Chromatic cohomology of finite groups 2

Neil Strickland

December 5, 2023

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
\Rightarrow For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
\Rightarrow Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
- Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \operatorname{FGL}(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
\rightarrow Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \mathrm{FGL}(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i j}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
$>$ Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i j}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
- Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \mathrm{FGL}(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j j}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
\rightarrow For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
\rightarrow I azard's theorem: we can continue to define $a_{4}, a_{5} \ldots$ so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the I azard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5 .
\rightarrow Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \operatorname{FGL}(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
\rightarrow Lazard's theorem: we can continue to define a_{4}, a_{5},
so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard $\operatorname{ring} L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
- Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \operatorname{FGL}(k)$ is bijective for all k.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\longrightarrow n}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
\Rightarrow Quillen's theorem: this is an isomorphism (and $\left.M P^{1}(1)=0\right)$.
- This is the heart of a close connection between formal groups and algebraic topology.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\longrightarrow_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
$>$ Using this we get a formal group law Fover $M P^{0}(1)$.
Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- This is the heart of a close connection between formal groups and algebraic topology.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\longrightarrow_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- This is the heart of a close connection between formal groups and algebraic topology.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\longrightarrow_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- This is the heart of a close connection between formal groups and algebraic topology.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\longrightarrow_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
\Rightarrow This is the heart of a close connection between formal groups and algebraic topology.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\longrightarrow_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- This is the heart of a close connection between formal groups and algebraic topology.

Morava K and E

- Fix a prime p and $n>0$.

P Put $\left.I(x)=\sum_{k>0} x^{p^{n k}} / n^{k} \in \mathbb{Q} \llbracket x\right], \quad F(x, y)=I^{-1}(I(x)+I(y)) \in F G L(\mathbb{Q})$.
$>$ In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.

- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+_{F} \cdots+{ }_{F} x$ (n terms).
\Rightarrow We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
\Rightarrow Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|/\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{l} u_{l} x^{p^{|l| \|}} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
\Rightarrow Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}
\Rightarrow Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+_{F} \cdots+_{F} x$ (n terms).
\checkmark We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
\Rightarrow Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $\mid I=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{1} u_{l} x^{p\| \| \|} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket \quad F(x, y)=I^{-1}(I(x)+I(y)) \in F G L(\mathbb{Q})$
\Rightarrow In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+F \cdots+F x$ (n terms)
\Rightarrow We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|/\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{l} u_{l} x^{p|l| \|} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
\Rightarrow In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+F \cdots+F x$ (n terms)
\Rightarrow We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $|I| \mid=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{l} u_{l} x^{p\|l\|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\Rightarrow Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
\Rightarrow There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+_{F} \cdots+{ }_{F} x$ (n terms)
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
\Rightarrow Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(l)}$. Then put $I_{E}(x)=\sum_{l} u_{l} x^{p|l|} / p^{|| |} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$
\rightarrow Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$
\Rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
\Rightarrow Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+F \cdots+F x$ (n terms)
\Rightarrow We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$
\Rightarrow For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(l)}$. Then put $I_{E}(x)=\sum_{1} u_{1} x^{p\| \| \|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$
\triangleright Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \operatorname{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+{ }_{F} \cdots+{ }_{F} x$ (n terms).

- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow Kev fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
\Rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
\Rightarrow There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \operatorname{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+F y=F(x, y)$ and $[n]_{F}(x)=x+{ }_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
> Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+F y=F(x, y)$ and $[n]_{F}(x)=x+F_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.

- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$

- Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+{ }_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i t}^{\pi_{t}(I)}$. Then put

\rightarrow Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.

- Key fact: $\left[p^{\top}\right]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0}{\otimes M P_{0}}\left(M P_{0} X\right)$

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+F_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i t}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{l} u_{l} x^{p^{\|\prime I\|}} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$

\rightarrow Using the Functional Equation Lemma: $F_{E} \in F G L\left(E_{0}\right)$.

\rightarrow Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow F_{0}$ carrving $F_{M D}$ to F_{E}.
> Using Landweber exactness and Brown representability: there is a
commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
\rightarrow There is also a ring snectrum K with $K^{0} X=\left(F^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+F_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{l} u_{I} x^{p^{\|I\|}} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
\rightarrow Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow F_{0}$ carrving $F_{M D}$ to F_{E}
> Using Landweber exactness and Brown representability: there is a
commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
- There is also a ring snectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+F_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{l} u_{I} x^{p \mid\| \|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a
commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes M P_{0}\left(M P_{0} X\right)$

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+F_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i t}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{l} u_{I} x^{p \mid\| \|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.

