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1. Introduction

In this paper we set up a framework for using algebraic geometry to study the generalised cohomology rings
that occur in algebraic topology. This idea was probably first introduced by Quillen [21] and it implicitly
or explicitly underlies much of our understanding of complex oriented cohomology theories, exemplified by
the work of Morava. Most of the results presented here have close and well-known analogues in the algebro-
geometric literature, but with different definitions or technical assumptions that are often inconvenient for
topological applications. Our aim here is merely to put everything together in a systematic way that naturally
incorporates the phenomena that we see in topology while discarding complications that never arise there. In
more detail, in the classical situation one is often content to deal with finite dimensional, Noetherian schemes.
Nilpotents are seen as a somewhat peripheral phenomenon, and formal schemes are only introduced at a
late stage in the exposition. Schemes are defined as spaces with extra structure. The idea of a scheme as a
functor occurs in advanced work (a nice example is [16]) but is usually absent from introductory treatments.
For us, however, it is definitely most natural to think of schemes as functors. Our schemes are very often
not Noetherian or finite dimensional, and nilpotents are of crucial importance. We make heavy use of formal
schemes, and we need to define these in a more general way than is traditional. On the other hand, we can
get a long way using only affine schemes, whereas the usual treatment devotes a great deal of attention to
the non-affine case.

Section 2 is an exposition of the basic facts of algebraic geometry that is well adapted to the viewpoint
discussed above, together with a number of useful examples.

In Section 3, we give a basic account of non-affine schemes from our point of view.
In Section 4, we give a very general definition of formal schemes which follows naturally from our de-

scription of ordinary (or “informal”) schemes. We then work out the basic properties of the category of
formal schemes, such as the existence of limits and colimits and the behaviour of regular monomorphisms
(or “closed inclusions”).

In Section 6, we discuss the Abelian monoid and group objects in the category of formal schemes. We
then specialise in Section 7 to the case of smooth, commutative, one-dimensional formal groups, which we
call “ordinary formal groups”.

Finally, in Section 8, we construct functors from the homotopy category of spaces (or suitable subcat-
egories) to the category of formal schemes. We use the work of Ravenel, Wilson and Yagita [24] to show
that spaces whose Morava K-theory is concentrated in even degrees give formal schemes with good techni-
cal properties. We also discuss what happens to a number of popular spaces under our functors. Further
applications of this point of view appear in [26, 27, 7, 11] and a number of other papers in preparation.

1.1. Notation and conventions. We write Rings for the category of rings (by which we always mean
commutative unital rings) and Sets for the category of sets. For any ring R, we write ModR for the category
of R-modules, and AlgR for the category of R-algebras. Given a category C, we usually write C(X,Y ) for
the set of C-morphisms from X to Y . We write CX for the category of objects of C over X. More precisely,
on object of CX is a pair (Y, u) where u : Y −→ Z, and CX((Y, u), (Z, v)) is the set of maps f : Y −→ Z in C

such that vf = u.
We write F for the category of all functors Rings −→ Sets.

1.2. Even periodic ring spectra. We now give a basic topological definition, as background for some
motivating remarks to be made in subsequent sections. Details of topological applications will appear in
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Section 8. The definition below will be slightly generalised there, to deal with unpleasantness at the prime
2.

Definition 1.1. An even periodic ring spectrum is a commutative and associative ring spectrum E such
that

(1) π1E = 0
(2) π2E contains a unit.

The example to bear in mind is the complex K-theory spectrum KU . Suitable versions of Morava E-
theory and K-theory are also examples, as are periodised versions of MU and H; we write MP and HP for
these. See Section 8 for more details.

2. Schemes

In this section we set up the basic categorical apparatus of schemes. We then discuss limits and colimits of
schemes, and various kinds of subschemes. We compare our functorial approach with more classical accounts
by discussing the Zariski space of a scheme. We then discuss various issues about nilpotent and idempotent
functions. We define sheaves over functors, and show that our definition works as expected for schemes. We
then define flatness and faithful flatness for maps of schemes, and prove descent theorems for schemes and
sheaves over faithfully flat maps. Finally, we address the question of defining a “scheme of maps” Map(X,Y )
between two given schemes X and Y .

Definition 2.1. An affine scheme is a covariant representable functor

X : Rings −→ Sets.

We make little use of non-affine schemes, so we shall generally omit the word “affine”. A map of schemes is
just a natural transformation. We write X for the category of schemes, which is a full subcategory of F. We
write spec(A) for the functor represented by A, so spec(A)(R) = Rings(A,R) and spec(A) is a scheme.

Remark 2.2. If E is an even periodic ring spectrum and Z is a finite spectrum we define ZE = spec(E0Z).
This gives a covariant functor Z 7→ ZE from finite complexes to schemes. We also write SE = spec(E0).

Definition 2.3. We write A1 for the forgetful functor Rings −→ Sets. This is isomorphic to spec(Z[t]) and
thus is a scheme. Given any functor X ∈ F, we write OX for the set of natural maps X −→ A1. (This can
actually be a proper class for general X, but it will always be a set in the cases that we consider.) Note that
OX is a ring under pointwise operations.

Our category of schemes is equivalent to the algebraic geometer’s category of affine schemes, which in
turn is equivalent (by Yoneda’s lemma) to the opposite of the category of rings.

We now describe the duality between schemes and rings in more detail. The Yoneda lemma tells us that
Ospec(A) is naturally isomorphic to A. For any functor X ∈ F we have a tautological map κ : X −→ spec(OX).
To define κ explicitly, suppose we have a ring R and an element x ∈ X(R); we need to produce a map
κR(x) : OX −→ R. An element f ∈ OX is a natural map f : X −→ A1, so it has a component fR : X(R) −→ R,
and we can define κR(x)(f) = fR(x). If X = spec(A) then κ is easily seen to be bijective. As schemes
are by definition representable, any scheme X is equivalent to spec(A) for some A, so we see that the
map X −→ spec(OX) is always an isomorphism. Thus, the functor X −→ OX is inverse to the functor
spec : Ringsop −→ X.

We next give some examples of schemes.

Example 2.4. A basic example is the “multiplicative group” Gm, which is defined by

Gm(R) = R× = the group of units of R.

This is a scheme because it is represented by Z[x±1].

Example 2.5. The affine n-space An is defined by An(R) = Rn. This is a scheme because it is represented
by Z[x1, . . . , xn]. If f1, . . . , fm are polynomials in n variables over Z then there is an obvious natural map
Rm −→ Rn for all rings R, which sends a = (a1, . . . , am) to (f1(a), . . . , fn(a)). Thus, this gives a map
Am −→ An of schemes. These are in fact all the maps between these schemes. The key point is of course that

3



the set of ring maps Z[y1, . . . , ym]←− Z[x1, . . . , xn] bijects naturally with the set of such tuples (f1, . . . , fm).
It is a good exercise to work out all of the identifications going on here.

We next define the scheme FGL of formal group laws, which will play a central rôle in the applications of
schemes to algebraic topology.

Example 2.6. A formal group law over a ring R is a formal power series

F (x, y) =
∑
k,l≥0

aklx
kyl ∈ R[[x, y]]

satisfying

F (x, 0) = x

F (x, y) = F (y, x)

F (F (x, y), z) = F (x, F (y, z)).

We can define a scheme FGL as follows:

FGL(R) = { formal group laws over R}.

To see that FGL is a scheme, we consider the ring L0 = Z[akl | k, l > 0] and the formal power series
F0(x, y) = x+ y+

∑
aklx

kyl ∈ L0[[x, y]]. We then let I be the ideal in L0 generated by the coefficients of the
power series F0(x, y)− F0(y, x) and F0(F0(x, y), z)− F0(x, F0(y, z)). Finally, set L = L0/I. It is easy to see
that FGL = spec(L). The ring L is called the Lazard ring . It is a polynomial ring in countably many variables;
there is a nice exposition of the proof in [2, Part II]. Recall that MP denotes the 2-periodic version of MU ;
a fundamental theorem of Quillen [19, 20] (also proved in [2]) identifies the scheme SMP := spec(MP 0) with
FGL.

Example 2.7. Given any diagram of schemes {Xi}, we claim that the functor X = lim
←−i

Xi (which is defined

by (lim
←−i

Xi)(R) = lim
←−i

(Xi(R))) is also a scheme. Indeed, suppose that Xi = spec(Ai). As spec : Ringsop −→ X

is an equivalence, we get a diagram of rings Ai with arrows reversed. It is well-known that the category of
rings has colimits, and it is clear that X = spec(lim

−→i
Ai).

In particular, if X and Y are schemes, we have a scheme X × Y with (X × Y )(R) = X(R) × Y (R) and

OX×Y = OX⊗OY (because coproducts of rings are tensor products). Similarly, if we have maps X
f−→ Z

g←− Y
then we can form the pullback

(X ×Z Y )(R) = X(R)×Z(R) Y (R) = {(x, y) ∈ X(R)× Y (R) | f(x) = g(y)}.

This is represented by the tensor product OX ⊗OZ
OY .

We write 1 for any one-point set, and also for the constant functor 1(R) = 1. Thus 1 = spec(Z), and this
is the terminal object in X or F.

Example 2.8. Let Z and W be finite CW complexes, and let E be an even periodic ring spectrum. There
is a natural map (Z ×W )E −→ ZE ×SE

WE . This will be an isomorphism if E1Z = 0 = E1W and we have
a Künneth isomorphism E∗(Z ×W ) = E∗(Z)⊗E∗ E∗(W ). This holds in particular if H∗Z is a free Abelian
group, concentrated in even degrees.

Example 2.9. An invertible power series over a ring R is a formal power series f ∈ R[[x]] such that
f(x) = wx+O(x2) for some w ∈ R×. This implies, of course, that f has a composition-inverse g = f−1, so
that f(g(x)) = x = g(f(x)). We write IPS(S) for the set of such f , which is easily seen to be a scheme. It
is actually a group scheme, in that IPS(R) is a group (under composition), functorially in R.

The group IPS acts on FGL by

(f, F ) 7→ Ff Ff (x, y) = f(F (f−1x, f−1y)).

An isomorphism between formal group laws F and G is an invertible series f such that f(F (a, b)) =
G(f(a), f(b)). Let FI be the following scheme:

FI(R) = {(F, f,G) | F,G ∈ FGL(R) and f : F −→ G is an isomorphism }.
4



There is an evident composition map

FI×FGL FI −→ FI ((F, f,G), (G, g,H)) 7→ (F, gf,H).

Moreover, there is an isomorphism

IPS× FGL −→ FI (F, f) 7→ (F, f, Ff ).

One can describe these maps by giving implicit formulae in the representing rings OIPS, OFGL an OFI, but
this should be avoided where possible. Note that for each R we can regard FGL(R) as the set of objects of a
groupoid, whose morphism set is FI(R). In other words, the schemes FGL and FI define a groupoid scheme.
It is known that FI = spec(MP0MP ) (this follows easily from the description of MU∗MU in [2]).

Example 2.10. We now give an example for which representability is less obvious. We say that an effective
divisor of degree n on A1 over a scheme Y is a subscheme D ⊆ Y × A1 = spec(OY [x]) such that OD is
a quotient of OY [x] and is free of rank n over OY . We let X(R) = Div+

n (A1)(R) denote the set of such
divisors over spec(R), and we claim that X = Div+

n (A1) is a scheme. Firstly, it is a functor of R: given a
ring map u : R −→ R′ and a divisor D over R we get a divisor uD = spec(R′ ⊗R OD) = spec(R′)×spec(R) D
over R′. Next, given a divisor D as above and an element y ∈ R[x], we let λ(y) be the map u 7→ uy, which
is an R-linear endomorphism of the module OD ' Rn. The map λ(x) thus has a characteristic polynomial
fD(t) =

∑n
i=0 ai(D)tn−i ∈ R[t]. One checks that the map ai : X −→ A1 is natural, so we get an element ai of

OX . As fD(t) is monic, we have a0 = 1. The remaining ai’s give us a map X −→ An.
The Cayley-Hamilton theorem tells us that fD(λ(x)) = 0, but it is clear that fD(λ(x)) = λ(fD(x)) and

fD(x) = λ(fD(x))(1), so we find that fD(x) = 0 in OD and thus that OD is a quotient of R[x]/fD(x). On the
other hand, it is clear that R[x]/fD(x) is also free over R of rank n, and it follows that OD = R[x]/fD(x).
Given this, we see that D is freely and uniquely determined by the coefficients a1, . . . , an, so that our map
X −→ An is an isomorphism. This shows in particular that X is a scheme. (I learned this argument from [4].)

