Chromatic cohomology of finite groups 5

Neil Strickland

December 6, 2023

Symmetric groups

- Let \mathcal{F} be the groupoid of finite sets and bijections, and \mathcal{F}_d the subgroupoid of sets of order d.
- ▶ Then $B\mathcal{F}_d \simeq B\Sigma_d$ and $B\mathcal{F} \simeq \coprod_d B\Sigma_d$.
- ▶ There is a diagonal functor $\delta \colon \mathcal{F} \to \mathcal{F} \times \mathcal{F}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu \colon \mathcal{F}^2 \to \mathcal{F}$ given by $\sigma(X, Y) = X \coprod Y$ and $\mu(X, Y) = X \times Y$.
- ► These give maps $\Sigma^{\infty}_{+}B\mathcal{F} \xleftarrow{\sigma,\mu} \Sigma^{\infty}_{+}B\mathcal{F}^{2} \xleftarrow{\delta} \Sigma^{\infty}_{+}B\mathcal{F}$ and also transfers $\Sigma^{\infty}_{+}B\mathcal{F} \xrightarrow{\sigma_{\parallel},\mu_{\parallel}} \Sigma^{\infty}_{+}B\mathcal{F}^{2} \xrightarrow{\delta_{\parallel}} \Sigma^{\infty}_{+}B\mathcal{F}$.
- ▶ These satisfy many relations and give rich algebraic structure on $E^0(B\mathcal{F})$.
- Everything is easy to understand in generalised character theory.
- ▶ Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{A} = \pi_0[\Theta^*, \mathcal{F}]$ be the set of isomorphism
- ▶ classes of finite sets with Θ^* -action. Then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = \mathsf{Map}(\mathbb{A}, L)$.

$$\sigma^*(f)(X,Y) = f(X \coprod Y) \qquad \sigma^!(f \otimes g)(X) = \sum_{X = Y \coprod Z} f(Y)g(Z)$$
$$\mu^*(f)(X,Y) = f(X \times Y) \qquad \mu^!(f \otimes g)(X) \sim \sum_{X = Y \times Z} f(Y)g(Z)$$
$$\delta^*(f \otimes g)(X) = f(X)g(X) \qquad \delta^!(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

Symmetric groups

- ▶ \mathbb{A} is the set of isomorphism classes of finite sets with action of $\Theta^* = \operatorname{Hom}(\Theta, \mathbb{Q}/\mathbb{Z}_{(p)}) \simeq \mathbb{Z}_p^n$; then $L \widehat{\otimes}_{E^0} E^0(B\mathcal{F}) = \operatorname{Map}(\mathbb{A}, L)$.
- ▶ Analogy: the group $\Theta = (\mathbb{Q}/\mathbb{Z}_{(p)})^n$ is like the formal group scheme \mathbb{G} .
- ▶ We would like to say: $\operatorname{spf}(E^0(B\mathcal{F}))$ is the scheme of iso classes of sets with action of $\operatorname{Hom}(\mathbb{G},\mathbb{Q}/\mathbb{Z}_{(p)})$. But we do not know how to interpret that.
- ▶ For a finite subgroup $A < \Theta$ we have a surjective map $\Theta^* \to A^*$ and thus an action of Θ^* on A^* so $[A^*] \in \mathbb{A}$.
- ▶ Any [X] ∈ \mathbb{A} can be expressed uniquely as a disjoint union of $[A^*]$'s.
- ▶ Put $I = \ker(E^0(B\mathcal{F}) \to E^0)$ and $I^{*2} = \sigma_!(I \otimes I)$ and $Q = I/I^{*2}$. This is still a ring using δ^* , with $L \widehat{\otimes}_{E^0} Q = \operatorname{Map}(\operatorname{Sub}(\Theta), L)$.
- ▶ We do know how to interpret $Sub(\mathbb{G})$ as a moduli scheme of finite subgroups of \mathbb{G} , and the main theorem is that $spf(Q) = Sub(\mathbb{G})$.
- Also $E^0(B\mathcal{F})$ is polynomial over E^0 under the $\sigma^!$ -product, with Q as the module of indecomposables.
- ► This is enough to give a basis for $E^0(B\Sigma_d)$ as a module over E^0 , together with most of the algebraic structure.