There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
Using Landweber exactness and Brown representability: there is a
commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$. There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+F y=F(x, y)$ and $[n]_{F}(x)=x+{ }_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i t}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p| | / \|} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.

Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$ There is also a ring snectrum K with $K^{0} X=\left(F^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+F y=F(x, y)$ and $[n]_{F}(x)=x+{ }_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i t}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p| | / \|} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+{ }_{F} \cdots+{ }_{F} x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p \mid\| \| \|} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- Key fact: $[p]_{E}(x)=u_{k} x^{p^{k}}\left(\bmod u_{i} \mid i<k\right)$.
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.

P Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
$\Rightarrow \mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.

- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
\Rightarrow Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0($ and same for $E, K)$.
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{K}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$.
This is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C f}$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $\left.M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x\right] /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$.
This is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T \otimes m$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{k}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so

$$
\left.\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right) \text { (and same for } E, K\right) .
$$

- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
\square
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{1}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so

$$
\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)(\text { and same for } E, K) .
$$

- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
\Rightarrow Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for $\left.E, K\right)$.
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so

$$
\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)(\text { and same for } E, K) .
$$

- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.

Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$

- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{k}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0} \cdots Q_{E^{0}} E^{0}\left(B C_{m_{t}}\right)}$ This is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0($ and same for $E, K)$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and This is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{\kappa}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{\kappa}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{\kappa}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$.
This is again free of finite rank, and $E^{1} B A=0$.

Schematic interpretation

- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$.
This is again free of finite rank, and $E^{1} B A=0$.
- Put $S=\operatorname{spf}\left(E^{0}\right)$ and $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$, so \mathbb{G} is a formal group scheme over S.
\Rightarrow Put $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ (written additively). For $\alpha \in A^{*}$ we get $B \alpha: B A \rightarrow B S^{1}=\mathbb{C} P^{\infty}$ and $(B \alpha)^{*}: E^{0}\left(\mathbb{C} P^{\infty}\right) \rightarrow E^{0}(B A)$ and $\phi_{\alpha}=\operatorname{spf}\left((B \alpha)^{*}\right): \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \mathbb{G}$ over S.
\Rightarrow As \mathbb{G} is a group we can form $\phi_{\alpha}+\phi_{\beta}$, but we find this is the same as $\phi_{\alpha+\beta}$. We thus get $\phi: \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- The previous calculation implies that ϕ is iso.
\Rightarrow More concretely: $E^{0}(B A)$ is generated by $\left\{x_{\alpha} \mid \alpha \in A^{*}\right\}$ modulo $x_{\alpha+\beta}=X_{\alpha}+F X_{\beta}$.

Schematic interpretation

- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.
Put $S=\operatorname{spf}\left(E^{0}\right)$ and $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$, so \mathbb{G} is a formal group scheme over S.
\checkmark Put $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ (written additively). For $\alpha \in A^{*}$ we get $B \alpha: B A \rightarrow B S^{1}=\mathbb{C} P^{\infty}$ and $(B \alpha)^{*}: E^{0}\left(\mathbb{C} P^{\infty}\right) \rightarrow E^{0}(B A)$ and $\phi_{\alpha}=\operatorname{spf}\left((B \alpha)^{*}\right): \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \mathbb{G}$ over S.
- As \mathbb{G} is a group we can form $\phi_{\alpha}+\phi_{\beta}$, but we find this is the same as $\phi_{\alpha+\beta}$. We thus get $\phi: \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- The previous calculation implies that ϕ is iso.
- More concretely: $E^{0}(B A)$ is generated by $\left\{x_{a} \mid \alpha \in A^{*}\right\}$ modulo $x_{\alpha+\beta}=X_{\alpha}+F X_{\beta}$.

Schematic interpretation

- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.
- Put $S=\operatorname{spf}\left(E^{0}\right)$ and $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$, so \mathbb{G} is a formal group scheme over S.