2.1. Points and sections. Let X be a scheme. A point of X means an element x ∈ X(R) for some ring R.
We write Ox for R, which conveniently allows us to mention x before giving R a name. Recall that points
x ∈ X(R) biject with maps spec(R) −→ X. We say that x is defined over R, or over spec(R).

We can also think of an element of R as a point of the scheme A1 over R. If f ∈ OX then f is a natural
map X(S) −→ S for all rings S, so in particular we have a map X(R) −→ R. We thus have f(x) ∈ Ox = R.

Example 2.11. Let F be a point of FGL, in other words a formal group law over some ring R. We can
write

[3](x) = F (x, F (x, x)) = 3x+ u(F )x2 + v(F )x3 +O(x4)
for certain scalars u(F ) and v(F ). This construction associates to each point F ∈ FGL a point v(F ) ∈ A1 in
a natural way, thus giving an element v ∈ OFGL. Of course, we know that OFGL is the Lazard ring L, which
is generated by the coefficients akl of the universal formal group law

Funiv(x, y) =
∑
k,l

aklx
kyl

Using this formal group law, we find that

[3](x) = 3x+ 3a11x
2 + (a2

11 + 8a12)x3 +O(x4)

This means that
v(Funiv) = a2

11 + 8a12

It follows that for any F over any ring R, the element v(F ) is the image of a2
11 + 8a12 under the map L −→ R

classifying F .

Example 2.12. For any scalar a, we have a formal group law

Ha(x, y) = x+ y + axy.

The construction a 7→ Ha gives a natural transformation h : A1(R) −→ FGL(R), in other words a map of
schemes h : A1 −→ FGL. This can be thought of as a family of formal group laws, parametrised by a ∈ A1.
It can also be thought of as a single formal group law over Z[a] = OA1 .
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Example 2.13. The point of view described above allows for some slightly schizophrenic constructions,
such as regarding the two projections π0, π1 : X ×X −→ X as two points of X over X2. Indeed, this is the
universal example of a scheme Y equipped with two points of X defined over Y . Similarly, we can think of
the identity map X −→ X as the universal example of a point of X. This is analogous to thinking of the
identity map of K(Z, n) as a cohomology class u ∈ HnK(Z, n); this is of course the universal example of a
space with a given n-dimensional cohomology class.

Definition 2.14. For any functor X : Rings −→ Sets, we define a category Points(X), whose objects are
pairs (R, x) with x ∈ X(R). The maps (R, x) −→ (S, y) are ring maps f : R −→ S such that X(f)(x) = y.

Remark 2.15. Let X be a scheme. The following categories are equivalent:
(a) The category XX of schemes Y equipped with a map u : Y −→ X.
(b) The category of representable functors Y ′ : Points(X) −→ Sets.
(c) The category of representable functors Y ′′ : X

op
X −→ Sets.

(d) The category Algop
OX

of algebras R over OX .
(e) The category Points(X)op of pairs (R, x) with x ∈ X(R).

By Yoneda, an element x ∈ X(R) corresponds to a map x′ : spec(R) −→ X. Similarly, a map v : Z −→ X
gives a map v∗ : OX −→ OZ , making OZ into an OX -algebra. This can also be regarded as an element of
spec(OX)(OZ) = X(OZ). With this notation, the equivalence is as follows.

Y (S) =
∐

z∈X(S)

Y ′(S, z)

Y ′(S, z) = preimage of z ∈ X(S) under u : Y (S) −→ X(S)

= Y ′′(spec(S) z′−→ X)

Y ′′(Z v−→ X) = Y ′(OZ , v∗)
R = OY

Y = spec(R).

For us, the most important part of this will be the equivalence (a)⇔(b).

Remark 2.16. If E is an even periodic ring spectrum and SE = spec(E0) then we can regard the construc-
tion Z 7→ ZE = spec(E0Z) as a functor from finite complexes to XSE

.

Definition 2.17. If X is a scheme over another scheme Y , and y ∈ Y (R) is a point of Y , we write
Xy = spec(R)×Y X, which is a scheme over spec(R). Here we have used the map spec(R) −→ Y corresponding
to the point y ∈ Y (R) to form the pullback spec(R)×Y X. We call Xy the fibre of X over the point y.

2.2. Colimits of schemes. The category of rings has limits for small diagrams, and the category of schemes
is dual to that of rings, so it has colimits for small diagrams. However, it seems that these colimits only
interact well with our geometric point of view if they have some additional properties (this is also the reason
for Mumford’s geometric invariant theory, which is much more subtle than anything that we consider here.)
One good property that often occurs (with C = X or C = XY ) is as follows.

Definition 2.18. Let C be a category with finite products, and let {Xi} be a diagram in C. We say that
an object X with a compatible system of maps Xi −→ X is a strong colimit of the diagram if W ×X is the
colimit of {W ×Xi} for each W ∈ C. We define strong coproducts and strong coequalisers as special cases
of this, in the obvious way.

Example 2.19. The categories X and XY have strong finite coproducts, and O∐
i Xi

=
∏
i OXi

. Indeed, by
the usual duality Ringsop = X, we see that the coproduct exists and has O∐

i Xi
=
∏
i OXi . Thus, we need

only check that Z ×Y
∐
iXi =

∐
i Z ×Y Xi, or equivalently that OZ ⊗OY

∏
i OXi =

∏
i OZ ⊗OY

OXi , which
is clear because the indexing set is finite. Note that when Y = 1 is the terminal object, we have XY = X, so
we have covered that case as well.

As a special case of the above, we can make the following definition.
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Definition 2.20. Given a finite set A, we can define an associated constant scheme A by

A =
∐
a∈A

1

(where 1 is the terminal object in X). This has the property that X × A =
∐
a∈AX for all X. We also

have OA = F (A,Z), which denotes the ring of functions from the set A to Z; this is a ring under pointwise
operations.

Remark 2.21. It is not the case that (XqY )(R) = X(R)qY (R) (unlike the case of products and pullbacks).
Instead, we have

(X q Y )(R) = {(S, T, x, y) | S, T ≤ R , R = S × T , x ∈ X(S) , y ∈ Y (T )}.

To explain this, note that an element of (XqY )(R) is (by Yoneda) a map spec(R) −→ XqY . This will be given
by a decomposition spec(R) = spec(S)qspec(T ) and maps spec(S) −→ X and spec(T ) −→ Y . Clearly, if R does
not split nontrivially as a product of smaller rings then we have the naive rule (X q Y )(R) = X(R)q Y (R).

Similarly, the initial scheme ∅ = spec(0) has ∅(R) = ∅ unless R = 0 in which case ∅(R) has a single
element.

Example 2.22. Let f : X −→ Y be a map of schemes. Let Xn
Y denote the fibre product of n copies of X over

Y , so that the symmetric group Σn acts on Xn
Y , covering the trivial action on Y . Suppose that the resulting

map f∗ : OY −→ OX makes OX into a free module over OY . We then claim that there is a strong colimit for
the action of Σn on Xn

Y . To see this, write A = OX and B = OY and C = A⊗Bn, so that Xn
Y = spec(C).

Our claim reduces easily to the statement that B′⊗B (CΣn) = (B′⊗B C)Σn for every algebra B′ over B. To
see that this holds, choose a basis for A over B. This gives an evident basis for C over B, which is permuted
by the action of Σn. Clearly CΣn is a free module over B, with one generator for each Σn-orbit in our basis
for C. There is a similar description for (B′ ⊗B C)Σn , which quickly implies our claim.

Some more circumstances in which colimits have unexpectedly good behaviour are discussed in [7], which
mostly follows ideas of Quillen [21].

2.3. Subschemes. Recall that an element of OX is a natural map X −→ A1. Thus, if x is a point of X then
f(x) is a scalar (more precisely, if x ∈ X(R) then f(x) ∈ R) and we can ask whether f(x) = 0, or whether
f(x) is invertible.

Definition 2.23. Given a scheme X and an ideal I ≤ OX , we define a scheme V (I) by

V (I)(R) = {x ∈ X(R) | f(x) = 0 for all f ∈ I}.

One checks that V (I) = spec(OX/I), so this really is a scheme. Schemes of this form are called closed
subschemes of X.

Given an element f ∈ OX , we define a scheme D(f) by

D(f)(R) = {x ∈ X(R) | f(x) ∈ R×}.

One checks that D(f) = spec(OX [1/f ]), so this really is a scheme. Schemes of this form are called basic
open subschemes of X.

A locally closed subscheme is a basic open subscheme of a closed subscheme. Such a thing has the form
D(f) ∩ V (I) = spec(OX [1/f ]/I).

Remark 2.24. Recall that a map f : R −→ S of rings is said to be a regular epimorphism if and only if it
is the coequaliser of some pair of maps T ww R, which happens if and only if it is the coequaliser of the
obvious maps R ×S R ww R. It is easy to check that this holds if and only if f is surjective. Given this, we
see that the regular monomorphisms of schemes are precisely the closed inclusions, and that composites and
pushouts of regular monomorphisms are regular monomorphisms.

Example 2.25. The map h in Example 2.12 gives an isomorphism between A1 and the closed subscheme
V ((aij | i+ j > 2)) of FGL. The multiplicative group Gm is an open subscheme of A1.
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Example 2.26. If X is a scheme and e ∈ OX satisfies e2 = e then it is easy to check that D(e) = V (1− e),
so this subscheme is both open and closed. Moreover, we have X = D(e) qD(1− e). More generally, if we
have idempotents e1, . . . , em ∈ OX with

∑
i ei = 1 and eiej = δijei then X =

∐
iD(ei), and every splitting

of X as a finite coproduct occurs in this way.

Example 2.27. Suppose X = spec(k[x]) is the affine line over a field k, and λ, µ ∈ k. The closed subscheme
V (x − λ) = spec(k[x]/(x − λ)) ' spec(k) corresponds to the point λ of the affine line; it is natural to refer
to it as {λ}. The closed subscheme V ((x−λ)(x−µ)) corresponds to the pair of points {λ, µ}. If λ = µ, this
is to be thought of as the point λ with multiplicity two, or as an infinitesimal thickening of the point λ.

We can easily form the intersection of locally closed subschemes:

D(a) ∩ V (I) ∩D(b) ∩ V (J) = D(ab) ∩ V (I + J).

We cannot usually form the union of basic open subschemes and still have an affine scheme. Again, it would
be easy enough to consider non-affine schemes, but it rarely seems to be necessary. Moreover, a closed
subscheme V (a) determines the complementary open subscheme D(a) but not conversely; D(a) = D(a2)
but V (a) 6= V (a2) in general.

We say that a scheme X is reduced if OX has no nonzero nilpotents, and write Xred = spec(OX/
√

0),
which is the largest reduced closed subscheme of X. Moreover, if Y ⊆ X is closed then Yred = Xred if and
only if X(k) = Y (k) for every field k (we leave the proof as an exercise).