Finite subgroups of formal groups

- ▶ Let \mathbb{G} be a formal group over a base scheme S, so $\mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_{S}[\![x]\!]$.
- ▶ The addition $\sigma: \mathbb{G} \times_S \mathbb{G} \to \mathbb{G}$ gives $\sigma^*: \mathcal{O}_{\mathbb{G}} \to \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_{\mathcal{O}_S} \mathcal{O}_{\mathbb{G}} \simeq \mathcal{O}_S \llbracket y, z \rrbracket$ with $\sigma^*(x) = F(y, z)$ for some formal group law F.
- ▶ A (globally defined) *finite subgroup* of \mathbb{G} is a subscheme $A = \operatorname{spf}(\mathcal{O}_{\mathbb{G}}/I) < \mathbb{G}$ with $\sigma(A \times_S A) \leq A$ such that \mathcal{O}_A is a finitely generated free module over \mathcal{O}_S .
- ▶ The condition $\sigma(A \times_S A) \leq A$ is equivalent to $\sigma^*(I) \leq I \widehat{\otimes}_S \mathcal{O}_{\mathbb{G}} + \mathcal{O}_{\mathbb{G}} \widehat{\otimes}_S I$.
- ▶ The finite rank condition says that *A* is a divisor.
- ▶ **Example:** $\mathcal{O}_S = \mathbb{Z}_p$, $\mathbb{G} = \{u \mid u-1 \text{ is nilpotent}\}$, $A_n = \{u \in \mathbb{G} \mid u^{p^n} = 1\}$.
- **Example:** $\mathcal{O}_S = \mathbb{F}_p$, $\mathbb{G} = \{x \mid x \text{ is nilpotent } \}$, $A_n = \{x \in \mathbb{G} \mid x^{p^n} = 0\}$.
- ▶ More generally: consider $\mathcal{O}_{\mathcal{S}}$ -algebras R together with schemes $A = \operatorname{spf}(R[\![x]\!]/I) < \operatorname{spec}(R) \times_{\mathcal{S}} \mathbb{G}$ where \mathcal{O}_A is a finitely generated free module over R and A is closed under addition.
- Free module condition: $\mathcal{O}_A = R[x]/f_A(x)$ for some polynomial $f_A(x) = \sum_{i=0}^n c_i x^{n-i}$ with $c_0 = 1$ and c_i nilpotent for i > 0.
- \triangleright Closure under addition: certain relations among the coefficients c_i .
- ▶ Thus, there is a universal example $\mathcal{O}_{\mathsf{Sub}_n(\mathbb{G})} = \mathcal{O}_{\mathcal{S}}[\![c_1,\ldots,c_n]\!]$ /relations.
- ▶ In fact $\mathcal{O}_{Sub_n(\mathbb{G})} = 0$ unless $n = p^d$ for some d.

Finite subgroups of formal groups

- Now consider the formal group \mathbb{G} for Morava E-theory.
- ▶ There is a universal ring $R_d = \mathcal{O}_{\operatorname{Sub}_{p^d}(\mathbb{G})}$ for E^0 -algebras equipped with a finite subgroup $A < \operatorname{spf}(R_d) \times_S \mathbb{G}$ of order p^d .
- Put $R'_d = E^0(B\Sigma_{p^d})/J$, where J is the sum of images of transfer maps from $E^0(B(\Sigma_i \times \Sigma_i))$ with i, j > 0 and $i + j = p^d$.
- ► The standard representation V of Σ_{p^d} on \mathbb{C}^{p^d} gives a divisor $A = \operatorname{spf}(E^0((PV)_{h\Sigma_{n^d}}))$ on \mathbb{G} over $\operatorname{spf}(E^0(B\Sigma_{p^d}))$.
- ▶ This does not satisfy the coefficient relations for *A* to be closed under addition, so *A* is not a subgroup scheme.
- If we work mod J then the relations are satisfied, so we get a subgroup defined over R'_d , and thus a map $R_d \to R'_d$.
- ▶ Theorem: $R_d \simeq R'_d$.
- ▶ If we tensor with L then the relationship between \mathbb{G} and Θ becomes close, so $L \otimes_{E^0} R_d \simeq L \otimes_{E^0} R_d' \simeq \operatorname{Map}(\operatorname{Sub}_{p^d}(\Theta), L)$.
- ▶ Topological methods show that R'_d is a free module over E^0 .
- ▶ By the above, the rank is $|\operatorname{Sub}_{p^d}(\Theta)|$, which can be computed by algebra.

