Chromatic cohomology of finite groups 3

Neil Strickland

December 4, 2023

Flag manifolds

- Again let $V \rightarrow X$ be a complex vector bundle of dimension d.
- ▶ $\mathsf{Flag}_k(V) = \{(a, W_0, ..., W_k) \mid x \in X, W_i < W_{i+1} \le V_a, \dim(W_i) = i\}.$
- For 0 ≤ i < k we have a line bundle (Q_i)_(a,W) = W_{i+1}/W_i and an Euler class x_i = e(Q_i) ∈ E⁰(Flag_k(V)).
- We also have a bundle R_k over Flag_k(V) with (R_k)_(a,<u>W</u>) = V_a/W_k (so dim(R_k) = d − k), and Flag_{k+1}(V) is the projective bundle P(R_k).
- ▶ By induction based on this: the set of monomials $x^{\alpha} = \prod_{i < k} x_i^{\alpha_i}$ with $0 \le \alpha_i < d - i$ is a basis for $E^0(\operatorname{Flag}_k(V))$ over $E^0(X)$.
- ▶ For the ring structure: put $g_k(t) = \prod_{i < k} (t x_i) \in E^0(X)[x_0, ..., x_{k-1}]$, then divide $f_V(t)$ by g(t) with remainder to get $f_V(t) = g(t)q(t) + r(t)$ with deg(r(t)) < k, then let *I* be the ideal generated by the coefficients of r(t).We then have $E^0(\operatorname{Flag}_k(V)) = E^0(X)[x_0, ..., x_{k-1}]/I$ as rings.
- ▶ Let G be a group with |G| = n. The representation $\mathbb{C}[G]$ gives a bundle $V = EG \times_G \mathbb{C}[G]$ over BG and a space $\operatorname{Flag}_n(V)$ with $E^0(\operatorname{Flag}_n(V)) \simeq E^0(BG)^{n!}$.
- ▶ $\operatorname{Flag}_n(V) = EG \times_G F$, where $F = \{\underline{W} \mid W_0 < \cdots < W_n = \mathbb{C}[G]\}$.
- Key fact: all stabiliser groups in F are abelian. Indeed, stab_G(<u>W</u>) injects in the abelian group ∏ⁿ⁻¹_{i=0} Aut(W_{i+1} ⊖ W_i) = (ℂ[×])ⁿ.

Finiteness

- **Theorem:** if X is a finite simplicial complex with simplicial G-action, then the ring $E^*(EG \times_G X) = E^*(X_{hG})$ is finitely generated as an E^* -module.
- **Proof:** First treat the case stab_G(x) is abelian for all $x \in X$.
- ▶ If X = G/H then H must be abelian and $X_{hG} = BH$ and $E^*(BH)$ is finitely generated by previous calculation.
- If X is just a finite discrete G-set then it is a disjoint union of G/H's and the same applies.
- In general, if X^k is the k-skeleton of X then X^k/X^{k-1} = Σ^kW₊ for some finite G-set W, giving an exact sequence of E^{*}(1)-modules

$$E^{*-k}(W_{hG}) \rightarrow E^*(X_{hG}^k) \rightarrow E^*(X_{hG}^{k-1}).$$

As $E^*(1)$ is noetherian, it follows inductively that $E^*(X_{hG}^k)$ is finitely generated for all k, so $E^*(X_{hG})$ is finitely generated.

- Now remove the abelian stabiliser condition.
- ▶ Put n = |G| and $F = \{(W_0, ..., W_n) | W_0 < \cdots < W_n = \mathbb{C}[G]\}.$
- Then X × F has abelian stabilisers, so A^{*} = E^{*}((X × F)_{hG}) is finitely generated; enough to show that B^{*} = E^{*}(X_{hG}) is a retract of this.
- But (X × F)_{hG} is Flag_n(V) for a bundle V over BG, so A^{*} ≃ (B^{*})^{n!}, so B^{*} is a retract of A^{*} □.