- As \mathbb{G} is a group we can form $\phi_{\alpha}+\phi_{\beta}$, but we find this is the same as $\phi_{\alpha+\beta}$. We thus get $\phi: \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- The previous calculation implies that ϕ is iso.
- More concretely: $E^{0}(B A)$ is generated by $\left\{x_{\alpha} \mid \alpha \in A^{*}\right\}$ modulo $x_{\alpha+\beta}=x_{\alpha}+F x_{\beta}$.

Schematic interpretation

- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.
- Put $S=\operatorname{spf}\left(E^{0}\right)$ and $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$, so \mathbb{G} is a formal group scheme over S.
- Put $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ (written additively). For $\alpha \in A^{*}$ we get $B \alpha: B A \rightarrow B S^{1}=\mathbb{C} P^{\infty}$ and $(B \alpha)^{*}: E^{0}\left(\mathbb{C} P^{\infty}\right) \rightarrow E^{0}(B A)$ and $\phi_{\alpha}=\operatorname{spf}\left((B \alpha)^{*}\right): \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \mathbb{G}$ over S.
$\Rightarrow A s \mathbb{G}$ is a group we can form $\phi_{\alpha}+\phi_{\beta}$, but we find this is the same as $\phi_{\alpha+\beta}$. We thus get $\phi: \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- The previous calculation implies that ϕ is iso.
\Rightarrow More concretely: $E^{0}(B A)$ is generated by $\left\{x_{\alpha} \mid \alpha \in A^{*}\right\}$ modulo

Schematic interpretation

- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.
- Put $S=\operatorname{spf}\left(E^{0}\right)$ and $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$, so \mathbb{G} is a formal group scheme over S.
- Put $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ (written additively). For $\alpha \in A^{*}$ we get $B \alpha: B A \rightarrow B S^{1}=\mathbb{C} P^{\infty}$ and $(B \alpha)^{*}: E^{0}\left(\mathbb{C} P^{\infty}\right) \rightarrow E^{0}(B A)$ and $\phi_{\alpha}=\operatorname{spf}\left((B \alpha)^{*}\right): \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \mathbb{G}$ over S.
- As \mathbb{G} is a group we can form $\phi_{\alpha}+\phi_{\beta}$, but we find this is the same as $\phi_{\alpha+\beta}$. We thus get $\phi: \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
\Rightarrow The previous calculation implies that ϕ is iso.
\rightarrow More concretely: $E^{0}(B A)$ is generated by $\left\{x_{\alpha} \mid \alpha \in A^{*}\right\}$ modulo

Schematic interpretation

- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.
- Put $S=\operatorname{spf}\left(E^{0}\right)$ and $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$, so \mathbb{G} is a formal group scheme over S.
- Put $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ (written additively). For $\alpha \in A^{*}$ we get $B \alpha: B A \rightarrow B S^{1}=\mathbb{C} P^{\infty}$ and $(B \alpha)^{*}: E^{0}\left(\mathbb{C} P^{\infty}\right) \rightarrow E^{0}(B A)$ and $\phi_{\alpha}=\operatorname{spf}\left((B \alpha)^{*}\right): \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \mathbb{G}$ over S.
- As \mathbb{G} is a group we can form $\phi_{\alpha}+\phi_{\beta}$, but we find this is the same as $\phi_{\alpha+\beta}$. We thus get $\phi: \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- The previous calculation implies that ϕ is iso.
\Rightarrow More concretely: $E^{0}(B A)$ is generated by $\left\{x_{\alpha} \mid \alpha \in A^{*}\right\}$ modulo