We define the union of closed subschemes by V (I)∪ V (J) = V (I∩ J). We also define the schematic union
by V (I) + V (J) = V (IJ). This is a sort of “union with multiplicity” — in particular, V (I) + V (I) 6= V (I)
in general. In the previous example, we have

{λ} ∪ {λ} = V ((x− λ)2)

which is a thickening of {λ}. Note that V (IJ)red = V (I ∩ J)red, because (I ∩ J)2 ≤ IJ ≤ I ∩ J .
We shall say that X is connected if it cannot be split nontrivially as Y q Z, if and only if there are no

idempotents in OX other than 0 and 1.
We shall say that a scheme X is integral if and only if OX is an integral domain, and that X is irreducible

if and only if Xred is integral. We also say that X is Noetherian if and only if the ring OX is Noetherian. If
so, then Xred can be written in a unique way as a finite union

⋃
i Yi with Yi an integral closed subscheme.

The schemes Yi are called the irreducible components of Xred; they are precisely the schemes V (pi) for pi a
minimal prime ideal of OX . See [18, section 6] for this material.

Suppose that X is Noetherian and reduced, say X =
⋃
i∈ S Yi as above for some finite set S. Suppose

that S = S′ q S′′. Write X ′ =
⋃
S′ Yi = V (I ′), where I ′ =

⋂
S′ pi, and similarly for X ′′ and I ′′. If we then

write
Γ(I ′) = {a ∈ OX | a(I ′)N = 0 for N � 0},

we find that Γ(I ′) = I ′′ and thus V (Γ(I ′)) = X ′′.

Example 2.28. Take Z = spec(k[x, y]/(xy2)) and set

X = V (y) = spec(k[x])

X ′ = V (y2) = spec(k[x, y]/(y2))

Y = V (x) = spec(k[y])

Then X is the x-axis, Y is the y-axis and X ′ is an infinitesimal thickening of X. The schemes X and Y are
integral, and X ′ is irreducible because X ′red = X. The scheme Z is reducible, and its irreducible components
are X and Y .

2.4. Zariski spectra and geometric points. If R is a ring, we define the Zariski space to be

zar(R) = { prime ideals p < R }.
If X is a scheme, we write Xzar = zar(OX). Note that

V (I)zar = zar(OX/I) = {p ∈ Xzar | I ≤ p}
D(f)zar = zar(OX [1/f ]) = {p ∈ Xzar | f 6∈ p}

(X q Y )zar = Xzar q Yzar
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There is a map
(X × Y )zar −→ Xzar × Yzar,

but it is almost never a bijection.
Suppose that Y, Z ≤ X are locally closed; then

(Y ∩ Z)zar = Yzar ∩ Zzar.

If Y and Z are closed then
(Y ∪ Z)zar = (Y + Z)zar = Yzar ∪ Zzar.

We give Xzar the topology with closed sets V (I)zar. A map of schemes X −→ Y then induces a continuous
map Xzar −→ Yzar.

Suppose that R is an integral domain, and that x ∈ X(R). Then x gives a map x∗ : OX −→ R, whose kernel
px is prime. We thus have a map X(R) −→ Xzar, which is natural for monomorphisms of R and arbitrary
morphisms of X.

A geometric point of X is an element of X(k), for some algebraically closed field k. Suppose that either
OX is a Q-algebra, or that some prime p is nilpotent in OX . Let k be an algebraically closed field of the
appropriate characteristic, with transcendence degree at least the cardinality of OX . Then it is easy to see
that X(k) −→ Xzar is epi.

A useful feature of the Zariski space is that it behaves quite well under colimits [21, 7]. The following
proposition is another example of this.

Proposition 2.29. Suppose that a finite group G acts on a scheme X. Then (X/G)zar = Xzar/G.

Proof. Write S = OX and R = SG = OX/G. Given a prime p ∈ zar(R) = (X/G)zar, the fibre F over p in
zar(S) = Xzar is just zar(Sp/pSp) (see [18, Section 7]). We need to prove that F is nonempty, and that G
acts transitively on F .

As localisation is exact, we have (Sp)G = Rp, so we can replace R by Rp and thus assume that R is local at
p. With this assumption, we have F = zar(S/pS). For a ∈ S we write fa(t) =

∏
g∈G(t− ga) ∈ S[t]G = R[t],

so that fa is a monic polynomial with fa(a) = 0. This shows that S is an integral extension over R, so F 6= ∅
and there are no inclusions between the elements of F [18, Theorem 9.3].

Let q and r be two points of F , so they are prime ideals in S with q ∩ R = qG = p and r ∩ R = rG = p.
Write I =

⋂
g∈G g.q ≤ S. If a ∈ I then g.a ∈ q for all g so fa(t) ∈ t|G| + q[t] but also fa(t) is G-invariant

so fa(t) ∈ t|G| + qG[t] ⊆ t|G| + r[t]. As fa(a) = 0 we conclude that a is nilpotent mod r but r is prime so
a ∈ r. Thus

⋂
g∈G g.q ≤ r. As r is prime, we deduce that g.q ≤ r for some g ∈ G. As there are no inclusions

between the elements of F , we conclude that g.q = r. Thus G acts transitively on F , which proves that
(X/G)zar = Xzar/G. �

A number of interesting things can be detected by looking at Zariski spaces. For example, Xzar splits as
a disjoint union if and only if X does — see Corollary 2.40.

We also use the space Xzar to define the Krull dimension of X.

Definition 2.30. If there is a chain p0 < . . . < pn in Xzar, but no longer chain, then we say that dim(X) = n.
If there are arbitrarily long chains then dim(X) =∞.

Example 2.31. The terminal object 1 has dimension one (because there are chains (0) < (p) of prime
ideals in Z). If OX is a field then dim(X) = 0. If OX is Noetherian then dim(Gm ×X) = 1 + dim(X) and
dim(An ×X) = n+ dim(X) [18, Section 15]. In particular, we have dim(An) = dim(1× An) = n+ 1.

Example 2.32. The schemes FGL, IPS and FI all have infinite dimension.

2.5. Nilpotents, idempotents and connectivity.

Proposition 2.33. Suppose that e ∈ R is idempotent, and f = 1− e. Then

eR = R/f = R[e−1] = {a ∈ R | fa = 0}.
Moreover, this is a ring with unit e, and we have R = eR× fR as rings. �

Proposition 2.34. If X is a scheme, then splittings X =
∐n
i=1Xi biject with systems of idempotents

{e1, . . . , en} with
∑
i ei = 1 and eiej = δijej . �
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Example 2.35. Let Mult(n) be the scheme of polynomials φ(u) of degree at most n such that φ(1) = 1 and
φ(uv) = φ(u)φ(v). Such a series can be written as φ(u) =

∑n
i=0 eiu

i, and the conditions on φ are equivalent
to
∑
i ei = 1 and eiej = δijej . In other words, the elements ei are orthogonal idempotents. Using this, we

see easily that Mult(n) =
∐n
i=0 1.

Example 2.36. Now let E(n) be the scheme of n×n matrices A over R such that A2 = A. Define αA(u) =
uA+ (1−A) = (u−1)A+ 1 ∈Mn(R[u]) and φA(u) = det(αA(u)) ∈ R[u]. We find easily that αA(1) = 1 and
αA(uv) = αA(u)αA(v), so φA(u) ∈ Mult(n)(R). This construction gives a map E(n) −→ Mult(n) =

∐n
i=0 1,

which gives a splitting E(n) =
∐n
i=0E(n, i), where E(n, i) is the scheme of n × n matrices A such that

A2 = A and φA(u) = ui.
Note that the function A 7→ trace(A) lies in OE(n) and that E(n, i) is contained in the closed subscheme

E′(n, i) = {A | trace(A) = i}. However, if n > 0 but n = 0 in R then E′(n, 0)(R) and E′(n, n)(R) are not
disjoint, which shows that E′(n, i) 6= E(n, i) in general.

For any ring R, we let Nil(R) denote the set of nilpotents in R.

Proposition 2.37. Nil(R) is the intersection of all prime ideals in R.

Proof. [18, Section 1] �

Proposition 2.38 (Idempotent Lifting). Suppose that e ∈ R/Nil(R) is idempotent. Then there is a unique
idempotent ẽ ∈ R lifting e.

Proof. Choose a (not necessarily idempotent) lift of e to R, call it e, and write f = 1− e. We know that ef
is nilpotent, say enfn = 0. Define

c = en + fn − 1 = en + fn − (e+ f)n

This is visibly divisible by ef , hence nilpotent; thus en + fn = 1 + c is invertible. Define

ẽ = en/(1 + c) f̃ = fn/(1 + c) = 1− ẽ

Then ẽ is an idempotent lifting e. If ẽ1 is another such then ẽ1f̃ is idempotent. It lifts ef = 0, so it is also
nilpotent. It follows that ẽ1f̃ = 0 and ẽ1 = ẽẽ1. Similarly, ẽ = ẽẽ1, so ẽ = ẽ1. �

Theorem 2.39 (Chinese Remainder Theorem). Suppose that {Iα} is a finite family of ideals in R, which
are pairwise coprime (i.e. Iα + Iβ = R when α 6= β). Then

R/
⋂
α

Iα =
∏
α

R/Iα

Proof. [18, Theorems 1.3,1.4] �

Corollary 2.40. Suppose that zar(R) =
∐
α zar(R/Iα) (a finite coproduct). Then there are unique ideals

Jα ≤ Iα ≤
√
Jα such that R '

∏
αR/Jα.

Proof. Proposition 2.37 implies that
⋂
α Iα is nilpotent. If α 6= β then no prime ideal contains Iα + Iβ , so

Iα + Iβ = R. Now use the Chinese remainder theorem, followed by idempotent lifting. �

Remark 2.41. There are nice topological applications of these ideas in [15, 7], for example.

2.6. Sheaves, modules and vector bundles. The simplest definition of a sheaf over a scheme X is just
as a module over the ring OX . (It would be more accurate to refer to this as a quasi-coherent sheaf of
O-modules over X, but we shall just call it a sheaf.) However, we shall give a different (but equivalent)
definition which fits more neatly with our emphasis on schemes as functors, and which generalises more
easily to formal schemes.

Definition 2.42. A sheaf over a functor X ∈ F consists of the following data:
(a) For each (R, x) ∈ Points(X), a module Mx over R.
(b) For each map f : (R, x) −→ (S, y) in Points(X), an isomorphism θ(f) = θ(f, x) : S ⊗R Mx −→ My of

S-modules.
The maps θ(f, x) are required to satisfy the functorality conditions
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(i) In the case f = 1: (R, x) −→ (R, x) we have θ(1, x) = 1: Mx −→Mx.

(ii) Given maps (R, x)
f−→ (S, y)

g−→ (T, z), the map θ(gf, x) is just the composite

T ⊗RMx = T ⊗S S ⊗RMx
1⊗θ(f,x)−−−−−−→ T ⊗S My

θ(g,y)−−−−→Mz.

We write SheavesX for the category of sheaves over X. This has direct sums (with (M ⊕N)x = Mx ⊕Nx)
and tensor products (with (M ⊗N)x = Mx ⊗R Nx when x ∈ X(R)). The unit for the tensor product is the
sheaf O, which is defined by Ox = R for all x ∈ X(R).

Remark 2.43. If M andN are sheaves over a sufficiently bad functorX, it can happen that SheavesX(M,N)
is a proper class. This will not be the case if X is a scheme or a formal scheme, however.

Example 2.44. Let x be a point of A1(R), or in other words an element of R. Define Mx = R/x; this gives
a sheaf over A1. Note that Mx = 0 if x is invertible, but Mx = R if x = 0. Thus, M is concentrated at the
origin of A1.

Definition 2.45. (1) Let X be a functor in F. If N is a module over the ring OX = F(X,A1), we define
a sheaf Ñ over X by Ñx = R⊗OX

N , where we use x to make R into an algebra over OX .
(2) If M is a sheaf over X and R is a ring, we write A(M)(R) =

∐
x∈X(R)Mx. If f : R −→ S is

a homomorphism, we define a map A(M)(R) −→ A(M)(S), which sends Mx to Mf(x) by m 7→
θ(f, x)(1⊗m). This gives a functor A(M) ∈ FX .

