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The Lazard ring

▶ Consider a formal power series F (s, t) =
∑

i,j bijs
i t j ∈ k[[s, t]].

When is this an FGL?

▶ For F (s, 0) = s we need bi0 = δi,1. For F (s, t) = F (t, s) we need bij = bji .

▶ Now
F (s, t) = s + t + b11st + b12(st

2 + s2t) + b22s
2t2 + b13(st

3 + s3t) + O(5)

▶ Using this we get
F (F (s, t), u)− F (s,F (t, u)) = (2b11b12 + 3b13 − 2b22)(s − u)stu + O(5)

▶ For an FGL we must have 2b11b12 + 3b13 − 2b22. In terms of the
parameters a1 = b11 and a2 = b12 and a3 = b22 − b13 we get
F (s, t) = s+t+a1st+a2st(s+t)+2(a3−a1a2)st(s

2+st+t2)+a3s
2t2+O(5).

▶ There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5.

▶ Lazard’s theorem: we can continue to define a4, a5, . . . so that F (s, t) can
be expressed in terms of the ai , and no further relations are required to
make the associativity axiom hold.

▶ Reformulation: over the Lazard ring L = Z[a1, a2, . . . ] there is a universal
formal group law Fu such that the resulting map Rings(L, k) → FGL(k) is
bijective for all k.
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Quillen’s theorem

▶ Recall MP0(X ) = lim
−→n

[Σ2nX ,MP(n)] (for X a finite complex). Both P

and MP(n) are defined using complex linear algebra so it is not hard to
give an explicit x with MP0(P) = MP0(1)[[x ]].
(We do not need to know MP0(1) for this.)

▶ Using this we get a formal group law F over MP0(1).

▶ Recall that FGL(k) = Rings(L, k) so we get a ring map L → MP0(1).

▶ Quillen’s theorem: this is an isomorphism (and MP1(1) = 0).

▶ This is the heart of a close connection between formal groups and
algebraic topology.
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Morava K and E

▶ Fix a prime p and n > 0.

▶ Put l(x) =
∑

k≥0 x
pnk /pk ∈ Q[[x ]], F (x , y) = l−1(l(x) + l(y)) ∈ FGL(Q).

▶ In fact F ∈ FGL(Z) so we can reduce mod p to get FK ∈ FGL(Fp).

▶ There is a unique ϕK : MP0 → Fp carrying FMP to FK .

▶ Write x +F y = F (x , y) and [n]F (x) = x +F · · ·+F x (n terms).

▶ We find that [p]K (x) = [p]FK (x) = xpn i.e. FK has height n.

▶ Define E0 = Zp[[u1, . . . , un−1]] with u0 = p, un = 1.

▶ For I = (i1, . . . , ir ) in {1, . . . , n}r we put |I | = r and ∥I∥ = i1 + · · ·+ ir
and πt(I ) =

∏
s<t p

is and uI =
∏r

t=1 u
πt (I )
it

.Then put

lE (x) =
∑

I uI x
p∥I∥/p|I | ∈ (Q⊗ E0)[[x ]] and FE (x , y) = l−1

E (lE (x) + lE (y)).

▶ Using the Functional Equation Lemma: FE ∈ FGL(E0).

▶ Key fact: [p]E (x) = ukx
pk (mod ui | i < k).

▶ There is a unique ϕE : MP0 → E0 carrying FMP to FE .

▶ Using Landweber exactness and Brown representability: there is a
commutative ring spectrum E with E0X = π0(E ∧ X ) = E0 ⊗MP0 (MP0X ).

▶ There is also a ring spectrum K with K 0X = (E 0X )/(u0, . . . , un−1)
whenever the sequence is regular (and same for K0X ).
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lE (x) =
∑

I uI x
p∥I∥/p|I | ∈ (Q⊗ E0)[[x ]] and FE (x , y) = l−1

E (lE (x) + lE (y)).

▶ Using the Functional Equation Lemma: FE ∈ FGL(E0).

