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» Recall: for a finite groupoid G we put M*(G) = Map(mo(G), Q).
We define 6: M*(G) — Q by 8(h) =>_,_, |G(ai, a1)| " h(ai),
where {a; | i < r} contains one representative of each isomorphism class.
We then define (f,g)¢c = 6(fg).This is a perfect pairing on M*(G).

> The HKR theorem says L ® 0 E°(BG) = L ®g M*(AG),
where AG = [©", G] = [Z;, G] is again a finite groupoid.

> We therefore have 0: L ®g0 E°(BG) — L giving a perfect pairing.

> Theorem: this comes from a map 0: E°(BG) — E° which also gives a
perfect pairing (at least when E°(BG) is a free module over E°).

» This is like Poincaré duality for oriented manifolds:
the map 6 is like the map u +— (u, [M]) from H?(M) to Z.

> It is also like the map 0: R(G) — Z given by 8([V]) = dim(V°), where
R(G) is the complex representation ring. This also gives a perfect pairing.

» The above theorem (due to Greenlees and Sadofsky) was the first known
example of chromatic ambidexterity; there is now a more general theory.

» The proof of the theorem uses transfers and Tate spectra.



Collapse and transfer

» Consider a map f: X — Y of finite sets.
This induces a map f: Z[X] — Z[Y],
and also a map f*: Z[Y] — Z[X] given by f*([y]) = > /.-, [x]-
» The suspension spectrum X°°X, is a kind of refinement of Z[X],
and we again have an easy map f: X, — VY,
We also want a map f7: Z°Y, — X°X,.
> Put V =R[X], givingi: X = V C S = VU{co}.
> Put s(v) = v/ /20 + [V]P),
giving a homeomorphism from V to an open ball of radius 1/+/2.
> Define £: V x X = V x Y by f(v,x) = (s(v) + i(x), f(x)),
so f is an open embedding covering f.
> Define c: SY A Yy =(Vx Y)U{oc} = (Vx X)U{oo} =SV A X,
by c¢(f(v,x)) = (v,x) and ¢(v,y) = oo for (v, y) & image(f).
» This is completely natural and so is compatible with any group actions.

> In the world of spectra we have a negative sphere S~V and we can take
the smash product with this to get f': =Y, — Z>°X,.

> Take f = (G/H — G/G =1) and apply EG; Ag (—) to ' and use
EG/H ~ BH to get a map X°BG, — X°°BH, (the transfer).



Transfers

v

Let M be an abelian group with G-action, and let H be a subgroup of G.
There is an evident inclusion resy: M¢ — M".

There is a natural map trf;: M" — MC given by tr&(m) = YT tm,
where T is any subset of G containing one element of every H-coset.
Now let E be an even periodic ring spectrum.

The inclusion H — G gives a map BH — BG and thus a ring map
E°(BG) — E°(BH), called resf.

The transfer X*°BG. — X°°BH, gives a map

E°(BH) — E°(BG), called tr§; this is E°(BG)-linear.

Formal properties of these maps are similar to those of the maps

M€ — M" — MC® mentioned above.

Put A={(g,g)| g€ G} <G?and u=tr§ (1) € EX(BG?).

Take E = K = Morava K-theory, so K*(BG) and K.(BG) are finitely

generated free modules and dual to each other.
Then u is adjoint to a map u?: K.(BG) — K~*(BG).

This arises from a map K A BG; — F(BGL, K) of spectra, whose cofibre
is called the Tate spectrum t¢(K).

Theorem (Greenlees-Sadofsky): t¢(K) = 0.



Sketch proof of Tate vanishing

» Claim: the cofibre tg(K) of the map K A BGy — F(BGy, K) is zero.
» First suppose |G| = p, so G has a faithful one-dimensional complex
representation L with Euler class x € K°(BG), and K*(BG) = K*[x]/x"".
» The unit sphere S(col) is contractible and has free G-action so we can
take EG = S(ool). Thus, the reduced suspension EG is the same as
5L — |im S*, where St ~ §2¢ is the one-point compactification of nL.
—k
> It is not hard to check that B B
Gy NEG=F(Gy,EG)=EG. NEG = F(EG,,EG) =0.
Using this one can identify tc(K) with (EG A F(EG., K))©.
> Using EG = lim $** and S* A F(EG,, K) = F(5 " A EG,, K) we get
—
te(K) = lim F(BG™*, K), where BG™* is the Thom spectrum.
—k

> Using the fact that the Euler class of kL is x*, we find that
T (te(K)) = K~ *(BG)[x ] = (K*[x]/x"")[x"!] = 0 as required.
» For general G: combine fairly similar arguments with an induction on |G]|.
» Conclusion: K.(BG) maps isomorphically to K*(BG),
which is dual to K.(BG), so K*(BG) is self-dual.
» By rearranging the argument slightly: the K-local spectrum LxX*>°BG, is
self-dual, and E*(BG) is self-dual provided that it is a free E*-module.



More about duality
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We have shown that K*(BG) is naturally self-dual when G is a finite
group. There is an easy generalisation to groupoids.

Any functor a: G — H induces a*: K*(BH) — K*(BG). As everything is
self-dual, there is a unique a: K*(BG) — K*(BH) adjoint to o™, i.e.
(a1(a), by = (a,a™ (b)) for a € K*(BG) and b € K*(BH).

If v is an inclusion of groups, then «u is just the transfer.