(3) If M is a sheaf over X, we define Γ(X,M) = FX(X,A(M)). Thus, an element u ∈ Γ(X,M) is a
system of elements ux ∈Mx for all rings R and points x ∈ X(R), which behave in the obvious way
under maps of rings. If M = O then A(O) = A1 ×X and Γ(X,O) = OX . It follows that Γ(X,M) is
a module over OX for all M .

(4) If Y is a scheme over X, we also define Γ(Y,M) = FX(Y,A(M)).

Proposition 2.46. For any functor X ∈ F, the functor Γ(X,−) : SheavesX −→ ModOX
is right adjoint to

the functor N 7→ Ñ .

Proof. For typographical convenience, we will write TN for Ñ and GM for Γ(X,M). We define maps
η : N −→ GTN and ε : TGM −→ M as follows. Let n be an element of N ; for each point x ∈ X(R), we
define η(n)x = 1 ⊗ n ∈ R ⊗OX

N = (TN)x, giving a map η as required. Next, we define εx : (TGM)x =
R ⊗OX

Γ(X,M) −→ Mx by εx(a ⊗ u) = aux. We leave it to the reader to check the triangular identities
(εT )(Tη) = 1T and (Gε)(ηG) = 1G, which show that we have an adjunction. �

Proposition 2.47. Let X be a scheme, and let x0 ∈ X(OX) be the tautological point, which corresponds
to the identity map of OX under the isomorphism X = spec(OX). Then there is a natural isomorphism
Γ(X,M) = Mx0 , and Γ(X,−) : SheavesX −→ ModOX

is an equivalence of categories.

Proof. First, we define a map α : Γ(X,M) −→ Mx0 by u 7→ ux0 . Next, suppose that m ∈ Mx0 . If x ∈ X(R)
for some ring R then we have a corresponding ring map x̂ : f 7→ f(x) from (OX , x0) to (R, x). We define
β(m)x = θ(x̂, x0)(m) ∈Mx. One can check that this gives an element β(m) ∈ Γ(X,M), and that β : Mx0 −→
Γ(X,M) is inverse to α. It follows that Γ(X, Ñ) = Ñx0 , which is easily seen to be the same as N . Also, if
N = Mx0 then Ñx = R⊗OX

Mx0 , and θ(x̂, x0) gives an isomorphism of this with Mx, so Ñ = M . It follows
that the functor N 7→ Ñ is inverse to Γ(X,−). �

It follows that when X is a scheme, the category SheavesX is Abelian. Because tensor products preserve
colimits and finite products, we see that the functors M 7→Mx preserve colimits and finite products.

We next need some recollections about finitely generated projective modules. If M is such a module
over a ring R and p ∈ zar(R) then Mp is a finitely generated module over the local ring Rp and thus is
free [18, Theorem 2.5], of rank rp(M) say. Note that rp(M) is also the dimension of κ(p)⊗RM over the field
κ(p) = Rp/pRp. If this is independent of p then we call it r(M) and say that M has constant rank. Clearly,
if any two of M , N and M ⊕N have constant rank then so does the third and r(M ⊕N) = r(M) + r(N).
Also, if r(M) = 0 then M = 0.

Definition 2.48. Let M be a sheaf over a functor X. If Mx is a finitely generated projective module over
Ox for all x ∈ X, we say that M is a vector bundle or locally free sheaf over X. If in addition Mx has rank
one for all x, we say that M is a line bundle or invertible sheaf .
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If X is a scheme, a sheaf M is a vector bundle if and only if Γ(X,M) is a finitely generated projective
module over OX . However, this does not generalise easily to formal schemes, so we do not take it as the
definition. It is not hard to check that Mx has constant rank r for all R and all x ∈ X(R) if and only if Mx

has dimension r over K for all algebraically closed fields K and all x ∈ X(K).

Remark 2.49. In algebraic topology, it is very common that the naturally occurring projective modules are
free, and thus that the corresponding vector bundles and line bundles are trivialisable. However, they are
typically not equivariantly trivial for important groups of automorphisms, so it is conceptually convenient
to avoid choosing bases. The main example is that if Z is a finite complex and V is a complex vector bundle
over Z with Thom complex ZV then Ẽ0ZV gives a line bundle over ZE . A choice of complex orientation on
E gives a Thom class and thus a trivialisation, but this is not invariant under automorphisms of E.

Example 2.50. Recall the scheme E(n) =
∐n
i=0E(n, i) of Example 2.36. A point of E(n)(R) is an n × n

matrix A over R with A2 = A. This means that MA = A.Rn is a finitely generated projective R-module, so
this construction defines a vector bundle M over E(n). If A is a point of E(n, i) (so that det((u−1)A+1) =
ui ∈ R[u]) and R is an algebraically closed field, then elementary linear algebra shows that A has rank i. It
follows that the restriction of M to E(n, i) has rank i.

Let N be a vector bundle over an arbitrary scheme X. The associated projective OX -module is then a
retract of a finitely generated free module, so there is a matrix A ∈ E(n)(OX) such that Γ(X,N) = A.OnX
for some n. The point A ∈ E(n)(OX) corresponds to a map α : X −→ E(n), and we find that α∗M = N . If
Xi denotes the preimage of E(n, i) under α, then X =

∐
iXi and the restriction of N to Xi has rank i.

Let X be a scheme. Using equivalence SheavesX ' ModOX
again, we see that there are sheaves

Hom(M,N) such that
SheavesX(L,Hom(M,N)) = SheavesX(L⊗M,N).

In particular, we define M∨ = Hom(M,O). If M is a vector bundle then we have Hom(M,N)x =
HomR(Mx, Nx) and thus (M∨)x = Hom(Mx, R). In that case M∨ is again a vector bundle and M∨∨ = M .
If M is a line bundle then we also have M ⊗M∨ = O.

Example 2.51. Let Y be a closed subscheme of X, with inclusion map j : Y −→ X. Then IY = {f ∈
OX | f(y) = 0 for all points y ∈ Y } is an ideal in OX and OY = OX/IY . We define j∗O to be the sheaf over
X corresponding to the OX -module OY . More explicitly, we have

(j∗O)x = Ox/(f(x) | f ∈ JY ⊆ OX).

We also let IY be the sheaf associated to the OX -module IY , so that (IY )x = Ox ⊗OX
IY for all points

x of X. Note that the sequence IY � O � j∗O is short exact in SheavesX , even though the sequences
(IY )x −→ OX � (j∗O)x need only be right exact.

Example 2.52. Given a sheaf N over a functor Y and a map f : X −→ Y , we can define a sheaf f∗N over X
by (f∗N)x = Nf(x). The functor f∗ : SheavesY −→ SheavesX clearly preserves colimits and tensor products.
If N is a vector bundle then so is f∗N and we have f∗Hom(N,M) = Hom(f∗N, f∗M) for all M . If X and
Y are schemes, we find that Γ(X, f∗N) = OX ⊗OY

Γ(Y,N).

Example 2.53. If the functor f∗ defined above has a right adjoint, we call it f∗. If X and Y are schemes
then we know from Proposition 2.47 that there is an essentially unique functor f∗ : SheavesX −→ SheavesY
such that Γ(Y, f∗M) = Γ(X,M) (where the right hand side is regarded as an OY -module using the map
OX −→ OY induced by f). Using the fact that Γ(X, f∗N) = OX ⊗OY

Γ(Y,N) one checks that f∗ is right
adjoint to f∗ as required.

Proposition 2.54. If M is a vector bundle over a scheme X, then A(M) is a scheme.

Proof. Write N = ModOX
(Γ(X,M),OX). Then for any map (x : OX −→ R) ∈ X(R) we have Mx =

ModOX
(N,R), where R is considered as an OX -module via x. If we let S be the symmetric algebra

SymOX
[N ] then we have Mx = AlgOX

(S,R). It follows easily that Rings(S,R) =
∐
x AlgOX ,x(S,R) =∐

xMx = A(M)(R), so A(M) is representable as required. �
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Definition 2.55. Given a line bundle L over a functor X, we define a functor A(L)× over X by

A(L)×(R) =
∐

x∈X(R)

{ isomorphisms u : R −→ Lx of R-modules }.

If X is a scheme, an argument similar to the one for A(M) shows that A(L)× = spec(
⊕

n∈Z N
⊗n), where

N = ModOX
(Γ(X,L),OX) and N⊗(−n) means the dual of N⊗n. In particular, A(L)× is a scheme in this

case.

2.7. Faithful flatness and descent.

Definition 2.56. Let f : X −→ Y be a map of schemes, and f∗ : XY −→ XX the associated pullback functor.
We say that f is flat if f∗ preserves finite colimits. By Example 2.19, it is equivalent to say that f∗ preserves
coequalisers. We say that f is faithfully flat if f∗ preserves finite colimits and reflects isomorphisms.

Remark 2.57. Let f : X −→ Y be faithfully flat. We claim that f∗ reflects finite colimits, so that f∗Z =
lim
−→i

f∗Zi if and only if Z = lim
−→i

Zi. More precisely, if {Zi} is a finite diagram in XY and {Zi −→ Z} is a

cone under the diagram, then {f∗Zi −→ f∗Z} is a colimit cone in XX if and only if {Zi −→ Z} is a colimit
cone in XY . The “if” part is clear. For the “only if” part, write Z ′ = lim

−→i
Zi, so we have a canonical map

u : Z ′ −→ Z. As f is flat we have f∗Z ′ = lim
−→i

f∗Zi = f∗Z. As f∗ reflects isomorphisms, we see that u is an

isomorphism if f∗u is an isomorphism. The claim follows.

Remark 2.58. Classically, a module M over a ring A is said to be flat if the functor M ⊗A (−) is exact.
It is said to be faithfully flat if in addition, whenever M ⊗A L = 0 we have L = 0. It turns out that f is
(faithfully) flat if and only if the associated ring map OY −→ OX makes OX into a (faithfully) flat module
over OY . We leave this as an exercise (consider schemes of the form spec(OX ⊕L), where L is an OX module
and the ring structure is such that L.L = 0).

Remark 2.59. The idea of faithful flatness was probably first used in topology by Quillen [21]. He observed
that if V is a complex vector bundle over a finite complex Z and F is the bundle of complete flags in V ,
then the projection map FE −→ ZE is faithfully flat. This idea was extended and used to great effect in [12].

We next define some other useful properties of maps, which do not seem to fit anywhere else.

Definition 2.60. We say that a map f : X −→ Y is very flat if it makes OX into a free module over OY . A
very flat map is flat, and even faithfully flat provided that X 6= ∅.

Definition 2.61. We say that a map f : X −→ Y is finite if it makes OX into a finitely generated module
over OY .

Remark 2.62. A flat map f : X −→ Y is faithfully flat if and only if the resulting map fzar : Xzar −→ Yzar is
surjective [18, Theorem 7.3].

Example 2.63. An open inclusion D(a) −→ X (where a ∈ OX) is always flat. If a1, . . . , am ∈ OX generate
the unit ideal then

∐
kD(ak) −→ X is faithfully flat.

Example 2.64. If D is a divisor on A1 over Y (as in Example 2.10) then D −→ Y is very flat and thus
faithfully flat.

Definition 2.65. Given a ring R and an R-algebra S, we write I for the kernel of the multiplication map
S ⊗R S −→ S, and Ω1

S/R = I/I2, which is a module over S. Given a map of schemes X −→ Y , we define
Ω1
X/Y = Ω1

OX/OY
, which we think of as a sheaf over X. We say that X is smooth over Y of relative dimension

n if the map X −→ Y is flat and Ω1
X/Y is a vector bundle of rank n over X (we allow the case n = ∞). In

that case, we write ΩkX/Y for the k’th exterior power of Ω1
X/Y over OX , which is a vector bundle over X of

rank
(
n
k

)
.
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Remark 2.66. If X and Y are reduced affine algebraic varieties over C, and X is smooth over Y then the
preimage of each point y ∈ Y is a smooth variety of dimension independent of y. The converse is probably
not true but at least that is roughly the right idea. It has nothing to do with the question of whether the map
X −→ Y is a smooth map of manifolds. The latter only makes sense if X and Y are both smooth varieties (in
other words, smooth over spec(C)), and in that case it holds automatically for any algebraic map X −→ Y .