Schematic interpretation

- For A finite abelian: $A \simeq C_{m_{1}} \times \cdots \times C_{m_{r}}$ say and $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$. This is again free of finite rank, and $E^{1} B A=0$.
- Put $S=\operatorname{spf}\left(E^{0}\right)$ and $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$, so \mathbb{G} is a formal group scheme over S.
- Put $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ (written additively). For $\alpha \in A^{*}$ we get $B \alpha: B A \rightarrow B S^{1}=\mathbb{C} P^{\infty}$ and $(B \alpha)^{*}: E^{0}\left(\mathbb{C} P^{\infty}\right) \rightarrow E^{0}(B A)$ and $\phi_{\alpha}=\operatorname{spf}\left((B \alpha)^{*}\right): \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \mathbb{G}$ over S.
- As \mathbb{G} is a group we can form $\phi_{\alpha}+\phi_{\beta}$, but we find this is the same as $\phi_{\alpha+\beta}$. We thus get $\phi: \operatorname{spf}\left(E^{0}(B A)\right) \rightarrow \operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$.
- The previous calculation implies that ϕ is iso.
- More concretely: $E^{0}(B A)$ is generated by $\left\{x_{\alpha} \mid \alpha \in A^{*}\right\}$ modulo $x_{\alpha+\beta}=x_{\alpha}+{ }_{F} X_{\beta}$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
> Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$.
\Rightarrow This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.
- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.
- For a complex representation V of a finite group G we have a vector bundle $E G \times_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$
- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$
\rightarrow For a complex representation V of a finite group G we have a vector bundle $E G \times_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
\Rightarrow For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$
\checkmark For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$
\rightarrow Now consider a complex vector bundle $V \rightarrow X$ of dimension d
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$
\Rightarrow Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$
- For a complex representation V of a finite group G we have a vector bundle $E G \times{ }_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.

Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.

- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{v}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$
\rightarrow For a complex representation V of a finite group G we have a vector bundle $E G \times G V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.

Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.

- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.
\rightarrow For a complex representation V of a finite group G we have a vector bundle $E G \times G V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
$>$ Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.
\Rightarrow Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
\Rightarrow The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.
- For a complex representation V of a finite group G we have a vector bundle $E G \times{ }_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.

This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.

- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
\Rightarrow By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
\Rightarrow We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.
- For a complex representation V of a finite group G we have a vector bundle $E G \times{ }_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$.

This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.

- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.
\rightarrow For a complex representation V of a finite group G we have a vector bundle $E G \times_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$.
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
\Rightarrow The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.
\rightarrow For a complex representation V of a finite group G we have a vector bundle $E G \times G V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$.
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.
- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
\rightarrow We have $f_{V \rightarrow W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$
\rightarrow For a complex representation V of a finite group G we have a vector bundle $E G \times{ }_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$.
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.
- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
\rightarrow We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.
- For a complex representation V of a finite group G we have a vector bundle $E G \times{ }_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$.
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.
- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
\rightarrow For a complex representation V of a finite group G we have a vector bundle $E G \times{ }_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$.
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.
- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.

Characteristic classes

- Let E be an even periodic ring spectrum, so we can choose $x \in \widetilde{E}^{0}\left(\mathbb{C} P^{\infty}\right)$ with $E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0} \llbracket x \rrbracket$.
- Over $\mathbb{C} P^{\infty}=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$we have the tautological bundle $T_{[f]}=\mathbb{C} f$.
- For any \mathbb{C} line bundle $L \rightarrow X$ there exists $p: X \rightarrow \mathbb{C} P^{\infty}$, unique up to homotopy, with $L \simeq p^{*}(T)$. Put $e(L)=$ Euler class of $L=p^{*}(x) \in E^{0}(X)$.
- For the formal group law F_{E} we have $e(L \otimes M)=e(L)+F_{E} e(M)$.
- Now consider a complex vector bundle $V \rightarrow X$ of dimension d.
- Put $P V=\left\{(x, L) \mid x \in X, L \leq V_{x}, \operatorname{dim}(L)=1\right\}$.
- This has a tautological bundle $T_{(x, L)}=L$ and Euler class $e(T) \in E^{0}(P V)$.
- Theorem: $\left\{e(T)^{i} \mid 0 \leq i<d\right\}$ is a basis for $E^{0}(P V)$ as an $E^{0}(X)$-module.
- By expressing $e(T)^{d}$ in terms of this basis: there is a monic polynomial $f_{V}(x)=\sum_{i=0}^{d} c_{i}(V) x^{d-i}$ with $E^{0}(P V)=E^{0}(X)[x] / f_{V}(x)$ via $x \mapsto e(T)$.
- The elements $c_{i}(V) \in E^{0}(X)$ are the Chern classes of V.
- We have $f_{V \oplus W}(x)=f_{V}(x) f_{W}(x)$ or $c_{k}(V \oplus W)=\sum_{i=0}^{k} c_{i}(V) c_{k-i}(W)$.
- For a complex representation V of a finite group G we have a vector bundle $E G \times_{G} V$ over $B G=E G / G$ and thus Chern classes in $E^{0}(B G)$ which we just call $c_{i}(V)$.

