Chromatic cohomology of finite groups 4

Neil Strickland

December 4, 2023

Duality

- ▶ Recall: for a finite groupoid G we put $M^*(G) = \operatorname{Map}(\pi_0(G), \mathbb{Q})$. We define $\theta \colon M^*(G) \to \mathbb{Q}$ by $\theta(h) = \sum_{i < r} |G(a_i, a_i)|^{-1} h(a_i)$, where $\{a_i \mid i < r\}$ contains one representative of each isomorphism class. We then define $\langle f, g \rangle_G = \theta(fg)$. This is a perfect pairing on $M^*(G)$.
- ▶ The HKR theorem says $L \otimes_{E^0} E^0(BG) = L \otimes_{\mathbb{Q}} M^*(\Lambda G)$, where $\Lambda G = [\Theta^*, G] = [\mathbb{Z}_p^n, G]$ is again a finite groupoid.
- ▶ We therefore have θ : $L \otimes_{E^0} E^0(BG) \to L$ giving a perfect pairing.
- ▶ **Theorem:** this comes from a map θ : $E^0(BG) \to E^0$ which also gives a perfect pairing (at least when $E^0(BG)$ is a free module over E^0).
- This is like Poincaré duality for oriented manifolds: the map θ is like the map $u \mapsto \langle u, [M] \rangle$ from $H^d(M)$ to \mathbb{Z} .
- ▶ It is also like the map $\theta: R(G) \to \mathbb{Z}$ given by $\theta([V]) = \dim(V^G)$, where R(G) is the complex representation ring. This also gives a perfect pairing.
- ► The above theorem (due to Greenlees and Sadofsky) was the first known example of chromatic ambidexterity; there is now a more general theory.
- ▶ The proof of the theorem uses transfers and Tate spectra.

Collapse and transfer

- Consider a map $f: X \to Y$ of finite sets. This induces a map $f: \mathbb{Z}[X] \to \mathbb{Z}[Y]$, and also a map $f^t: \mathbb{Z}[Y] \to \mathbb{Z}[X]$ given by $f^t([y]) = \sum_{f(x)=y} [x]$.
- ► The suspension spectrum $\Sigma^{\infty}X_{+}$ is a kind of refinement of $\mathbb{Z}[X]$, and we again have an easy map $f: \Sigma^{\infty}X_{+} \to \Sigma^{\infty}Y_{+}$. We also want a map $f^{T}: \Sigma^{\infty}Y_{+} \to \Sigma^{\infty}X_{+}$.
- ▶ Put $V = \mathbb{R}[X]$, giving $i: X \to V \subset S^V = V \cup \{\infty\}$.
- Put $s(v) = v/\sqrt{2(1+||v||^2)}$, giving a homeomorphism from V to an open ball of radius $1/\sqrt{2}$.
- ▶ Define \widetilde{f} : $V \times X \to V \times Y$ by $\widetilde{f}(v,x) = (s(v) + i(x), f(x))$, so \widetilde{f} is an open embedding covering f.
- ▶ Define $c: S^V \wedge Y_+ = (V \times Y) \cup \{\infty\} \rightarrow (V \times X) \cup \{\infty\} = S^V \wedge X_+$ by $c(\widetilde{f}(v,x)) = (v,x)$ and $c(v,y) = \infty$ for $(v,y) \notin \text{image}(\widetilde{f})$.
- ▶ This is completely natural and so is compatible with any group actions.
- ▶ In the world of spectra we have a negative sphere S^{-V} and we can take the smash product with this to get f^t : $\Sigma^{\infty} Y_+ \to \Sigma^{\infty} X_+$.
- ▶ Take $f = (G/H \to G/G = 1)$ and apply $EG_+ \land_G (-)$ to f^t and use $EG/H \simeq BH$ to get a map $\Sigma^{\infty}BG_+ \to \Sigma^{\infty}BH_+$ (the *transfer*).

