Chromatic cohomology of finite groups 2

Neil Strickland

December 5, 2023



The Lazard ring



The Lazard ring

> Consider a formal power series F(s,t) =3, bis'tl € k[s, t].
When is this an FGL?



The Lazard ring

> Consider a formal power series F(s,t) =3, bis'tl € k[s, t].
When is this an FGL?

» For F(s,0) = s we need bjg = ;1. For F(s,t) = F(t,s) we need b; = bji.



The Lazard ring

> Consider a formal power series F(s,t) =3, bis'tl € k[s, t].

When is this an FGL?
» For F(s,0) = s we need bjg = ;1. For F(s,t) = F(t,s) we need b; = bji.
> Now

F(S, t) =s-+t+ byist+ b12($t2 —+ 52t) + b2252t2 + b13(5t3 + 531.') + 0(5)



The Lazard ring

>

Consider a formal power series F(s,t) =3, . bis'tl € k[s, t].

When is this an FGL?

For F(s,0) = s we need bjo = d;1. For F(s,t) = F(t,s) we need b; = bj;.
Now

F(S, t) =s-+t+ byist+ b12($t2 —+ 52t) + b2252t2 + b13(5t3 + 531.') + 0(5)
Using this we get

F(F(s,t),u) — F(s, F(t,u)) = (2bu1b1> + 3b13 — 2bx)(s — u)stu + O(5)



The Lazard ring

>

Consider a formal power series F(s,t) =3, . bis'tl € k[s, t].

When is this an FGL?

For F(s,0) = s we need bjo = d;1. For F(s,t) = F(t,s) we need b; = bj;.
Now

F(S, t) =s-+t+ byist+ b12($t2 —+ 52t) + b2252t2 + b13(5t3 + 531.') + 0(5)
Using this we get

F(F(s,t),u) — F(s, F(t,u)) = (2bi1b12 + 3b13 — 2b22)(s — u)stu + O(5)
For an FGL we must have 2b11b1> + 3b13 — 2b2. In terms of the
parameters a; = b1 and a; = b1z and as = bxy — b1z we get

F(s,t) = s+tt+aistt+arst(s+t)+2(as—arar)st(s*+st+t°)+ass?t*+0(5).



The Lazard ring

>

Consider a formal power series F(s,t) =3, . bis'tl € k[s, t].

When is this an FGL?

For F(s,0) = s we need bjo = d;1. For F(s,t) = F(t,s) we need b; = bj;.
Now

F(S, t) =s-+t+ byist+ b12($t2 —+ 52t) + b2252t2 + b13(5t3 + 531.') + 0(5)
Using this we get

F(F(s,t),u) — F(s, F(t,u)) = (2bu1b1> + 3b13 — 2bx)(s — u)stu + O(5)
For an FGL we must have 2b11b1> + 3b13 — 2b2. In terms of the
parameters a; = b1 and a; = b1z and as = bxy — b1z we get

F(s,t) = s+tt+aistt+arst(s+t)+2(as—arar)st(s*+st+t°)+ass?t*+0(5).
There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5.



The Lazard ring

> Consider a formal power series F(s,t) =3, bis'tl € k[s, t].
When is this an FGL?
» For F(s,0) = s we need bjg = ;1. For F(s,t) = F(t,s) we need b; = bji.
> Now
F(S, t) =s-+t+ byist+ b12($t2 —+ 52t) + b2252t2 + b13(5t3 + 531.') + 0(5)
» Using this we get
F(F(s,t),u) — F(s, F(t,u)) = (2bu1b1> + 3b13 — 2bx)(s — u)stu + O(5)
» For an FGL we must have 2bi1b1> + 3b13 — 2b2. In terms of the
parameters a; = b1 and a; = b1z and as = bxy — b1z we get
F(s,t) = s+tt+aistt+arst(s+t)+2(as—arar)st(s*+st+t°)+ass?t*+0(5).
» There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5.
» Lazard's theorem: we can continue to define a4, as,... so that F(s,t) can

be expressed in terms of the a;, and no further relations are required to
make the associativity axiom hold.



The Lazard ring

> Consider a formal power series F(s,t) =3, bis'tl € k[s, t].
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» For F(s,0) = s we need bjg = ;1. For F(s,t) = F(t,s) we need b; = bji.
> Now
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» Using this we get
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parameters a; = b1 and a; = b1z and as = bxy — b1z we get
F(s,t) = s+tt+aistt+arst(s+t)+2(as—arar)st(s*+st+t°)+ass?t*+0(5).
» There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5.
» Lazard's theorem: we can continue to define a4, as,... so that F(s,t) can

be expressed in terms of the a;, and no further relations are required to
make the associativity axiom hold.

» Reformulation: over the Lazard ring L = Z[a1, az, . . .] there is a universal
formal group law F, such that the resulting map Rings(L, k) — FGL(k) is
bijective for all k.
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Recall MP°(X) = lim [Z2"X, MP(n)] (for X a finite complex). Both P
—n

and MP(n) are defined using complex linear algebra so it is not hard to

give an explicit x with MP°(P) = MP°(1)[x].