The following two propositions summarise the basic properties of (faithfully) flat maps.

Proposition 2.67. Let X
f−→ Y

g−→ Z be maps of schemes. Then:
(a) If f and g are flat then gf is flat.
(b) If f and g are faithfully flat then gf is faithfully flat.
(c) If f is faithfully flat and gf is flat then g is flat.
(d) If f and gf are faithfully flat then g is faithfully flat.

Proof. All this follows easily from the definitions. �

Proposition 2.68. Suppose we have a pullback diagram of schemes

W X

Y Z.
u

f

w
r

u

g

w
s

Then:
(a) If s is flat then r is flat.
(b) If s is faithfully flat then r is faithfully flat.
(c) If g is faithfully flat and r is flat then s is flat.
(d) If g and r are faithfully flat so s is faithfully flat.

Proof. Consider the functor f∗ : XW −→ XY , which sends a scheme U u−→ W over W to the scheme U
fu−−→ Y

over Y . Colimits in XW are constructed by forming the colimit in X and equipping it with the obvious map
to W . This means that f∗ preserves and reflects colimits, as does g∗. For any scheme V over X, we have
W ×X V = (Y ×ZX)×X V = Y ×Z V , or in other words f∗r∗V = s∗g∗V in XY . It follows that if s∗ preserves
or reflects finite colimits then so does r∗, which gives (a) and (b).

For part (c), suppose that g is faithfully flat and r is flat. This implies that sf = gr is flat. Also, part (b)
says that any pullback of a faithfully flat map is faithfully flat, and f is a pullback of g so f is faithfully
flat. As sf is flat, part (c) of the previous proposition tells us that s is flat, as required. A similar argument
proves (d). �

Proposition 2.69. Let f : X −→ Y be a faithfully flat map, and let {Vi} be a finite diagram in XY . If
{f∗Vi} has a strong colimit in XX , then {Vi} has a strong colimit in XX . In other words, f∗ reflects strong
finite colimits.

Proof. Write V = lim
−→i

Vi. Given a map g : X ′ −→ X, we need to show that g∗V = lim
−→i

g∗Vi. To see this,

form the pullback square

Y ′ X ′

Y X.

w
f ′

u

g′

u

g

w
f

We know from Proposition 2.68 that f ′ is faithfully flat. Because f is flat, we have f∗V = lim
−→i

f∗Vi.

By hypothesis, this colimit is strong, so (g′)∗f∗V = lim
−→i

(g′)∗f∗Vi. As gf ′ = fg′, we have (f ′)∗g∗V =

lim
−→i

(f ′)∗g∗Vi. As f ′ is faithfully flat, the functor (f ′)∗ reflects colimits, so g∗V = lim
−→i

g∗Vi as required. �
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Proposition 2.70. If f : X −→ Y is faithfully flat and Y −→ Z is arbitrary then the diagram

X ×Y X ww X
f−→ Y

is a strong coequaliser in XZ .

Proof. As f∗ : XY −→ XX reflects strong coequalisers, it is enough to show that the above diagram becomes
a strong coequaliser after applying f∗. Explicitly, we need to show that the following is a strong coequaliser:

X ×Y X ×Y X ww
d0

d1
X ×Y X

d−→ X,

where

d0(a, b, c) = (b, c)

d1(a, b, c) = (a, c)

d(a, b) = b.

In fact, one can check that this is a split coequaliser, with splitting given by the maps

X ×Y X ×Y X
s←− X ×Y X

t←− X,
where

s(a, b) = (a, b, b)

t(a) = (a, a).

As split coequalisers are preserved by all functors, they are certainly strong coequalisers. �

Now suppose that f : X −→ Y is faithfully flat, and that U is a scheme over X. We will need to know
when U descends to Y , in other words when there is a scheme V over Y such that U = V ×Y X. Given a
point a ∈ X(R), we regard a as a map spec(R) −→ X and write Ua for the pullback of U along this map,
which is a scheme over spec(R).

Definition 2.71. Let f : X −→ Y be a map of schemes, and let U be a scheme over X. A system of descent
data for U consists of a collection of maps θa,b : Ua −→ Ub of schemes over spec(R), for any ring R and any
pair of points a, b ∈ X(R) with f(a) = f(b). These maps are required to be natural in (a, b), and to satisfy
the cocycle conditions θa,a = 1 and θa,c = θb,c ◦ θa,b.

We write Xf for the category of pairs (U, θ), where U is a scheme over X and θ is a system of descent
data.

Remark 2.72. The naturality condition for the maps θa,b just means that they give rise to a map π∗0U −→
π∗1U of schemes over X ×Y X.

Remark 2.73. Note also that the cocycle conditions imply that θa,b ◦ θb,a = 1, so θa,b is an isomorphism.

Definition 2.74. If V is a scheme over Y and f : X −→ Y then there is an obvious system of descent data
for U = f∗V , in which θa,b is the identity map of Ua = Vf(a) = Vf(b) = Ub. We can thus consider f∗ as a
functor XY −→ Xf . We say that a system of descent data θ on U is effective if (U, θ) is equivalent to an object
in the image of f∗. It is equivalent to say that there is a scheme V over Y and an isomorphism φ : U ' f∗V
such that

θa,b = (Ua
φ−→ Vf(a) = Vf(b)

φ−1

−−→ Ub)
for all (a, b).

Definition 2.75. Given a map f : X −→ Y , a scheme U
g−→ X over X, and a system of descent data θ for U ,

we define U
q−→ QU to be the coequaliser of the maps d0, d1 : U ×Y X −→ U defined by

d0(u, a) = u

d1(u, a) = θg(u),a(u).

We note that d0 and d1 have a common splitting s : u 7→ (u, g(u)), so we have a reflexive coequaliser. We
also note that there is a unique map r : QU −→ Y such that rq = fg, so we can think of QU as a scheme over
Y .
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Proposition 2.76 (Faithfully flat descent). If f : X −→ Y is faithfully flat, then the functor f∗ : XY −→ Xf
is an equivalence, with inverse given by Q. Moreover, the coequaliser in XY that defines QU is a strong
coequaliser.

Proof. Firstly, it is entirely formal to check that Q is left adjoint to f∗. Next, we claim that Qf∗ = 1, or in
other words that the projection map f∗V = V ×Y X −→ V is a coequaliser of the maps d0, d1 : V ×Y X×Y X −→
V×YX. Explicitly, we need to show that (v, a) 7→ v is the coequaliser of (v, b, a) 7→ (v, b) and (v, b, a) 7→ (v, a).
This is just the same as Proposition 2.70. Thus Qf∗ = 1 as claimed.

We now show that f∗QU = U . As f∗ preserves coequalisers, it will be enough to show that the projection
f∗U = U ×Y X −→ U is the coequaliser of the fork U ×Y X ×Y X ww

f∗d0

f∗d1
U ×Y X. More explicitly, we need to

show that the map (u, a) 7→ u is the coequaliser of the maps (u, a, b) 7→ (u, b) and (u, a, b) 7→ (θg(u),a(u), b).
In fact, it is a split coequaliser, with splitting given by the maps u 7→ (u, g(u)) and (u, a) 7→ (u, a, a). Thus,
f∗Q = 1 as claimed. We also see that the coequaliser defining QU becomes split and thus strong after
applying f∗. It follows from Proposition 2.69 that it was a strong coequaliser in the first place. �

Corollary 2.77. If f : X −→ Y is faithfully flat, then the functor f∗ : XY −→ XX is faithful. �

We also have a similar result for sheaves.

Definition 2.78. Let f : X −→ Y be a map of schemes, and let M be a sheaf over X. A system of decent
data for M consists of a collection of maps θa,b : Ma −→Mb of R-modules, for every ring R and every pair of
points a, b ∈ X(R) with f(a) = f(b). These are supposed to be natural in (a, b) and to satisfy the conditions
θa,a = 1 and θb,c ◦ θa,b = θa,c. We write Sheavesf for the category of sheaves over X equipped with descent
data. The pullback functor f∗ can be regarded as a functor from SheavesY to Sheavesf .

Proposition 2.79. If f is faithfully flat, then the functor f∗ : SheavesX −→ Sheavesf is an equivalence of
categories.

The proof is similar to that of Proposition 2.76, and is omitted.
We shall say that a statement holds locally in the flat topology or fpqc locally if it is true after pulling back

along a faithfully flat map. (fpqc stands for fidèlement plat et quasi-compact; the compactness condition is
automatic for affine schemes). Suppose that a certain statement S is true whenever it holds fpqc-locally. We
then say that S is an fpqc-local statement.

Remark 2.80. Let X be a topological space. We say that a statement S holds locally on X if and only if
there is an open covering X =

⋃
i Ui such that S holds on each Ui. Write Y =

∐
i Ui, so Y −→ X is a coproduct

of open inclusions and is surjective. We could call such a map an “disjoint covering map”. We would then
say that S holds locally if and only if it holds after pulling back along a disjoint covering map. One can get
many analogous concepts varying the class of maps in question. For example, we could use covering maps
in the ordinary sense. In the category of compact smooth manifolds, we could use submersions. This is the
conceptual framework in which the above definition is supposed to fit.

Example 2.81. Suppose that N is a sheaf on Y which vanishes fpqc-locally. This means that there is a
faithfully flat map f : X −→ Y such that Γ(X, f∗N) = OX ⊗OY

Γ(Y,N) = 0. By the classical definition of
faithful flatness, this implies that N = 0. In other words, the vanishing of N is an fpqc-local condition.

Example 2.82. Let N be a sheaf over Y , and let n be an element of Γ(Y,N) that vanishes fpqc-locally. This
means that there is a faithfully flat map f : X −→ Y such that the image of n in Γ(X, f∗N) = OX⊗OY

Γ(Y,N)
is zero. Let g be the projection X ×Y X −→ Y . One can show that the diagram

Γ(Y,N)
f∗−→ Γ(X, f∗N) ww Γ(X ×Y X, g∗N)

is an equaliser. Indeed, it becomes split after tensoring with OX over OY , and that functor reflects equalisers
by the classical definition of faithful flatness. In particular, the map marked f∗ is injective, so n = 0. Thus,
the vanishing of n is an fpqc-local condition.

Example 2.83. Suppose that M is a vector bundle of rank r over a scheme X. We claim that M is fpqc-
locally free of rank r, in other words that there is a faithfully flat map f : W −→ X such that f∗M ' Or. To
prove this, choose a matrix A ∈ Mn(OX) such that Γ(X,M) = A.OnX . If R is a ring and x ∈ X(R) then
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A(x) ∈Mn(R) and Mx = A(x).Rn. Let W (R) be the set of triples (x, P,Q) such that x ∈ X(R) and P and
Q are matrices over R of shape r × n and n× r such that det(PA(x)Q) is invertible. This is easily seen to
be a scheme over X. In fact, it is an open subscheme of the scheme of all triples (x, P,Q), which can be
identified with A2nr ×X. It follows that W is flat over X. Moreover, if R is a field then elementary linear
algebra tells us that the map W (R) −→ X(R) is surjective, so that W is faithfully flat over R. If (x, P,Q) is a
point of W then A(x)Q : Rr −→Mx is a split monomorphism. By comparison of ranks, it is an isomorphism.
It follows that M becomes free after pulling back to W .

Example 2.84. Proposition 2.68 tells us that flatness and faithful flatness are themselves fpqc-local prop-
erties.

Example 2.85. Let M be a vector bundle of rank r over a scheme X, as in Example 2.83. Let Bases(M)
be the functor of pairs (x,B) where x is a point of X and B : Orx −→ Mx is an isomorphism. Note that
Bases(M)(R) can be identified with the set of tuples (x, b1, . . . , br, β1, . . . , βr) such that bi ∈Mx and βj ∈M∨x
and βj(bi) = δij , so Bases(M) is a closed subscheme of A(M)rX ×X A(M∨)rX .