Transfers

- \blacktriangleright Let M be an abelian group with G-action, and let H be a subgroup of G.
- ▶ There is an evident inclusion $res_H^G: M^G \to M^H$.
- ▶ There is a natural map $\operatorname{tr}_H^G \colon M^H \to M^G$ given by $\operatorname{tr}_H^G(m) = \sum_{t \in T} tm$, where T is any subset of G containing one element of every H-coset.
- Now let *E* be an even periodic ring spectrum.
- ▶ The inclusion $H \to G$ gives a map $BH \to BG$ and thus a ring map $E^0(BG) \to E^0(BH)$, called res^G_H.
- ► The transfer $\Sigma^{\infty}BG_{+} \to \Sigma^{\infty}BH_{+}$ gives a map $E^{0}(BH) \to E^{0}(BG)$, called $\operatorname{tr}_{H}^{G}$; this is $E^{0}(BG)$ -linear.
- ▶ Formal properties of these maps are similar to those of the maps $M^G \to M^H \to M^G$ mentioned above.
- ▶ Put $\Delta = \{(g,g) \mid g \in G\} \leq G^2 \text{ and } u = \operatorname{tr}_{\Delta}^{G^2}(1) \in E^0(BG^2).$
- ▶ Take E = K = Morava K-theory, so $K^*(BG)$ and $K_*(BG)$ are finitely generated free modules and dual to each other. Then u is adjoint to a map $u^\#: K_*(BG) \to K^{-*}(BG)$.
- ▶ This arises from a map $K \land BG_+ \to F(BG_+, K)$ of spectra, whose cofibre is called the Tate spectrum $t_G(K)$.
- ▶ **Theorem** (Greenlees-Sadofsky): $t_G(K) = 0$.

Sketch proof of Tate vanishing

- ▶ Claim: the cofibre $t_G(K)$ of the map $K \land BG_+ \rightarrow F(BG_+, K)$ is zero.
- First suppose |G| = p, so G has a faithful one-dimensional complex representation L with Euler class $x \in K^0(BG)$, and $K^*(BG) = K^*[x]/x^{p^n}$.
- ▶ The unit sphere $S(\infty L)$ is contractible and has free G-action so we can take $EG = S(\infty L)$. Thus, the reduced suspension $\widetilde{E}G$ is the same as $S^{\infty L} = \lim_{n \to \infty} S^{kL}$, where $S^{kL} \simeq S^{2k}$ is the one-point compactification of nL.
- ▶ It is not hard to check that $G_+ \wedge \widetilde{E}G = F(G_+, \widetilde{E}G) = EG_+ \wedge \widetilde{E}G = F(EG_+, \widetilde{E}G) = 0$. Using this one can identify $t_G(K)$ with $(\widetilde{E}G \wedge F(EG_+, K))^G$.
- ▶ Using $\widetilde{E}G = \varinjlim_{K} S^{kL}$ and $S^{kL} \wedge F(EG_+, K) = F(S^{-kL} \wedge EG_+, K)$ we get $t_G(K) = \varinjlim_{K} F(BG^{-kL}, K)$, where BG^{-kL} is the Thom spectrum.
- ▶ Using the fact that the Euler class of kL is x^k , we find that $\pi_*(t_G(K)) = K^{-*}(BG)[x^{-1}] = (K^*[x]/x^{p^n})[x^{-1}] = 0$ as required.
- ▶ For general G: combine fairly similar arguments with an induction on |G|.
- ▶ Conclusion: $K_*(BG)$ maps isomorphically to $K^*(BG)$, which is dual to $K_*(BG)$, so $K^*(BG)$ is self-dual.
- ▶ By rearranging the argument slightly: the K-local spectrum $L_K \Sigma^{\infty} BG_+$ is self-dual, and $E^*(BG)$ is self-dual provided that it is a free E^* -module.

More about duality

- We have shown that $K^*(BG)$ is naturally self-dual when G is a finite group. There is an easy generalisation to groupoids.
- Any functor $\alpha \colon G \to H$ induces $\alpha^* \colon K^*(BH) \to K^*(BG)$. As everything is self-dual, there is a unique $\alpha_1 \colon K^*(BG) \to K^*(BH)$ adjoint to α^* , i.e. $\langle \alpha_1(a), b \rangle_H = \langle a, \alpha^*(b) \rangle_G$ for $a \in K^*(BG)$ and $b \in K^*(BH)$.
- ▶ If α is an inclusion of groups, then α ! is just the transfer.
- Given a homotopy pullback square of groupoids as shown on the left, we have a commutative diagram as shown on the right.