(We do not need to know MP°(1) for this.)

Using this we get a formal group law F over MP°(1).

Recall that FGL(k) = Rings(L, k) so we get a ring map L — MP°(1).

Quillen’s theorem: this is an isomorphism (and MP(1) = 0).

This is the heart of a close connection between formal groups and
algebraic topology.
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Fix a prime p and n > 0.

Put I(x) = Yo X" /p* € Qlxl, Flx,y) = I7}(I(x) + I(y)) € FGL(Q).
In fact F € FGE(Z) so we can reduce mod p to get Fx € FGL(F,).

There is a unique ¢x: MPy — I, carrying Fuyp to Fk.

Write x +r y = F(x, y) and [n]r(x) = x +£ - - - +£ x (n terms).
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Define Ey = Zp[us, - - ., up—1] with up = p, up = 1.

For I = (i,...,ir)in{1,...,n} weput |l|=rand [[I| =0+ -+
and (1) = [1,.,P"* and v = []_, uZ‘(/).Then put

() = Sy /pl'l € (@@ Eo)lx] and Fe(x,y) = I (le(x) + le(y).
Using the Functional Equation Lemma: Fg € FGL(E).

Key fact: [ple(x) = e (mod u; | i < k).

There is a unique ¢g: MPy — Ep carrying Fup to Fe.

Using Landweber exactness and Brown representability: there is a
commutative ring spectrum E with EgX = mo(E A X) = Eo Q@ue, (MPoX).
There is also a ring spectrum K with K°X = (E°X)/(uwo, ..., tn—1)
whenever the sequence is regular (and same for Ko X).
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CP® has a tautological bundle T with Tjs; = Cf and ¢, (T) ~ T®™.
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Using the Thom isomorphism we get MP°(BCx) = MP°[x]/[m]mp(x) and
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Put U = C[t] \ {0} so CP> = U/C*

Define ¢m: CP™ — CP> by ¢m([f]) = [f™], so
(%) = [M]Fyp (X) = [M]mp(x) € MP®(CP>) (and same for E, K).

The map h(s, f)(t) = s+ (1 — s)(1 + st)f(t) gives a contraction of U.
Put C,, = <e2"i/'"> < C* and BCy, = U/Cpn.
CP® has a tautological bundle T with Tjs; = Cf and ¢, (T) ~ T®™.

Then BC,, = E(T®™) \ (zero section) so
cofibre(BC,, — CP*°) = Thom(T®™)

Using the Thom isomorphism we get MP°(BCx) = MP°[x]/[m]mp(x) and
MP'(BC,,) = 0 (and same for E, K).
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Schematic interpretation

> For A finite abelian: A~ Cp, X --- x Cp, say and
E°(BA) = E°(BCpm,) ®go - - - @go E°(BC,).
This is again free of finite rank, and E'BA = 0.

> Put S = spf(E®) and G := spf(E°(CP*)),
so G is a formal group scheme over S.

> Put A* = Hom(A, S') (written additively). For o € A* we get
Ba: BA — BS' = CP* and (Ba)*: E°(CP*) — E°(BA) and
ba = spf((Ba)*): spf(E°(BA)) — G over S.

> As G is a group we can form ¢ + ¢, but we find this is the same as
Gasp. We thus get ¢: spf(E°(BA)) — Hom(A*,G).

» The previous calculation implies that ¢ is iso.

> More concretely: E°(BA) is generated by {x, | @ € A*} modulo
Xa+p = Xa +F XgB-
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Let E be an even periodic ring spectrum, so we can choose x € EO((CP°°)
with E°(CP*>) = E°[x].
Over CP* = (CJt] \ {0})/C* we have the tautological bundle T = Cf.

For any C line bundle L — X there exists p: X — CP®°, unique up to
homotopy, with L ~ p*(T). Put e(L) = Euler class of L = p*(x) € E°(X).

For the formal group law Fr we have e(L ® M) = e(L) +r, e(M).

Now consider a complex vector bundle V — X of dimension d.

Put PV = {(x,L) | x € X, L <V, dim(L) = 1}.

This has a tautological bundle T, ;) = L and Euler class e(T) € E°(PV).
Theorem: {e(T)" | 0 < i < d} is a basis for E°(PV) as an E°(X)-module.
By expressing e(T)“ in terms of this basis: there is a monic polynomial
fu(x) = S0, ci(V)x?~" with E°(PV) = E°(X)[x]/fv(x) via x — e(T).
The elements ¢;(V) € E°(X) are the Chern classes of V.

We have fyaw(x) = fi (x)fw(x) or c(V & W) = S5 ci(V)a—i(W).
For a complex representation V of a finite group G we have a vector

bundle EG x¢ V over BG = EG/G and thus Chern classes in E°(BG)
which we just call ¢;j(V).