Finite groupoids

- Many things about Morava E-theory are more convenient using groupoids.
- ▶ A groupoid is a category G in which all morphisms are invertible.
- Say G is *finite* if all Hom sets G(a, b) are finite, and the set π₀(G) of isomorphism classes is finite.
- ▶ If so, we can choose a_1, \ldots, a_m containing one element of each isomorphism class, and put $G_i = G(a_i, a_i)$, and we get $BG \simeq \coprod_i BG_i$.
- ▶ Thus $E^*(BG) = \prod_i E^*(BG_i)$, which is a finitely generated E^* -module.
- Any group can be regarded as a groupoid with one object.
- ► A representation of G is a functor V from G to the category V of finite-dimensional complex vector spaces.
- This again gives spaces $\operatorname{Flag}_k(V)$ and $P(V) = \operatorname{Flag}_1(V)$ over BG.
- Given groupoids G and H, the functor category [G, H] is also a groupoid.
- If G, H are groups then obj([G, H]) = Hom(G, H) and morphisms α → β in [G, H] are elements h ∈ H with β(g) = hα(g)h⁻¹ for all g ∈ G.
- So α ≃ β iff α and β are conjugate, and π₀([G, H]) is the set of conjugacy classes of homomorphisms.

Naive groupoid duality

- For a finite groupoid G put M(G) = Q{π₀(G)} and M*(G) = Hom(M(G), Q) = Map(π₀(G), Q).
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i)g(a_i),$ where a_1, \ldots, a_r contains one member of each isomorphism class.
- This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^*: M(H) \to M(G)$ and $q_!: M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- ► This is compatible with the isomorphisms M(G) ≃ M^{*}(G) ≃ Hom(M(G), Q).

Generalised characters

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \ }} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1 \subset S^{1}}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, iso to (ℤ/p[∞])ⁿ, analogous to the formal group scheme spf(E⁰(ℂP[∞])).
- ▶ Put $\Theta^* = \text{Hom}(\Theta, S^1) \simeq \mathbb{Z}_p^n$, regarded as a groupoid with one object.

$$Put \Lambda G = [\Theta^*, G] = \lim_{\longrightarrow k} [\Theta^* / p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, ..., x_n]/(g_k(x_1), ..., g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- Thus any u: Θ^{*}/p^k → G gives φ_k ∘ E⁰(Bu): E⁰BG → L. Assembling these gives χ: L ⊗_{E⁰} E⁰(BG) → C(G).
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathrm{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{\text{image}(\theta)}$ is Z (if $\text{image}(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that \(\chi_{G,Z}\) is iso if Z has abelian isotropy.
- ▶ Let $F = \{\underline{W} \mid W_0 < \cdots < W_n = \mathbb{C}[G]\}$ be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^2$ have abelian isotropy, and we have projections $p: (Z \times F)_{hG} \to Z_{hG}$ and $q_0, q_1: (Z \times F^2)_{hG} \to (Z \times F)_{hG}$
- ▶ We saw before that $E^*((Z \times F)_{hG})$ has a canonical basis $e_1 = 1, e_2, \ldots, e_{n!}$ over $E^*(Z_{hG})$. Similarly, the elements $q_0^*(e_i)q_1^*(e_j)$ form a basis for $E^*((Z \times F^2)_{hG})$ over $E^*(Z_{hG})$.
- ▶ It follows that the diagram $E^*(Z_{hG}) \rightarrow E^*((Z \times F)_{hG}) \rightrightarrows E^*((Z \times F^2)_{hG})$ is an equaliser.
- Deduce the general case from this.