It is clear that M becomes free after pulling back along the projection

f : Bases(M) −→ X.

If M = Or is free, then Bases(M) is just the scheme GLr ×X, where GLr is the scheme of invertible
r × r matrices. It’s not hard to see that OGLr

= Z[xi,j | 0 ≤ i, j < r][det(xij)−1] is torsion-free, and clearly
GLr(k) 6= ∅ for all fields k, and one can conclude that the map GLr −→ 1 = spec(Z) is faithfully flat. It follows
that Bases(M) is faithfully flat over X when M is free. Even if M is not free, we see from Example 2.83 that
it is fpqc-locally free, so the map Bases(M) −→ X is fpqc-locally faithfully flat. As remarked in Example 2.84,
faithful flatness is itself a local condition, so Bases(M) −→ X is faithfully flat.

Example 2.86. Any monic polynomial f ∈ R[x] can be factored as a product of linear terms, locally in the
flat topology. Indeed, suppose

f =
m∑
0

(−1)m−kam−kxk

with a0 = 1. It is well known that S = Z[x1, . . . xm] is free of rank m! over T = SΣm = Z[σ1, . . . σm], where
σk is the k’th elementary symmetric function in the x’s. A basis is given by the monomials xα =

∏
xαk

k for
which αk < k. We can map T to R by sending σk to ak, and then observe that U = S ⊗T R is free and thus
faithfully flat over R. Clearly f(x) =

∏
k(x− xk) in U [x], as required.

We conclude this section with some remarks about open mappings. We have to make a slightly twisted
definition, because in our affine context we do not have enough open subschemes. Suppose that f : X −→ Y
is a map of spaces, and that W ⊆ X is closed. We can then define W ′ = {y ∈ Y | f−1y ⊆ W} = f(W c)c.
Clearly f is open iff (W closed implies W ′ closed). We will define openness for maps of schemes by analogy
with this.

Definition 2.87. Let f : X −→ Y be a map of schemes. For any closed subscheme W ⊆ X, we define a
subfunctor W ′ of Y by

W ′(R) = {y ∈ Y (R) |Wy = Xy}.

We say that f is open if for every W , the corresponding subfunctor W ′ ⊆ Y is actually a closed subscheme.

Proposition 2.88. A very flat map is open.

Proof. Let f : X −→ Y be very flat. Write A = OX and B = OY , and choose a basis A = B{eα}. Suppose
that W = V (I) is a closed subscheme of X. Let {gβ} be a system of generators of I, so we can write
gβ =

∑
α gβαeα for suitable elements gαβ ∈ A. Consider a point y ∈ Y (R), corresponding to a map

y∗ : B −→ R. This will lie in W ′(R) iff R⊗B A = R⊗B (A/I), iff the image of I in R⊗B A = R{eα} is zero.
This image is generated by the elements hβ =

∑
α y∗(gβα)eα. Thus, it vanishes iff y∗(gβα) = 0 for all α and

β. This shows that W ′ = V (I ′), where I ′ = (gβα), so W ′ is a closed subscheme as required. �
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2.8. Schemes of maps.

Definition 2.89. Let Z be a functor Rings −→ Sets, and let X and Y be functors over Z. For any ring R,
we let MapZ(X,Y )(R) be the class of pairs (z, u), where z ∈ Z(R) and u : Xz −→ Yz is a map of functors
over spec(R). If this is a set (rather than a proper class) for all R, then we get a functor MapZ(X,Y ) ∈ F.
This is clearly the case whenever X, Y and Z are all schemes. However, the functor MapZ(X,Y ) need not
itself be a scheme.

When Z = 1 is the terminal scheme we will usually write Map(X,Y ) rather than Map1(X,Y ).

Remark 2.90. It is formal to check that

FZ(W,MapZ(X,Y )) = FZ(W ×Z X,Y ) = FW (W ×Z X,W ×Z Y ).

In particular, if X, Y , Z and MapZ(X,Y ) are all schemes then we have

XZ(W,MapZ(X,Y )) = XZ(W ×Z X,Y ) = XW (W ×Z X,W ×Z Y ).

Example 2.91. It is not hard to see that maps An × spec(R) −→ Am × spec(R) over spec(R) biject with
m-tuples of polynomials over R in n variables, so Map(An,Am)(R) = R[x1, . . . , xn]m, which is isomorphic
to
⊕

n∈N R (naturally in R). This functor is not a representable (it does not preserve infinite products, for
example) so Map(An,Am) is not a scheme. It is a formal scheme, however.

Example 2.92. Write D(n)(R) = {a ∈ R | an+1 = 0}, so

D(n) = spec(Z[x]/xn+1)

is a scheme. We find that Map(D(n),A1)(R) = R[x]/xn+1 '
∏n
i=0R, so that Map(D(n),A1) ' An+1 is a

scheme.

Example 2.93. Let E be an even periodic ring spectrum. As ΩU(n) is a commutative H-space, we see that
E0(ΩU(n)) is a ring, so we can define a scheme spec(E0(ΩU(n))). We will see later that there is a canonical
isomorphism

spec(E0(ΩU(n))) ' MapSE
((CPn−1)E ,Gm).

We now give a proposition which generalises the last two examples.

Proposition 2.94. Let Z be a scheme and let X and Y be schemes over Z, and suppose that X is finite
and very flat over Z. Then MapZ(X,Y ) is a scheme.

Proof. Let R be a ring, and z a point of Z(R), giving a map ẑ : OZ −→ R. We need to produce an algebra B
over OZ such that the maps B −→ R of OZ-algebras biject with maps Xz −→ Yz of schemes over spec(R), or
equivalently with maps R⊗OZ

OY −→ R⊗OZ
OX of R-algebras, or equivalently with maps OY −→ R⊗OZ

OX
of OZ-algebras.

Write O∨X = HomOZ
(OX ,OZ) and A = SymOZ

[O∨X ⊗OZ
OY ]. Then

AlgOZ
(A,R) = HomOZ

(O∨X ⊗OZ
OY , R) = HomOZ

(OY , R⊗OZ
OX).

A suitable quotient B of A will pick out the algebra maps from OY to OW ⊗OZ
OX . To be more explicit, let

{e1, . . . , en} be a basis for OX over OZ , with 1 =
∑
i diei and eiej =

∑
k cijkek. Let {εi} be the dual basis

for O∨X . Then B is A mod the relations

εk ⊗ ab =
∑
i,j

cijk(εi ⊗ a)(εj ⊗ b)

εi ⊗ 1 = di.
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More abstractly, if we write q for the projection A −→ B and j for the inclusion O∨X ⊗ OY −→ A, then B is
the largest quotient of A such that the following diagrams commute:

OY ⊗ OY ⊗ O∨X OY ⊗ O∨X

OY ⊗ OY ⊗ O∨X ⊗ O∨X

OY ⊗ O∨X ⊗ OY ⊗ O∨X

B ⊗B B

w
µY ⊗1

u

1⊗µ∨X

u

qj

u

twist

u

qj⊗qj

wµB

O∨X OZ

O∨X ⊗ OY B

w
η∨

u

1⊗η

u

η

w
qj

We conclude that spec(B) has the defining property of MapZ(X,Y ). �

2.9. Gradings. In this section, we show that graded rings are essentially the same as schemes with an action
of the multiplicative group Gm.

Definition 2.95. A grading of a ring R is a system of additive subgroups Rk ≤ R for k ∈ Z such that
R =

⊕
k Rk and 1 ∈ R0 and RjRk ⊆ Rj+k for all j, k. We say that a map g : R −→ S between graded rings

is homogeneous if g(Rk) ⊆ Sk for all k.

Proposition 2.96. Let X be a scheme. Then gradings of OX biject with actions of the group scheme Gm

on X. Given such actions on X and Y , a map f : X −→ Y is Gm-equivariant if and only if the corresponding
map OY −→ OX is homogeneous.

Proof. Given an action of Gm on X, we define (OX)k to be the set of maps f : X −→ A1 such that f(u.x) =
ukf(x) for all rings R and points u ∈ Gm(R), x ∈ X(R). It is clear that 1 ∈ (OX)0 and that (OX)j(OX)k ⊆
(OX)j+k. We need to check that OX =

⊕
k(OX)k. For this, we consider the map α∗ : OX −→ OGm×X =

OX [u±1]. If α∗(f) =
∑
k u

kfk (so fk = 0 for almost all k), then we find that the fk are the unique functions
X −→ A1 such that f(u.x) =

∑
k u

kfk(x) for all u and x. By taking u = 1, we see that f =
∑
k fk. We also

find that ∑
k

ukvkfk(x) = f((uv).x) = f(u.(v.x)) =
∑
j,k

ujvkfkj(x).

By working in the universal case R = OX [u±1, v±1] and comparing coefficients, we see that fkj = δjkfk so
that fk ∈ (OX)k. It follows easily that the addition map

⊕
k(OX)k −→ OX is an isomorphism, with inverse

f 7→ (fk)k∈Z. Thus, we have a grading of OX .
Conversely, suppose we have a grading (OX)∗. We can then write any element f ∈ OX as

∑
k fk with

fk ∈ (OX)k and fk = 0 for almost all k. We define α∗(f) =
∑
k u

kfk, and check that this gives a ring
map OX −→ OX [u±1]. One can also check that α = spec(α∗) : Gm × X −→ X is an action, and that this
construction is inverse to the previous one. �

Example 2.97. Recall the scheme FGL from Example 2.6. We can let Gm act on FGL by (u.F )(x, y) =
uF (x/u, y/u); this gives a grading of OFGL. Write F (x, y) =

∑
i,j aij(F )xiyj , and recall that the elements aij

generate OFGL. It is clear that (u.F )(x, y) =
∑
i,j u

1−i−jaij(F )xiyj , so that aij(u.F ) = u1−i−jaij(F ), so aij
is homogeneous of degree 1− i− j. This is of course the same as the grading coming from the isomorphisms
OFGL = π0MP = π∗MU , except that all degrees are halved.

3. Non-affine schemes

Let E be the category of (not necessarily affine) schemes in the classical sense, as discussed in [9] for
example. In this section we show that E can be embedded as a full subcategory of F, containing our category
X of affine schemes. We show that our definition of sheaves over functors gives the right answer for functors
coming from non-affine schemes, and we investigate the schemes Pn from this point of view. This theory is
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useful in topology when one wants to study elliptic cohomology, for example [11]. The results here are surely
known to algebraic geometers, but I do not know a reference.

Given a ring A, we write zar(A) for the Zariski spectrum of A, considered as an object of E in the usual
way. The results of this section will allow us to identify zar(A) with spec(A). Of course, in most treatments,
spec(A) is defined to be what we call zar(A).

Definition 3.1. Given a scheme X ∈ E, we define a functor FX ∈ F by

FX(R) = E(zar(R), X).

It is well-known that
E(zar(R), zar(A)) = Rings(A,R),

so that F (zar(A)) = spec(A).

Proposition 3.2. The functor F : E −→ F is full and faithful.

Proof. LetX,Y ∈ E be schemes; we need to show that the map F : E(X,Y ) −→ F(FX,FY ) is an isomorphism.
First suppose that X is affine, say X = zar(A). Then the Yoneda lemma tells us that

F(FX,FY ) = F(spec(A), FY ) = FY (A) = E(zar(A), Y ) = E(X,Y )

as required.
Now let X be an arbitrary scheme. We can cover X by open affine subschemes Xi, and for each i and j

we can cover Xi ∩Xj by open affine subschemes Xijk. This gives rise to a diagram as follows.

