Chromatic cohomology of finite groups 1

Neil Strickland

December 5, 2023

Introduction

- Fix a prime p and integer n > 0. Everything will depend on these.
- ▶ For any space X there are graded rings K^{*}(X) and E^{*}(X), called the (2-periodic) Morava K-theory and Morava E-theory of X.
- For any finite group G there is an essentially unique space BG (the classifying space of G) with π₁(BG) = G and π_k(BG) = 0 for k ≠ 1.
- This course is about rings of the form $K^*(BG)$ and $E^*(BG)$.
- We will just discuss $K^*(X)$ for the moment.
- ► This has Kⁱ⁺²(X) ≃ Kⁱ(X), and very often K¹(X) = 0, so we just need to consider K⁰(X).
- The ring K⁰(BG) is a finite algebra over the finite field F_p, so it is very amenable to explicit calculation, sometimes by computer.
- Good answers are known for abelian groups, symmetric groups, finite general linear groups of characteristic different from *p*, and various groups that are not far from being abelian.
- Kriz and Lee produced examples of groups G with |G| = p⁶ and K¹(BG) ≠ 0 and E⁰(BG) not free. Probably generic groups are like that. But many of the most interesting examples have K¹(BG) = 0.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with *even periodic theories* where $E^{1}(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_E = spf(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ► Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \varinjlim_{k \to \infty} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^0(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K with K*(1) = 𝔽_p[u, u⁻¹]. This is called *Morava K-theory*.
- The K's together (for all p and n) carry \sim the same information as MP.

Formal groups — what are they good for?

- ► Every even periodic theory *E* gives a formal group G = P_E = spf(E⁰(CP[∞])).
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; 𝔽_p) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- ▶ The Morava K-theories K(p, n) all have different formal groups.
- ► Together with HP⁰(X; 𝔽_p) and HP⁰(X; ℚ) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of G. For example, if X = BU(n) = {n − dimensional subspaces of C[∞]} then X_E = Gⁿ/Σ_n.

Examples of formal groups

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(\dot{R}) = \{\dot{A} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(\dot{R}) \mid c^2 + \dot{s}^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_e .)

The functors G_i are formal groups; the power series F_i are formal group laws.

- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

Formal groups from even periodic theories

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1)[[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let $\phi_p \colon P \to P$ be the p'th power map and put $B = (\mathbb{C}[t] \setminus \{0\})/C_p = BC_p$.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/φ^{*}_p(x) and this is free of finite rank over E⁰(1). If so, then the rank is pⁿ for some n > 0, called the *height*.

For
$$E = K(p, n)$$
 we have $\phi_p^*(x) = x^{p^n}$ and the height is n .

Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.