Finite subgroups of formal groups

- Recall $R'_d = E^0(B\Sigma_{p^d})/J$; now put $\overline{R}_d = R_d/(u_0, \dots, u_{n-1})$ and $\overline{R}'_d = K^0(B\Sigma_{p^d})/J$.
- Suppose we have a ring P which is a free module of finite rank over \mathbb{F}_p , and we have a relation $ab^k = 0$ in P.
- ▶ Then $b^k P$ is a cyclic module over P/a and $b^i P/b^{i+1} P$ is a cyclic module over P/b so $\dim(P) \leq \dim(P/a) + k \dim(P/b)$.
- ▶ Using formal group theory we can define lots of quotients of \overline{R}_d to which this applies, and so get an upper bound for dim(\overline{R}_d).
- ▶ By some combinatorics, this upper bound is the same as $|\operatorname{Sub}_{p^d}(\Theta)|$, which is the rank of R'_d over E^0 , or of \overline{R}'_d over \mathbb{F}_p .
- Now we know that all the ranks are the same, we can show that $R'_d = R_d$.

Power operations

- Under mild conditions we have $E^0(X \times Y) = E^0(X) \otimes_{E^0} E^0(Y)$ and so $E^0(X^p) = E^0(X)^{\otimes p}$.
- ▶ Thus for $u \in E^0(X)$ we have $u^{\otimes p} \in E^0(X^p)$, invariant under permutation.
- Commutativity of ring spectra is subtle; but the conclusion is that there is a power operation $Pu \in E^0(X_{h\Sigma_n}^p)$ mapping to $u^{\otimes p}$.
- This has P0 = 0 and P1 = 1 and P(uv) = P(u) P(v) and P(u+v) = P(u) + P(v) + transfers.
- ▶ It follows that P induces a ring map $E^0(X) \to E^0(X^p_{h\Sigma_n})/J \simeq R_1 \otimes E^0(X)$.
- ▶ There is a similar story involving Σ_{p^d} for d > 1.
- ▶ Taking $X = \mathbb{C}P^{\infty}$ we get a ring map $\mathcal{O}_{\mathbb{G}} \to \mathcal{O}_{\operatorname{Sub}_{p^d}(\mathbb{G})} \otimes_{\mathcal{O}_{\mathbb{S}}} \mathcal{O}_{\mathbb{G}}$, corresponding to a map $\operatorname{Sub}_{p^d}(\mathbb{G}) \times_{\mathbb{S}} \mathbb{G} \to \mathbb{G}$.
- ▶ You should think of \mathbb{G} as a bundle of groups over S. Given a point $a \in S$ and a subgroup $A < \mathbb{G}_a$, it turns out that there is a canonical point $b \in S$ and a surjective homomorphism $q_{a,A} \colon \mathbb{G}_a \to \mathbb{G}_b$ with kernel A. The above map sends (A, x) to $q_A(x)$.

Finite general linear groups

- Let *F* be a finite field of characteristic not equal to *p*.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi: x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- ▶ We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1\},$$

and using this we find that $\mathbb H$ is noncanonically isomorphic to $\mathbb G=(BS^1)_E$, and canonically isomorphic to $\mathsf{Tor}(\overline{F}^\times,\mathbb G)$.

• Generalised character theory compares \mathbb{G} with $\Theta = (\mathbb{Z}/p^{\infty})^n$. We will also compare \mathbb{H} with $\Phi = \operatorname{Tor}(\overline{F}^{\times}, \Theta) \simeq \operatorname{Hom}(\Theta^*, \overline{F}^{\times})$ (so Φ is noncanonically isomorphic to Θ).

General linear groups over \overline{F}

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d/\Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1, \ldots, x_d \rrbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory.