This generalises the classical Mackey property of transfers.

- ► Recall $u = \operatorname{tr}_{\Lambda}^{G^2}(1) \in K^0(BG^2) = K^0(BG) \otimes_{K^0} K^0(BG)$.
- ► From the duality theorem it follows that there is a unique *Frobenius form* $\theta \colon K^0(BG) \to K^0$ such that $(\theta \otimes 1)(u) = 1$ in $K^0(BG)$.
- ▶ Using the Mackey property: $\langle u, v \rangle_G = \theta(uv)$.
- ▶ There are similar statements for E^* when $E^0(BG)$ is free.

Duality in the abelian case

- ► Let *E* be Morava *E*-theory.
- ▶ There is a power series $\log_F(x) = \sum_{k>0} m_k x^k$ with $m_1 = 1$ and $m_k \in \mathbb{Q} \otimes E^0$ and $\log_F(x +_F y) = \log_F(x) + \log_F(y)$.
- ► The series $d \log_F(x) = \sum_k k m_k x^{k-1} dx$ actually lies in $E^0[x].dx$.
- ▶ Given any $f(x) \in E^0[\![x]\!]$ we can expand $f(x)\omega/[p^m]_F(x)$ in positive and negative powers of x, and define $\rho_m(f(x)) = \operatorname{res}(f(x)\omega/[p^m]_F(x))$ to be the coefficient of $x^{-1}dx$.
- ▶ **Theorem:** the Frobenius form θ : $E^0(BC_{p^m}) = E^0[\![x]\!]/[p^m]_F(x) \to E^0$ is induced by ρ_m .
- For a general finite abelian group A we can decompose A as a product of cyclic groups and thus determine the Frobenius form.
- Open problem: do this more naturally in terms of higher-dimensional residues and local cohomology.
- ▶ **Theorem** (Hopkins-Lurie): for all k the space $B^k A = K(k, A)$ has $E^*(B^k A)$ naturally self-dual (but it is trivial for k > n).
- ▶ **Open problem**: give a residue formula for θ : $E^0(B^kA) \to E^0$.

Semirings with λ -operations

- The representation semiring R₊(G) is the set of isomorphism classes of complex representations.
- ▶ This has addition $[V] + [W] = [V \oplus W]$ and multiplication $[V][W] = [V \otimes W]$ but no subtraction.
- There are also operations λ^k sending [V] to $[\Lambda^k V]$, where $\Lambda^k V$ is the k'th exterior power of V.
- ▶ We also have a ring R(G) of virtual representations, which is the group completion of R(G).
- ▶ If h is the number of conjugacy classes then h is also the number of isomorphism classes of irreducible representations. These form a basis giving $R_+(G) \simeq \mathbb{N}^h$ and $R(G) \simeq \mathbb{Z}^h$ additively.
- ▶ The scheme Div⁺(𝔾) = $\coprod_{k\geq 0}$ Div⁺(𝔾) = $\coprod_{k\geq 0}$ $𝔾^k/\Sigma_k = spf(E^0(\coprod_k BU(k)))$ is a semiring object in the category of schemes, with λ -operations.
- For divisors $D = \sum_{i < r} [a_i]$ and $E = \sum_{j < s} [b_j]$ we have $DE = \sum_{i,j} [a_i + b_j]$ and $\lambda^k D = \sum_{i_1 < \cdots < i_k < r} [a_{i_1} + \cdots + a_{i_k}]$.
- The λ operations on $R_+(G)$ induce Adams operations on R(G), e.g. $\psi^2(x) = x^2 2\lambda^2(x)$ and $\psi^3(x) = x^3 3x\lambda^2(x) + 3\lambda^3(x)$. These are ring maps with $\psi^k\psi^m = \psi^{km}$.