▶ Key fact: [p]E (x) = ukx
pk (mod ui | i < k).

▶ There is a unique ϕE : MP0 → E0 carrying FMP to FE .

▶ Using Landweber exactness and Brown representability: there is a
commutative ring spectrum E with E0X = π0(E ∧ X ) = E0 ⊗MP0 (MP0X ).

▶ There is also a ring spectrum K with K 0X = (E 0X )/(u0, . . . , un−1)
whenever the sequence is regular (and same for K0X ).
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Morava K and E of BCm

▶ Put U = C[t] \ {0} so CP∞ = U/C×

▶ Define ϕm : CP∞ → CP∞ by ϕm([f ]) = [f m], so
ϕ∗
m(x) = [m]FMP (x) = [m]MP(x) ∈ MP0(CP∞) (and same for E ,K).

▶ The map h(s, f )(t) = s + (1− s)(1 + st)f (t) gives a contraction of U.

▶ Put Cm = ⟨e2πi/m⟩ < C× and BCm = U/Cm.

▶ CP∞ has a tautological bundle T with T[f ] = Cf and ϕ∗
m(T ) ≃ T⊗m.

▶ Then BCm = E(T⊗m) \ (zero section) so
cofibre(BCm → CP∞) = Thom(T⊗m)

▶ Using the Thom isomorphism we get MP0(BCm) = MP0[[x ]]/[m]MP(x) and
MP1(BCm) = 0 (and same for E , K).

▶ If m = pkm1 with p ∤ m1 then [m]K (x) is a unit multiple of

[pk ]K (x) = xpnk so K 0(BCm) = Fp{x i | i < pnk}.
▶ Similarly E 0(BCm) = E 0{x i | i < pnk} (free of finite rank over E 0).

▶ For A finite abelian: A ≃ Cm1 × · · · × Cmr say and
E 0(BA) = E 0(BCm1)⊗E0 · · · ⊗E0 E 0(BCmr ).
This is again free of finite rank, and E 1BA = 0.
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Schematic interpretation

▶ For A finite abelian: A ≃ Cm1 × · · · × Cmr say and
E 0(BA) = E 0(BCm1)⊗E0 · · · ⊗E0 E 0(BCmr ).
This is again free of finite rank, and E 1BA = 0.

▶ Put S = spf(E 0) and G := spf(E 0(CP∞)),
so G is a formal group scheme over S .

▶ Put A∗ = Hom(A,S1) (written additively). For α ∈ A∗ we get
Bα : BA → BS1 = CP∞ and (Bα)∗ : E 0(CP∞) → E 0(BA) and
ϕα = spf((Bα)∗) : spf(E 0(BA)) → G over S .

▶ As G is a group we can form ϕα + ϕβ , but we find this is the same as
ϕα+β . We thus get ϕ : spf(E 0(BA)) → Hom(A∗,G).

▶ The previous calculation implies that ϕ is iso.

▶ More concretely: E 0(BA) is generated by {xα | α ∈ A∗} modulo
xα+β = xα +F xβ .
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Characteristic classes

▶ Let E be an even periodic ring spectrum, so we can choose x ∈ Ẽ 0(CP∞)
with E 0(CP∞) = E 0[[x ]].

▶ Over CP∞ = (C[t] \ {0})/C× we have the tautological bundle T[f ] = Cf .
▶ For any C line bundle L → X there exists p : X → CP∞, unique up to

homotopy, with L ≃ p∗(T ). Put e(L) = Euler class of L = p∗(x) ∈ E 0(X ).

▶ For the formal group law FE we have e(L⊗M) = e(L) +FE e(M).

▶ Now consider a complex vector bundle V → X of dimension d .

▶ Put PV = {(x , L) | x ∈ X , L ≤ Vx , dim(L) = 1}.
▶ This has a tautological bundle T(x,L) = L and Euler class e(T ) ∈ E 0(PV ).

▶ Theorem: {e(T )i | 0 ≤ i < d} is a basis for E 0(PV ) as an E 0(X )-module.

