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Flag manifolds
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Again let V — X be a complex vector bundle of dimension d.

Flag, (V) = {(a, Wo, ..., Wi) | x € X, W; < Wiz1 < V,, dim(W;) = i}.
For 0 < i < k we have a line bundle (Qi)(,w) = Wis1/ Wi

and an Euler class x; = e(Q;) € E°(Flag,(V)).

We also have a bundle Ry over Flag, (V) with (Rk)@a,w) = Va/ Wk

(so dim(R«) = d — k), and Flag, ., (V) is the projective bundle P(Rx).
By induction based on this: the set of monomials x* = J,_, x* with
0<a;<d—iisa basis for E°(Flag,(V)) over E°(X).

For the ring structure: put gi(t) =[], ,(t — x) € E°(X)[x0, - . ., Xk—1],
then divide fy(t) by g(t) with remainder to get fv(t) = g(t)q(t) + r(t)
with deg(r(t)) < k, then let | be the ideal generated by the coefficients of
r(t).We then have E°(Flag,(V)) = E°(X)[xo, ..., Xxk—1]/! as rings.

Let G be a group with |G| = n. The representation C[G] gives a bundle
V = EG X C[G] over BG and a space Flag, (V) with

E(Flag, (V) ~ E°(BG)""

Flag,(V) = EG x¢ F, where F ={W | Wy < --- < W, = C[G]}.

Key fact: all stabiliser groups in F are abelian. Indeed, stabg(W) injects
in the abelian group [T/~ Aut(Wiz1 © W;) = (CX)".



Finiteness

>
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Theorem: if X is a finite simplicial complex with simplicial G-action, then
the ring E*(EG x¢ X) = E*(Xng) is finitely generated as an E*-module.

Proof: First treat the case stabg(x) is abelian for all x € X.

If X = G/H then H must be abelian and Xy,c = BH and E*(BH) is
finitely generated by previous calculation.

If X is just a finite discrete G-set then it is a disjoint union of G/H'’s and
the same applies.

In general, if X* is the k-skeleton of X then X*/X*~! = £*¥W, for some
finite G-set W, giving an exact sequence of E*(1)-modules

E* ™ (Whe) = E*(Xi) = E"(Xpe ')-
As E*(1) is noetherian, it follows inductively that E*(X};) is finitely
generated for all k, so E*(Xxc) is finitely generated.
Now remove the abelian stabiliser condition.
Put n=|G| and F = {(Wo,...,W,) | Wo < --- < W, = C[G]}.
Then X x F has abelian stabilisers, so A* = E*((X X F)ng) is finitely
generated; enough to show that B* = E*(Xjg) is a retract of this.

But (X x F)sc is Flag, (V) for a bundle V over BG, so A* ~ (B*)", so
B* is a retract of A* [.



Finite groupoids
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Many things about Morava E-theory are more convenient using groupoids.
A groupoid is a category G in which all morphisms are invertible.

Say G is finite if all Hom sets G(a, b) are finite,
and the set mo(G) of isomorphism classes is finite.

If so, we can choose ai, ..., am containing one element of each
isomorphism class, and put G; = G(a;, a;), and we get BG ~ [[; BG;.

Thus E*(BG) = []; E*(BG;), which is a finitely generated E*-module.
Any group can be regarded as a groupoid with one object.

A representation of G is a functor V from G to the category V of
finite-dimensional complex vector spaces.

This again gives spaces Flag, (V) and P(V) = Flag,(V) over BG.

Given groupoids G and H, the functor category [G, H] is also a groupoid.
If G, H are groups then obj([G, H]) = Hom(G, H) and morphisms @ — 3
in [G, H] are elements h € H with 8(g) = ha(g)h™" for all g € G.

So o >~ B iff & and 3 are conjugate, and mo([G, H]) is the set of conjugacy
classes of homomorphisms.



Naive groupoid duality
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For a finite groupoid G put M(G) = Q{mo(G)} and

M*(G) = Hom(M(G), Q) = Map(mo(G), Q).

Define an inner product on M(G) by ([a],[b])c = |G(a, b)|

(so ([a], [b]) = O unless a ~ b).

The induced inner product on M*(G) is

(f.g)c =11 |G(ai, a1)| 7 f(ai)g(a),

where ai, ..., a, contains one member of each isomorphism class.

This is also (f,g)c = 0(fg), where 0(h) = 3", |G(a:, a;)| " h(a;).

Given q: G — H we define gi: M(G) — M(H) by ¢i([a]) = [q(a)], and
q": M*(H) = M*(G) by q7(g)(a) = g(a(a)).