E(X,Y )
∏
i E(Xi, Y )

∏
ijk E(Xijk, Y )

F(FX,FY )
∏
i F(FXi, FY )

∏
ijk F(FXijk, FY ).

v w

u

F

w
w

u

F '

u

F '

w
J

w
w

Standard facts about the category E show that the top line is an equaliser. The affine case of our proposition
shows that the middle and right-hand vertical arrows are isomorphisms. If we can prove that the map J is
injective, then a diagram chase will show that the left-hand vertical map is an isomorphism, as required.

Suppose we have two maps f, g : FX −→ FY and that Jf = Jg, or in other words f |FXi
= g|FXi

for
all i. We need to show that f = g. Consider a ring R and a point x ∈ FX(R), or equivalently a map
W = zar(R) x−→ X. We need to show that f(x) = g(x) as maps from W to Y . We can cover W by open
affine subschemes Ws such that x : Ws −→ X factors through Xi for some i. As f |FXi = g|FXi , we see
that f(x) ◦ js = g(x) ◦ js, where js : Ws −→ W is the inclusion. As the schemes Ws cover W , we see that
f(x) = g(x) as required. �

Proposition 3.3. Let X ∈ E be a scheme. Then the category of quasicoherent sheaves of O-modules over
X is equivalent to the category of sheaves over FX.

Proof. Let M be a quasicoherent sheaf of O-modules over X. Consider a ring R and a point x ∈ FX(R),
corresponding to a map x : zar(R) −→ X. We can pull M back along this map to get a quasicoherent sheaf
of O-modules over zar(R), whose global sections form a module G(M)x = Γ(zar(R), x∗M) over R. It is not
hard to see that this construction gives a sheaf GM over the functor FX. If X is affine then we know from
Proposition 2.47 that sheaves over FX are the same as modules over OX , and it is classical that these are
the same as quasicoherent sheaves of O-modules over X, so the functor G is an equivalence in this case.

Now let X ∈ E be an arbitrary scheme, and let N be a sheaf over FX. We can cover X by open
affine subschemes Xi, and we can cover Xi ∩ Xj by open affine subschemes Xijk. By the affine case of
the proposition, we can identify Ni = N |FXi

with a quasicoherent sheaf Mi of O-modules over Xi. The
obvious isomorphism Ni|FXijk

= Nj |FXijk
gives an isomorphism Mi|Xijk

= Mj |Xijk
(because our functor

G is an equivalence for the affine scheme Xijk). One checks that these isomorphisms satisfy the relevant
cocycle condition, so we can glue together the sheaves Mi to get a quasicoherent sheaf M over X. One can
also check that this construction is inverse to our previous one, which implies that G is an equivalence of
categories. �
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From now on we will not usually distinguish between X and FX.
We next examine how projective spaces fit into our framework. Let Pn be the scheme obtained by gluing

together n+ 1 copies of An in the usual way. In more detail, we consider the scheme An+1 =
∏n
i=0 A1, and

let Ui be the closed subscheme where xi = 1, so Ui ' An. If j 6= i we let Vij be the open subscheme of Ui
where xj is invertible. We define φij : Vij −→ Vji by

φij(x0, . . . , xn) = (x0, . . . , xn)/xj .

We use these maps to glue the Ui’s together to get a scheme Pn.
We define a sheaf Li over Ui by Li,a = Ra ≤ Rn+1 for a ∈ Ui(R). Note that if πi : Rn+1 −→ R is the i’th

projection then πi induces an isomorphism Li,a −→ R, so Li,a is a line bundle over Ui. If a ∈ Vij(R) then it
is clear that Li,a = Lj,φij(a). It follows that the bundles Li glue together to give a line bundle L over Pn.
From the construction, we see that there is a short exact sequence L � On+1 � V , in which V is a vector
bundle of rank n. We also write O(k) for the (−k)’th tensor power of L, which is again a line bundle over
Pn.

Proposition 3.4. For any ring R, we can identify Pn(R) = E(zar(R),Pn) with the set of submodules
M ≤ Rn+1 such that M is a summand and has rank one.

This will be proved after a lemma.

Definition 3.5. Write Qn(R) for the set of submodules M ≤ Rn+1 such that L is a rank-one projective
module and a summand, or equivalently Rn+1/M is a projective module of rank n. Given a map R −→ R′

we have a map Qn(R) −→ Qn(R′) sending M to R′ ⊗RM , which makes Qn into a functor.
We now define a map γ : Pn −→ Qn, which will turn out to be an isomorphism. Consider a ring R and a

point x ∈ Pn(R), corresponding to a map x : spec(R) −→ Pn. By pulling back the sequence L � On+1 � V
and identifying sheaves over spec(R) with R-modules, we get a short exact sequence x∗L � Rn+1 � x∗V .
Here x∗L and x∗V are projective, with ranks one and n respectively, so x∗L ∈ Qn(R). We define γ(x) = x∗L.

Lemma 3.6. Let W be an affine scheme, and let W1, . . . ,Wm be a finite cover of W by basic affine open
subschemes Wi = D(ai). Then there is an equaliser diagram

F(W,Qn) −→
∏
i

F(Wi, Q
n) ww

∏
ij

F(Wi ∩Wj , Q
n).

Proof. Write W ′ =
∐
iWi and W ′′ =

∐
ijWi ∩Wj , so that the evident map f : W ′ −→ W is faithfully flat

and W ′′ = W ′×WW ′. We can thus use Proposition 2.79 to identify SheavesW with the category Sheavesf of
sheaves on W ′ equipped with descent data. It follows that for any sheaf F on W , the subsheaves of F biject
with subsheaves K ≤ f∗F that are preserved by the descent data for f∗F . This condition is equivalent to
the condition π∗0K = π∗1K ≤ (fπ0)∗F = (fπ1)∗F . Now take F = On+1, and the lemma follows easily. �

Proof of Proposition 3.4. Suppose we have two points x ∈ Ui(R) ⊂ Pn(R) and y ∈ Uj(R) ⊂ Pn(R), and that
γ(x) = γ(y). It then follows easily from the definitions that x = y.

Now suppose we have two points x, y ∈ Pn(R) such that γ(x) = γ(y). We write W = spec(R), so
x : W −→ Pn. We can cover W by basic affine open subsets W1, . . . ,Wm with the property that each x(Wk)
is contained in some Ui, and each y(Wk) is contained in some Uj . This implies (by the previous paragraph)
that x = y as maps Wk −→ Pn. We can now deduce from Lemma 3.6 that x = y. Thus, γ : Pn(R) −→ Qn(R)
is always injective.

Now consider a point M ∈ Qn(R), so M is a sheaf over W = spec(R). We claim that we can cover W
by basic open subschemes V such that M |V lies in the image of γ : F(V,Pn) −→ F(V,Qn). Indeed, as M is
projective, we can start by covering W with basic open subschemes on which M is free. It is easy to see that
over such a subscheme, there exist maps O

u−→ On+1 v−→ O such that the image of u is M and vu = 1. If we
write u and v in terms of bases in the obvious way then

∑
i uivi = 1, so the elements ui generate the unit

ideal, so the basic open subschemes D(ui) form a covering. On D(ui) we can define x = (u0, . . . , un)/ui ∈ Ui,
and it is clear that γ(x) = M .

We can thus choose a basic open covering W = W1 ∪ . . . ∪ Wm and maps xk : Wk −→ Pn such that
γ(xk) = M |Wk

. Let xjk be the restriction of xj to Wjk = Wj ∩Wk. We then have γ(xjk) = M |Wjk
= γ(xkj)
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and γ is injective so xjk = xkj . We also have a diagram

F(W,Pn)
∏
i F(Wi,Pn)

∏
ij F(Wij ,Pn)

F(W,Qn)
∏
i F(Wi, Q

n)
∏
ij F(Wij , Q

n).

v w

u

γ

w
w

u

γ

u

γ

w w
w

The top row is unchanged if we replace F by E, and this makes it clear that it is an equaliser diagram.
The bottom row is an equaliser diagram by Lemma 3.6. We have already seen that the vertical maps are
injective. The elements xi give an element of

∏
i F(Wi,Pn), whose image in

∏
i F(Wi, Q

n) is the same as
that of M ∈ F(W,Qn). We conclude by diagram chasing that there is an element x ∈ F(W,Pn) such that
γ(x) = M . Thus γ is also surjective, as required. �

Definition 3.7. Suppose that we have elements a0, . . . , an ∈ R, which generate the unit ideal, say
∑
i biai =

1. Let M be the submodule of Rn+1 generated by a = (a0, . . . , an). The elements bj define a map Rn+1 −→ R
which carries L isomorphically to R. It follows that M ∈ Qn(R); the submodules M that occur in this way
are precisely those that are free over R. We write [a0 : . . . : an] for the corresponding point of Pn(R). Most
of the time, when working with points of Pn, we can assume that they have this form, and handle the general
case by localising.

We finish this section with a useful lemma.

Lemma 3.8. We have [a0 : . . . : an] = [a′0 : . . . : a′n] if and only if there is a unit u ∈ R× such that ua′j = aj
for all j, if and only if aia′j = aja

′
i for all i and j.

Proof. The first equivalence is clear if we think in terms of Qn(R). For the second, suppose that ua′j = aj for
all j. Then aia′j = u−1aiaj = a′iaj as required. Conversely, suppose that aia′j = aja

′
i for all i and j. We can

choose sequences b0, . . . , bn and b′0, . . . , b
′
n such that

∑
i aibi = 1 and

∑
i a
′
ib
′
i = 1. Now define u =

∑
i aib

′
i

and v =
∑
j a
′
jb
′
j . Then

ua′j =
∑
i

b′iaia
′
j =

∑
i

b′ia
′
iaj = aj .

Moreover, we have
u
∑
j

bja
′
j =

∑
j

bjaj = 1,

so u is a unit as required. �

4. Formal schemes

In this section we define formal schemes, and set up an extensive categorical apparatus for dealing with
them, and generalise our results for schemes to formal schemes as far as possible. We define the subcategory of
solid formal schemes, which is convenient for some purposes. We also define functors from various categories
of coalgebras to the category of formal schemes, which are useful technical tools. Finally, we study the
question of when MapZ(X,Y ) is a formal scheme.

Definition 4.1. A formal scheme is a functor X : Rings −→ Sets that is a small filtered colimit of schemes.
More precisely, there must be a small filtered category I and a functor i 7→ Xi from I to X ⊆ F = [Rings,Sets]
such that X = lim

−→i
Xi in F, or equivalently X(R) = lim

−→i
Xi(R) for all R. We call such a diagram {Xi} a

presentation of X. We write X̂ for the category of formal schemes.

Example 4.2. The most basic example is the functor Â1 defined by Â(R) = Nil(R). This is clearly the
colimit over N of the functors D(N) = spec(Z[x]/xN+1). We also define Ân(R) = Nil(R)n.

Example 4.3. More generally, given a scheme X and a closed subscheme Y = V (I), we define a formal
scheme X∧Y = lim

−→N
V (IN ).
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Example 4.4. For a common example not of the above type, consider the functor Â(∞)(R) =
⊕

n∈N Nil(R),
so X = lim

−→n
Ân, which is again a formal scheme.

Example 4.5. If Z is an infinite CW complex and {Zα} is the collection of finite subcomplexes and E is
an even periodic ring spectrum, we define ZE = lim

−→α
(Zα)E . This is clearly a formal scheme.

We can connect this with the framework of [8, Section 8] by taking C to be the category Ringsop. From
this point of view, a formal scheme is an ind-representable contravariant functor from Ringsop to Sets. We
shall omit any mention of universes here, leaving the set-theoretically cautious reader to lift the necessary
details from [8, Appendice], or to avoid the problem in some other way.

Given two filtered diagrams X : I −→ X and Y : J −→ X we know from [8, 8.2.5.1] that

X̂(lim
−→
i

Xi, lim−→
j

Yj) = lim
←−
i

lim
−→
j

X(Xi, Yj).

It follows that X̂ is equivalent to the category whose objects are pairs (I, X) and whose morphisms are given
by the above formula. We will feel free to use either model for X̂ where convenient.