Divisors and vector bundles

- A divisor of degree d on G = spf(E⁰ [[x]]) is a closed subscheme D < G such that O_D is free of rank d as a module over O_S = E⁰.
- Equivalently, $\mathcal{O}_D = E^0 [\![x]\!] / f(x)$ for some monic polynomial $f(x) = \sum_{i=0}^{d} c_i x^{d-i}$ with c_i in the maximal ideal for i > 0.
- $[p^k]_{\mathcal{E}}(x)$ is a unit multiple of a polynomial of degree p^{nk} , so the scheme $\mathbb{G}[p^k] = \ker(p^k.1: \mathbb{G} \to \mathbb{G}) = \operatorname{spf}(E^0[\![x]\!]/[p^k]_{\mathcal{E}}(x)) = \operatorname{spf}(E^0(BC_{p^k}))$ is a divisor of degree p^{nk} .
- More generally, for T → S, a divisor of degree d on G over T is a closed subscheme D < T ×_S G such that O_D is free of rank d over O_T.
- Equivalently, $\mathcal{O}_D = \mathcal{O}_T [\![x]\!] / f(x)$ for some monic polynomial $f(x) = \sum_{i=0}^{d} c_i x^{d-i}$ with $c_i \in \mathcal{O}_T$ topologically nilpotent for i > 0.
- Example: if V → Z is a complex bundle of dimension d, then the scheme D_V = spf(E⁰(P(V))) is a divisor of degree d on G over spf(E⁰(Z)) (by earlier calculation of E⁰(P(V))).
- ▶ There is a sum operation for divisors: if $\mathcal{O}_{D_i} = \mathcal{O}_T \llbracket x \rrbracket / f_i(x)$ for i = 0, 1then $\mathcal{O}_{D_0+D_1} = \mathcal{O}_T \llbracket x \rrbracket / (f_0(x)f_1(x))$. For this: $D_{V_0 \oplus V_1} = D_{V_0} + D_{V_1}$.
- An element a ∈ G gives a divisor [a] of degree one.
 A list a₁,..., a_d gives a divisor ∑_i[a_i] of degree d, symmetric in a₁,..., a_d.
 Using this: Div⁺_d(G) = G^d/Σ_d.

Level structures

- ▶ We have identified spf(*E*⁰(*BA*)) with Hom(*A*^{*}, ℂ).
- ▶ Is there a subscheme of monomorphisms from A^* to \mathbb{G} ?
- Monomorphisms of schemes are closely related to epimorphisms of commutative rings, which have poor behaviour. Note that Z → Q and Z → Z/n are epimorphisms, but behave quite differently.
- We will define Level(A^{*}, G) ⊆ Hom(A^{*}, G) which is motivated by the above; but do not take the analogy too seriously.
- Write $A = \prod_{i=0}^{s-1} C_{p^{m_i+1}}$, put $D'_A = E^0 \llbracket x_i \mid i < s \rrbracket$ and $y_i = [p^{m_i}](x_i) \in R'$.
- Let U be the set of all terms $\sum_{i < s}^{F} [k_i]_{E}(y_i)$ with $0 \le k_i < p$ for all i.
- ▶ Put $g(t) = \prod_{u \in U} (t u)$ and $[p]_E(t) = q(t)g(t) + r(t)$ with $\deg(r(t))) < s$. Let *I* be the ideal generated by the coefficients of r(t), and $D_A = D'_A/I$, and Level $(A^*, \mathbb{G}) = \operatorname{spf}(D_A)$.
- ► Schematically: Level(A^* , \mathbb{G}) = { $\phi \in \text{Hom}(A^*, \mathbb{G}) \mid \sum_{\alpha \in A^*[\rho]} [\phi(\alpha)] \leq \mathbb{G}[\rho]$ }.

From HKR: $\mathbb{Q} \otimes E^0(BG) = u_0^{-1}E^0(BG) \simeq \left(\prod_{A \leq G} \mathbb{Q} \otimes D_A\right)^G$.

▶ There is a similar map $u_k^{-1}E^0(BG)/I_k \rightarrow \left(\prod_{A \leq G} u_k^{-1}D_{k,A}\right)^G$ for k > 0, which is an *F*-isomorphism (Greenlees-Strickland; see also Stapleton).