The main point is that one can build a torsion-free local ring W (the Witt ring of \overline{F}) with residue field \overline{F} .

One can then choose an embedding $\overline{W} \to \mathbb{C}$.

Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this.

The theorem of Tanabe

Recall that the group $\Gamma = \operatorname{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ .

Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d
rbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}[[c_{1}, \ldots, c_{d}]]}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}.$$

Equivalently, we have $BGL_d(F)_E = Div_d^+(\mathbb{H})^{\Gamma}$.

In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V}\simeq\coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors $\oplus, \otimes \colon \mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes $\mathcal{BV}_{\mathcal{E}}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_{\mathcal{L}} L_{\mathcal{L}}$.

► The index of $\Sigma_d \wr GL_1(F)^d$ in $GL_d(F)$ has index coprime to p, so $B\mathcal{L} \to B\mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^0B\mathcal{L}$.

Generalised character theory

- There is a diagonal functor $\delta \colon \mathcal{V} \to \mathcal{V} \times \mathcal{V}$ given by $\delta(X) = (X, X)$, and functors $\sigma, \mu \colon \mathcal{V}^2 \to \mathcal{V}$ given by $\sigma(X, Y) = X \oplus Y$ and $\mu(X, Y) = X \otimes Y$.
- ► These give maps $\Sigma_{+}^{\infty}BV \xleftarrow{\sigma,\mu} \Sigma_{+}^{\infty}BV^{2} \xleftarrow{\delta} \Sigma_{+}^{\infty}BV$ and also transfers $\Sigma_{+}^{\infty}BV \xrightarrow{\sigma_{1},\mu_{1}} \Sigma_{+}^{\infty}BV^{2} \xrightarrow{\delta} \Sigma_{+}^{\infty}BV$.
- ▶ These satisfy many relations and give rich algebraic structure on $E^0(BV)$.
- Everything is easy to understand in generalised character theory.
- ▶ Recall that $\Theta^* = \mathbb{Z}_p^n$, and let $\mathbb{B} = \pi_0[\Theta^*, \mathcal{V}]$ be the set of isomorphism classes of finite-dimensional F-linear representations of Θ^* . Then $L \widehat{\otimes}_{F^0} E^0(\mathcal{B}\mathcal{V}) = \mathsf{Map}(\mathbb{B}, L)$.

$$\sigma^*(f)(X,Y) = f(X \oplus Y) \qquad \sigma^!(f \otimes g)(X) = \sum_{X = Y \oplus Z} f(Y)g(Z)$$
$$\delta^*(f \otimes g)(X) = f(X)g(X) \qquad \delta^!(f)(X,Y) = |\operatorname{Iso}(X,Y)|f(X).$$

- ▶ For finite sets, any subset of $Y \coprod Z$ is $Y_0 \coprod Z_0$ with $Y_0 \subseteq Y$ and $Z_0 \subseteq Z$.
- ▶ But a subspace of $Y \oplus Z$ need not be $Y_0 \oplus Z_0$ with $Y_0 \leq Y$ and $Z_0 \leq Z$.
- ▶ This causes a lot of trouble with adapting the symmetric group proof.

The Atiyah-Hirzebruch Spectral Sequence

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(BV; K_*)$ is generated by BV_1 and has countably many polynomial generators b_i and exterior generators e_i .
- Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(B\mathcal{V})$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

Irreducibles

- ▶ Put $I = \ker(E^0(BV) \to E^0)$ and $I^{*2} = \sigma^!(I \otimes I)$ and $Q = I/I^{*2}$.
- ▶ This is still a ring with $L \otimes_{E^0} Q = \mathsf{Map}(\mathsf{Irr}(\Theta^*), L)$, where $\mathsf{Irr}(\Theta^*) = \mathsf{Hom}(\Theta^*, \mathit{GL}_1(\overline{F}))/\mathsf{Gal}$ is the set of isomorphism classes of irreducible F-linear representations of Θ^* .
- ▶ We find that $Q \simeq \prod_m D_m^{\Gamma}$, where $D_m^{\Gamma} = E^0 \llbracket y \rrbracket / g_m(y)$ for a certain monic polynomial $g_m(y)$.
- All this and many more details have nice interpretations in formal group theory.