Define ¢*: M(H) — M(G) and qi: M*(G) — M*(H) to be adjoint, so
(@ (u), v)n = (u,q7(v))6 and (a(f), &)n = (f,q"(g))c-

This is compatible with the isomorphisms

M(G) ~ M*(G) ~ Hom(M(G), Q).



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).
> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
K
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)
» Put © = {all roots of all g«(x)} C L. This is a group under +¢,
iso to (Z/p>)", analogous to the formal group scheme spf(E°(CP>)).
> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k
> Recall E%(B(©"/p")) = E%Fx, ... xnl/(g(x0), - - g0
there is a canonical map ¢« from this to L.
> Thus any u: ©*/p* — G gives ¢ 0 E°(Bu): E°BG — L.
Assembling these gives x: L ®z0 E°(BG) — C(G).

» Theorem (Hopkins, Kuhn, Ravenel): x is an isomorphism.



Proof of the generalised character theorem

» Reduce to the case of a finite group G.

» Generalise: for a finite G-CW complex Z, we have

G
XG,z: L®EO E* (ZhG — L®@ ( H H* (Zlmage )>
0: 0*—G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)

» Deduce by Mayer-Vietoris that x¢,z is iso if Z has abelian isotropy.

> Let F={W | W, <--- < W, =C[G]} be the space of complete flags in

C[G], so Z x F and Z x F? have abelian isotropy, and we have projections
p: (Z X F)h(; — Zh(; and qo,q1: (Z X Fz)hG — (Z X F)hG

» We saw before that E*((Z x F)ng) has a canonical basis
et =1,e,...,en over E*(Zys). Similarly, the elements qq(e)q7 (&) form
a basis for E*((Z x F?)sc) over E*(Zhc).

> It follows that the diagram E*(Zng) — E*((Z x F)re) = E*((Z x F?)ne)
is an equaliser.

» Deduce the general case from this.



Divisors and vector bundles
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A divisor of degree d on G = spf(E°[x]) is a closed subscheme D < G
such that Op is free of rank d as a module over Os = E°.

Equivalently, Op = E°[x]/(x) for some monic polynomial

f(x) = Z?:o cix?~" with ¢ in the maximal ideal for i > 0.

[p*]e(x) is a unit multiple of a polynomial of degree p™, so the scheme
G[p"] = ker(p*.1: G — G) = spf(E°[x]/[P"]£(x)) = spf(E°(BC,))

is a divisor of degree p™*.

More generally, for T — S, a divisor of degree d on G over T is a closed
subscheme D < T xs G such that Op is free of rank d over Or.
Equivalently, Op = Or[x]/f(x) for some monic polynomial

f(x) = 2720 cix? with ¢; € O topologically nilpotent for i > 0.
Example: if V — Z is a complex bundle of dimension d, then the scheme
Dy = spf(E°(P(V))) is a divisor of degree d on G over spf(E°(Z))

(by earlier calculation of E°(P(V))).

There is a sum operation for divisors: if Op, = Or[x]/fi(x) for i = 0,1
then OD0+D1 = OTIIX]]/(fE)(X)ﬂ(X)) For this: DVo€BV1 = D\/0 + D\/l.

An element a € G gives a divisor [a] of degree one.

Alist a1, ..., aq gives a divisor ) [a;] of degree d, symmetric in ay, ..., aq.
Using this: Div}(G) = G?/Z.



Level structures
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We have identified spf(E°(BA)) with Hom(A*,G).
Is there a subscheme of monomorphisms from A* to G?

Monomorphisms of schemes are closely related to epimorphisms of
commutative rings, which have poor behaviour. Note that Z — Q and
Z — 7/ n are epimorphisms, but behave quite differently.

We will define Level(A*,G) C Hom(A*,G) which is motivated by the
above; but do not take the analogy too seriously.

> Write A = [[2) Cm1, put Dy = E°[x | i < s] and y; = [p™](x) € R'.

p

» Let U be the set of all terms Z,Zs[k,-],_:(y,-) with 0 < k; < p for all i.

Put g(t) = [T,cu(t — u) and [ple(t) = a(D)g(t) + r(e) with
deg(r(t))) <s. Let | be the ideal generated by the coefficients of r(t),
and Da = Dy/I, and Level(A*,G) = spf(Da).

Schematically:
Level(A*,G) = {¢ € Hom(A",G) | 3, ca-[¢(a)] < G[p]}-

G
From HKR: Q ® E%(BG) = uy 'E%(BG) ~ (HASGQ ® DA) .

G
There is a similar map u;lEO(BG)/Ik — (HAgG u;le,A) for k > 0,
which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).