Given a homotopy pullback square of groupoids as shown on the left, we
have a commutative diagram as shown on the right.

G—%H K*(BG) «>— K*(BH)
W
K——L K*(BK) +—— K*(BL)

This generalises the classical Mackey property of transfers.

Recall u = tr§ (1) € K°(BG?) = K°(BG) ®xo K°(BG).

From the duality theorem it follows that there is a unique Frobenius form
0: K°(BG) — K° such that (§ ® 1)(u) = 1 in K°(BG).

Using the Mackey property: (u, v)c = 6(uv).

There are similar statements for E* when E°(BG) is free.



Duality in the abelian case

» Let E be Morava E-theory.

> There is a power series logg(x) = >, mx* with m; = 1 and
mi € Q® E° and logg(x +r y) = logp(x) + logg(y).

> The series dlogg(x) = 3, k mex* ! dx actually lies in E°[x].dx.

> Given any f(x) € E°[x] we can expand f(x)w/[p™](x) in positive and
negative powers of x, and define pm(f(x)) = res(f(x)w/[p"]r(x)) to be
the coefficient of x'dx.

» Theorem: the Frobenius form 6: E°(BCom) = E°[x]/[p™]F(x) — E°
is induced by ppm.

» For a general finite abelian group A we can decompose A as a product of
cyclic groups and thus determine the Frobenius form.

» Open problem: do this more naturally in terms of higher-dimensional
residues and local cohomology.

> Theorem (Hopkins-Lurie): for all k the space BXA = K(k, A) has
E*(B*A) naturally self-dual (but it is trivial for k > n).

> Open problem: give a residue formula for 8: E°(B*A) — E°.



Semirings with A-operations

>
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The representation semiring R (G) is the set of isomorphism classes of
complex representations.

This has addition [V] 4+ [W] = [V @ W] and multiplication

[V][W] = [V ® W] but no subtraction.

There are also operations \¥ sending [V] to [A*V],

where AKV is the k’th exterior power of V.

We also have a ring R(G) of virtual representations,

which is the group completion of R(G).

If his the number of conjugacy classes then h is also the number of
isomorphism classes of irreducible representations. These form a basis
giving R (G) ~ N and R(G) ~ Z" additively.

The scheme

Divf(G) = ]_[kZO Div, (G) = szo Gk/zk = SPf(EO(Hk BU(k)))

is a semiring object in the category of schemes, with A-operations.

For divisors D = 3", [ai] and E = }_,_ [bj] we have DE =3, ;[ai + bj]
and XD = Dicocierlan 4 ai ]

The X operations on R(G) induce Adams operations on R(G), e.g.

P2 (x) = x* = 22%(x) and ¥3(x) = x® — 3x23(x) + 3N\3(x).

These are ring maps with ¥ ™ = p*™.



Chern approximations

> We define Ch(G) to be the scheme of morphism Ry(G) — DivT(G) of
A-semirings, and C(E, G) = Ocp(c)-

» If we understand everything about Ry (G) then we can write down a
presentation of C(E, G) by generators and relations, partly determined by
the formal group law. But it is easier to work with schemes where possible.

> Like E°(BG), the ring C(E, G) is finitely generated as an E°-module.

> There is a natural map ag: C(E, G) — E°(BG), whose image is the
subring generated by all Chern classes of all representations.

» There may be a kernel in general, consisting of relations between Chern
classes that do not follow automatically from representation theory.

» |If the chromatic height n is one, then ag is an isomorphism for all G. This
is because Morava E-theory at height one is the p-completion of KU and
so is very close to representation theory.

» If G is abelian, or is a general linear group over a finite field of
characteristic not equal to p, then ag is iso.
However, this fails for the symmetric group s when p = n = 2.
It also fails for certain central extensions C, — G — C3% with d > 1.



The group G = Y4 with n=p=2

The character table of ¥4 is as follows:

class size 1 € o p €p
1* 1 1 1 2 3 3

122 6 1 -1 0 1 -1
22 3 1 1 2 -1 -1
13 8 1 1 -1 0 0
4 6 1 -1 0 -1 1

The ring structure, Adams operations and A-operations are described in the
following table.

=1 Pk (e) = € X(o) =€
ec=0o (o) =1—¢c+o X(p) = ep
c?=1+c+o o) =1+¢ X(p) =€
op=p+ep Pp)=1+o+p—ep

PP=1lto+pt+ep P p)=l+e—0a+p.
Ch(X4) is the scheme of pairs (d, D) € G x Div3(G) such that
2d=0 MN(D)=[0] ¢ Y(D)=D  ¢*(D)+ D =2[0]+ [d] + [d]D



The group G = Y4 with n=p=2

Ch(X4) is the scheme of pairs (d, D) € G x Div3 (G) such that

2d=0 XN(D)=[0] ¢ (D)=D  *(D)+ D =2[0]+ [d] +[d]D

The formal group law for n = p = 2 satisfies
[2](x) = x*
[—1](x) = x + x* + x + x"° + x*
x+ry=x+y+x’y* (mod x'y*).

2 32
)

(mod x

K°(BX4) = C(K, X4) = Fa[w, ¢, c3]/J where

4 2 4 2 3 2 2 3 2
J=W", G, aa,c+we+ we + wie,we + w e+ we).

The following 17 monomials form a basis for this ring over [F»:

1 o c a G
w wep WC22 wcCs
w?e w?c? w2ecs

w2
w? wie wi c22 wics