▶ By expressing e(T )d in terms of this basis: there is a monic polynomial
fV (x) =

∑d
i=0 ci (V )xd−i with E 0(PV ) = E 0(X )[x ]/fV (x) via x 7→ e(T ).

▶ The elements ci (V ) ∈ E 0(X ) are the Chern classes of V .

▶ We have fV⊕W (x) = fV (x)fW (x) or ck(V ⊕W ) =
∑k

i=0 ci (V )ck−i (W ).

▶ For a complex representation V of a finite group G we have a vector
bundle EG ×G V over BG = EG/G and thus Chern classes in E 0(BG)
which we just call ci (V ).
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with E 0(CP∞) = E 0[[x ]].

▶ Over CP∞ = (C[t] \ {0})/C× we have the tautological bundle T[f ] = Cf .
▶ For any C line bundle L → X there exists p : X → CP∞, unique up to

homotopy, with L ≃ p∗(T ). Put e(L) = Euler class of L = p∗(x) ∈ E 0(X ).

▶ For the formal group law FE we have e(L⊗M) = e(L) +FE e(M).

▶ Now consider a complex vector bundle V → X of dimension d .

▶ Put PV = {(x , L) | x ∈ X , L ≤ Vx , dim(L) = 1}.
▶ This has a tautological bundle T(x,L) = L and Euler class e(T ) ∈ E 0(PV ).

▶ Theorem: {e(T )i | 0 ≤ i < d} is a basis for E 0(PV ) as an E 0(X )-module.

▶ By expressing e(T )d in terms of this basis: there is a monic polynomial
fV (x) =

∑d
i=0 ci (V )xd−i with E 0(PV ) = E 0(X )[x ]/fV (x) via x 7→ e(T ).

▶ The elements ci (V ) ∈ E 0(X ) are the Chern classes of V .

▶ We have fV⊕W (x) = fV (x)fW (x) or ck(V ⊕W ) =
∑k

i=0 ci (V )ck−i (W ).

▶ For a complex representation V of a finite group G we have a vector
bundle EG ×G V over BG = EG/G and thus Chern classes in E 0(BG)
which we just call ci (V ).



Characteristic classes

▶ Let E be an even periodic ring spectrum, so we can choose x ∈ Ẽ 0(CP∞)
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with E 0(CP∞) = E 0[[x ]].

▶ Over CP∞ = (C[t] \ {0})/C× we have the tautological bundle T[f ] = Cf .
▶ For any C line bundle L → X there exists p : X → CP∞, unique up to

homotopy, with L ≃ p∗(T ). Put e(L) = Euler class of L = p∗(x) ∈ E 0(X ).

▶ For the formal group law FE we have e(L⊗M) = e(L) +FE e(M).

▶ Now consider a complex vector bundle V → X of dimension d .

▶ Put PV = {(x , L) | x ∈ X , L ≤ Vx , dim(L) = 1}.
▶ This has a tautological bundle T(x,L) = L and Euler class e(T ) ∈ E 0(PV ).

▶ Theorem: {e(T )i | 0 ≤ i < d} is a basis for E 0(PV ) as an E 0(X )-module.

▶ By expressing e(T )d in terms of this basis: there is a monic polynomial
fV (x) =

∑d
i=0 ci (V )xd−i with E 0(PV ) = E 0(X )[x ]/fV (x) via x 7→ e(T ).

▶ The elements ci (V ) ∈ E 0(X ) are the Chern classes of V .

▶ We have fV⊕W (x) = fV (x)fW (x) or ck(V ⊕W ) =
∑k

i=0 ci (V )ck−i (W ).

▶ For a complex representation V of a finite group G we have a vector
bundle EG ×G V over BG = EG/G and thus Chern classes in E 0(BG)
which we just call ci (V ).



Characteristic classes

▶ Let E be an even periodic ring spectrum, so we can choose x ∈ Ẽ 0(CP∞)
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