Put Θ∗ = Hom(Θ, S1) ≃ Zn
p, regarded as a groupoid with one object.

▶ Put ΛG=[Θ∗,G ]=lim
−→k

[Θ∗/pk ,G ], C(G)=L⊗M∗ΛG=Map(π0ΛG , L).

▶ Recall E 0(B(Θ∗/pk)) = E 0[[x1, . . . , xn]]/(gk(x1), . . . , gk(xn));
there is a canonical map ϕk from this to L.

▶ Thus any u : Θ∗/pk → G gives ϕk ◦ E 0(Bu) : E 0BG → L.
Assembling these gives χ : L⊗E0 E 0(BG) → C(G).

▶ Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
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Proof of the generalised character theorem

▶ Reduce to the case of a finite group G .

▶ Generalise: for a finite G -CW complex Z , we have

χG ,Z : L⊗E0 E∗(ZhG ) → L⊗Q

( ∏
θ : Θ∗→G

H∗(Z image(θ);Q)

)G

▶ Prove by calculation that θG ,Z is iso when Z = G/A with A ≤ G abelian.
(Here ZhG = BA, and Z image(θ) is Z (if image(θ) ≤ A) or ∅ (otherwise).)

▶ Deduce by Mayer-Vietoris that χG ,Z is iso if Z has abelian isotropy.

▶ Let F = {W | W0 < · · · < Wn = C[G ]} be the space of complete flags in
C[G ], so Z × F and Z × F 2 have abelian isotropy, and we have projections
p : (Z × F )hG → ZhG and q0, q1 : (Z × F 2)hG → (Z × F )hG

▶ We saw before that E∗((Z × F )hG ) has a canonical basis
e1 = 1, e2, . . . , en! over E

∗(ZhG ). Similarly, the elements q∗
0 (ei )q

∗
1 (ej) form

a basis for E∗((Z × F 2)hG ) over E
∗(ZhG ).

▶ It follows that the diagram E∗(ZhG ) → E∗((Z × F )hG ) ⇒ E∗((Z × F 2)hG )
is an equaliser.

▶ Deduce the general case from this.
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Divisors and vector bundles

▶ A divisor of degree d on G = spf(E 0[[x ]]) is a closed subscheme D < G
such that OD is free of rank d as a module over OS = E 0.

▶ Equivalently, OD = E 0[[x ]]/f (x) for some monic polynomial
f (x) =

∑d
i=0 cix

d−i with ci in the maximal ideal for i > 0.

▶ [pk ]E (x) is a unit multiple of a polynomial of degree pnk , so the scheme
G[pk ] = ker(pk .1: G → G) = spf(E 0[[x ]]/[pk ]E (x)) = spf(E 0(BCpk ))

is a divisor of degree pnk .

▶ More generally, for T → S , a divisor of degree d on G over T is a closed
subscheme D < T ×S G such that OD is free of rank d over OT .

▶ Equivalently, OD = OT [[x ]]/f (x) for some monic polynomial
f (x) =

∑d
i=0 cix

d−i with ci ∈ OT topologically nilpotent for i > 0.

▶ Example: if V → Z is a complex bundle of dimension d , then the scheme
DV = spf(E 0(P(V ))) is a divisor of degree d on G over spf(E 0(Z))
(by earlier calculation of E 0(P(V ))).

▶ There is a sum operation for divisors: if ODi = OT [[x ]]/fi (x) for i = 0, 1
then OD0+D1 = OT [[x ]]/(f0(x)f1(x)). For this: DV0⊕V1 = DV0 + DV1 .

▶ An element a ∈ G gives a divisor [a] of degree one.
A list a1, . . . , ad gives a divisor

∑
i [ai ] of degree d , symmetric in a1, . . . , ad .

Using this: Div+d (G) = Gd/Σd .
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Level structures

▶ We have identified spf(E 0(BA)) with Hom(A∗,G).

▶ Is there a subscheme of monomorphisms from A∗ to G?

▶ Monomorphisms of schemes are closely related to epimorphisms of
commutative rings, which have poor behaviour. Note that Z → Q and
Z → Z/n are epimorphisms, but behave quite differently.

▶ We will define Level(A∗,G) ⊆ Hom(A∗,G) which is motivated by the
above; but do not take the analogy too seriously.

▶ Write A =
∏s−1

i=0 Cpmi+1 , put D ′
A = E 0[[xi | i < s]] and yi = [pmi ](xi ) ∈ R ′.

▶ Let U be the set of all terms
∑F

i<s [ki ]E (yi ) with 0 ≤ ki < p for all i .

▶ Put g(t) =
∏

u∈U(t − u) and [p]E (t) = q(t)g(t) + r(t) with
deg(r(t))) < s. Let I be the ideal generated by the coefficients of r(t),
and DA = D ′

A/I , and Level(A∗,G) = spf(DA).

▶ Schematically:
Level(A∗,G) = {ϕ ∈ Hom(A∗,G) |

∑
α∈A∗[p][ϕ(α)] ≤ G[p]}.

▶ From HKR: Q⊗ E 0(BG) = u−1
0 E 0(BG) ≃

(∏
A≤G Q⊗ DA

)G
.

▶ There is a similar map u−1
k E 0(BG)/Ik →

(∏
A≤G u−1

k Dk,A

)G
for k > 0,

which is an F -isomorphism (Greenlees-Strickland; see also Stapleton).
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▶ Is there a subscheme of monomorphisms from A∗ to G?

▶ Monomorphisms of schemes are closely related to epimorphisms of
commutative rings, which have poor behaviour. Note that Z → Q and
Z → Z/n are epimorphisms, but behave quite differently.

▶ We will define Level(A∗,G) ⊆ Hom(A∗,G) which is motivated by the
above; but do not take the analogy too seriously.

▶ Write A =
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i=0 Cpmi+1 , put D ′
A = E 0[[xi | i < s]] and yi = [pmi ](xi ) ∈ R ′.

▶ Let U be the set of all terms
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i<s [ki ]E (yi ) with 0 ≤ ki < p for all i .

▶ Put g(t) =
∏

u∈U(t − u) and [p]E (t) = q(t)g(t) + r(t) with
deg(r(t))) < s. Let I be the ideal generated by the coefficients of r(t),
and DA = D ′

A/I , and Level(A∗,G) = spf(DA).

▶ Schematically:
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∑
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