Chern approximations

- ▶ We define Ch(G) to be the scheme of morphism $R_+(G) \to \text{Div}^+(\mathbb{G})$ of λ -semirings, and $C(E,G) = \mathcal{O}_{\text{Ch}(G)}$.
- ▶ If we understand everything about $R_+(G)$ then we can write down a presentation of C(E,G) by generators and relations, partly determined by the formal group law. But it is easier to work with schemes where possible.
- ▶ Like $E^0(BG)$, the ring C(E,G) is finitely generated as an E^0 -module.
- ▶ There is a natural map $\alpha_G \colon C(E,G) \to E^0(BG)$, whose image is the subring generated by all Chern classes of all representations.
- There may be a kernel in general, consisting of relations between Chern classes that do not follow automatically from representation theory.
- ▶ If the chromatic height n is one, then α_G is an isomorphism for all G. This is because Morava E-theory at height one is the p-completion of KU and so is very close to representation theory.
- If G is abelian, or is a general linear group over a finite field of characteristic not equal to p, then α_G is iso. However, this fails for the symmetric group Σ_6 when p=n=2. It also fails for certain central extensions $C_p \to G \to C_p^{2d}$ with d>1.

The group $G = \Sigma_4$ with n = p = 2

The character table of Σ_4 is as follows:

class	size	1	ϵ	σ	ρ	$\epsilon \rho$
14	1	1	1	2	3	3
1 ² 2	6	1	-1	0	1	-1
2 ²	3	1	1	2	-1	-1
13	8	1	1	-1	0	0
4	6	1	-1	0	-1	1

The ring structure, Adams operations and λ -operations are described in the following table.

$$\begin{array}{lll} \epsilon^2 = 1 & \psi^k(\epsilon) = \epsilon^k & \lambda^2(\sigma) = \epsilon \\ \epsilon \sigma = \sigma & \psi^2(\sigma) = 1 - \epsilon + \sigma & \lambda^2(\rho) = \epsilon \rho \\ \sigma^2 = 1 + \epsilon + \sigma & \psi^3(\sigma) = 1 + \epsilon & \lambda^3(\rho) = \epsilon \rho \\ \sigma \rho = \rho + \epsilon \rho & \psi^2(\rho) = 1 + \sigma + \rho - \epsilon \rho \\ \rho^2 = 1 + \sigma + \rho + \epsilon \rho & \psi^3(\rho) = 1 + \epsilon - \sigma + \rho. \end{array}$$

 $\mathsf{Ch}(\Sigma_4)$ is the scheme of pairs $(d,D) \in \mathbb{G} \times \mathsf{Div}_3^+(\mathbb{G})$ such that

$$2d = 0$$
 $\lambda^{3}(D) = [0]$ $\psi^{-1}(D) = D$ $\psi^{2}(D) + D = 2[0] + [d] + [d]D$

The group $G = \Sigma_4$ with n = p = 2

 $\mathsf{Ch}(\Sigma_4)$ is the scheme of pairs $(d,D) \in \mathbb{G} \times \mathsf{Div}_3^+(\mathbb{G})$ such that

$$2d = 0$$
 $\lambda^{3}(D) = [0]$ $\psi^{-1}(D) = D$ $\psi^{2}(D) + D = 2[0] + [d] + [d]D$

The formal group law for n = p = 2 satisfies

$$[2](x) = x^{4}$$

$$[-1](x) = x + x^{4} + x^{10} + x^{16} + x^{22} \pmod{x^{32}}$$

$$x +_{F} y = x + y + x^{2}y^{2} \pmod{x^{4}y^{4}}.$$

$$K^0(B\Sigma_4) = C(K, \Sigma_4) = \mathbb{F}_2[w, c_2, c_3]/J$$
 where
$$J = (w^4, c_3^2, c_2c_3, c_2^4 + w^2c_2^3 + wc_2^2 + w^2c_3, wc_2^3 + w^2c_2 + wc_3).$$

The following 17 monomials form a basis for this ring over \mathbb{F}_2 :