Proposition 4.6. A functor X : Rings −→ Sets is a formal scheme if and only if
(a) X preserves finite limits, and
(b) There is a set of schemes Xi and natural maps Xi −→ X such that the resulting map

∐
iXi(R) −→

X(R) is surjective for all R.

Proof. This is essentially [8, Théorème 8.3.3]. To see this, let D be the category of schemes over X. A
map spec(R) −→ X is the same (by Yoneda) as an element of X(R), so Dop is equivalent to the category
Points(X). This category corresponds to the category C/F of the cited theorem. Thus, by the equivalence
(i)⇔(iii) of that theorem, we see that X is a formal scheme if and only if X preserves finite limits, and
D has a small cofinal subcategory. (Grothendieck actually talks about finite colimits, but in our case that
implicitly refers to colimits in Ringsop and thus limits in Rings.) It is shown in the proof of the theorem that
if X preserves finite limits, then D is a filtered category, so we can use [8, Proposition 8.1.3(c)] to recognise
cofinal subcategories. This means that a small collection {Xi} of schemes over X gives a cofinal subcategory
if and only if each map from a scheme Y to X factors through some Xi. By writing Y = spec(R) and using
the Yoneda lemma, it is equivalent to say that the map

∐
iXi(R) −→ X(R) is surjective for all R. �

4.1. (Co)limits of formal schemes.

Proposition 4.7. The category X̂ has all small colimits. The inclusion X −→ X̂ preserves finite colimits,
and the inclusion X̂ −→ F = [Rings,Sets] preserves filtered colimits. Moreover, if X ∈ X then the functor
X̂(X,−) : X̂ −→ Sets also preserves colimits.

Proof. Apart from the last sentence, the proof is the same as that of [14, Theorem VI.1.6]. Johnstone
assumes that C (which is Ringsop in our case) is small, but he does not really use this. The last sentence
is [14, Lemma VI.1.8]. �

Example 4.8. It is not hard to see that the functor Z 7→ ZE of example 4.5 converts filtered homotopy
colimits to colimits of formal schemes.

Suppose we have a diagram of formal schemes X : I −→ X̂. For each i ∈ I we then have a filtered category
J(i) and a functor X(i,−) : J(i) −→ X such that X(i) = lim

−→J(i)
X(i, j). For many purposes, it is convenient

if we can take all the categories J(i) to be the same. This motivates the following definition.

Definition 4.9. A category I is rectifiable if for every functor X : I −→ X̂ there is a filtered category J and
a functor Y : I× J −→ X such that X(i) = lim

−→J
Y (i, j) as functors of i.

Proposition 4.10. If I is a finite category such that I(i, i) = {1} for all i ∈ I, then I is rectifiable.

Proof. See [8, Proposition 8.8.5]. �

23



Proposition 4.11. If I is a discrete small category (in other words, a set), then I is rectifiable.

Proof. As X(i) is a formal scheme, there is a filtered category J(i) and a functor Z(i,−) : J(i) −→ X such that
X(i) = lim

−→J(i)
Z(i, j). Write J =

∏
i J(i), let πi : J −→ J(i) be the projection, and let Y (i,−) be the composite

functor J
πi−→ J(i)

Z(i,−)−−−−→ X. It is easy to check that J is filtered and that πi is cofinal, so X(i) = lim
−→J

Y (i, j),

as required. �

Proposition 4.12. The category X̂ has finite limits, and the inclusions X −→ X̂ −→ F preserve all limits that
exist. Moreover, finite limits in X̂ commute with filtered colimits.

Proof. First consider a diagram X : I −→ X̂ indexed by a finite rectifiable category. We define U(R) =
lim
←−I

X(i)(R), which gives a functor Rings −→ Sets. It is well-known that this is the inverse limit of the diagram

X in the functor category F, so it will suffice to show that U is a formal scheme. As I is rectifiable, we can
choose a diagram Y : I× J −→ X as in Definition 4.9. As X has limits, we can define Z(j) = lim

←−i
Y (i, j) ∈ X,

and then define W = lim
−→j

Z(j) ∈ X̂. Then W (R) = lim
−→j

lim
←−i

Y (i, j)(R). As filtered colimits commute with

finite limits in the category of sets, this is the same as lim
←−i

lim
−→j

Y (i, j)(R) = lim
←−i

X(i)(R) = V (R). Thus

V = W is a formal scheme, as required.
Both finite products and equalisers can be considered as limits indexed by rectifiable categories, and we

can write any finite limit as the equaliser of two maps between finite products. This shows that X̂ has finite
limits.

Now let {Xi} be a diagram of formal schemes, let X be a formal scheme, and let {fi : X −→ Xi} be a cone.
If this is a limit cone in X̂ then we must have X(R) = X̂(spec(R), X) = lim

←−i
X̂(spec(R), Xi) = lim

←−i
Xi(R),

which means that it is a limit cone in F (because limits in functor categories are computed pointwise). The
converse is equally easy, so the inclusion X̂ −→ F preserves and reflects limits. Similarly, the inclusion X −→ F

preserves and reflects limits, and it follows that the same is true of the inclusion X −→ X̂. �

4.2. Solid formal schemes.

Definition 4.13. A linear topology on a ring R is a topology such that the cosets of open ideals are open
and form a basis of open sets. One can check that such a topology makes R into a topological ring. We write
LRings for the category of rings with a given linear topology, and continuous homomorphisms. For any ring
S, the discrete topology is a linear topology on S, so we can think of Rings as a full subcategory of LRings.
Given a linearly topologised ring R, we define spf(R) : Rings −→ Sets by

spf(R)(S) = LRings(R,S) = lim
−→
J

Rings(R/J, S),

where J runs over the directed set of open ideals. Clearly this defines a functor spf : LRingsop −→ X̂.

Definition 4.14. Let R be a linearly topologised ring. The completion of R is the ring R̂ = lim
←−I

R/I, where

I runs over the open ideals in R. There is an evident map R −→ R̂, and the composite R −→ R̂ −→ R/I is
surjective so we have R/I = R̂/I for some ideal I ≤ R̂. These ideals form a filtered system, so we can give R̂

the linear topology for which they are a base of neighbourhoods of zero. It is easy to check that ̂̂R = R̂ and
that spf(R̂) = spf(R). We say that R is complete, or that it is a formal ring , if R = R̂. Thus R̂ is always a
formal ring. We write FRings for the category of formal rings.

Definition 4.15. Given a formal scheme X, we recall that OX = X̂(X,A1). This is again a ring under
pointwise operations. If {Xi} is a presentation of X then OX = lim

←−i
OXi .

For any point x of X we define Ix = {f ∈ OX | f(x) = 0 ∈ Ox}. From a slightly different point of view,
we can think of x as a map Y = spec(Ox) −→ X and Ix as the kernel of the resulting map OX −→ OY . As the
informal schemes over X form a filtered category, we see that the ideals Ix form a directed system. Thus,
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there is a unique linear topology on OX , such that the ideals Ix form a base of neighbourhoods of zero. With
this topology, if {Xi} is a presentation of X, then OX = lim

←−i
OXi

as topological rings.

Note that

X̂(X, spf(R)) = lim
←−
i

X̂(Xi, spf(R)) = lim
←−
i

LRings(R,OXi) = LRings(R,OX),

so that O : X̂ −→ LRingsop is left adjoint to spf : LRingsop −→ X̂. In particular, we have a unit map X −→
spf(OX) in X̂, and a counit map R −→ Ospf(R) in LRings. The latter is just the completion map R −→ R̂.

Definition 4.16. We say that a formal scheme X is solid if it is isomorphic to spf(R) for some linearly
topologised ring R. We write X̂sol for the category of solid formal schemes.

In the earlier incarnation of this paper [25] we defined formal schemes to be what we now call solid formal
schemes. While only solid formal schemes seem to occur in the cases of interest, the category of all formal
schemes has rather better categorical properties, so we use it instead.

Example 4.17. Any informal scheme X is a solid formal scheme (because the zero ideal is open).

Example 4.18. The formal scheme Ân is solid. To see this, consider the formal power series ring R =
Z[[x1, . . . , xn]], with the usual linear topology defined by the ideals Ik, where I = (x1, . . . , xk). This is clearly
a formal ring, and Ân = spf(R).

Example 4.19. If R is a complete Noetherian semilocal ring with Jacobson radical I (for example, a
complete Noetherian local ring with maximal ideal I) then it is natural to give R the linear topology defined
by the ideals Ik, and to define spf(R) using this. With this convention, the set X̂(spf(R), spf(S)) (where S
is another ring of the same type) is just the set of local homomorphisms S −→ R. Thus, the categories of
formal schemes used in [26] and [7] embed as full subcategories of our category X̂.

Example 4.20. Let Z be an infinite CW complex with finite subcomplexes {Zα}, and let E be an even
periodic ring spectrum. Let Jα be the kernel of the map E0Z −→ E0Zα. These ideals define a linear topology
on E0Z. In good cases E0Z will be complete and we will have ZE = spf(E0Z), so this is a solid formal
scheme. See Section 8 for technical results that guarantee this.

Proposition 4.21.

(a) If X is a solid formal scheme then OX is a formal ring.
(b) A formal scheme X is solid if and only if it is isomorphic to spf(R) for some formal ring R, if and

only if the natural map X −→ spf(OX) is an isomorphism.
(c) The functor X 7→ Xsol = spf(OX) is left adjoint to the inclusion of X̂sol in X̂.
(d) The functor R 7→ R̂ is left adjoint to the inclusion of FRings in LRings.
(e) The functors R 7→ spf(R) and X 7→ OX give an equivalence between X̂sol and FRingsop.

Proof. (a): If X is solid then X = spf(R) for some linearly topologised ring R, so OX = Ospf(R) = R̂ which
is a formal ring.

(b): If X is solid then X = spf(R) as above, but spf(R) = spf(R̂) so we may assume that R is formal. We
find as in (a) that OX = R and thus that the map X −→ spf(OX) = spf(R) is an isomorphism. The converse
is easy.

(c): Let T denote the functor X 7→ Xsol. This arises from an adjunction, so it is a monad. On the
other hand, if R = OX then R is formal by (a), so R = Ospf(R) = OXsol . By applying spf(−), we see
that (Xsol)sol = Xsol, so T 2 = T and T is an idempotent monad. Moreover, X̂sol is the subcategory of
formal schemes for which the unit map ηX : X −→ TX is an isomorphism. It is well-known that this is
automatically a reflective subcategory. In outline, if Y is solid and X is arbitrary and f : X −→ Y , then
f ′ = η−1

Y ◦ Tf : Xsol −→ Y is the unique map such that f ′ ◦ ηX = f .
(d): The proof is similar.
(e): If R is formal then spf(R) is solid and Ospf(R) = R̂ = R. If X is solid then OX is formal (by (a)) and

X = spf(OX) (by (b)). �
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Definition 4.22. Let R, S and T be linearly topologised rings, and let R −→ S and R −→ T be continuous
homomorphisms. We then give S⊗R T the linear topology defined by the ideals I ⊗T +S⊗J , where I runs
over open ideals in S and J runs over open ideals in T . This is easily seen to be the pushout of S and T
under R in LRings. We also define S⊗̂RT to be the completion of S ⊗R T . If R, S and T are formal then
S⊗̂RT is the pushout in FRings (because completion is left adjoint to the inclusion FRings −→ LRings).

Proposition 4.23. The subcategory X̂sol ⊆ X̂ is closed under finite products and arbitrary coproducts. It
also has its own colimits for arbitrary diagrams, which need not be preserved by the inclusion X̂sol −→ X̂.

Proof. One can check that spf(R ⊗ S) = spf(R⊗̂S) = spf(R) × spf(S), which gives finite products. Let
{Ri | i ∈ I} be a family of formal rings, and write R =

∏
iRi. We give this ring the product topology, which

is the same as the linear topology defined by the ideals of the form
∏
i Ji, where Ji is open in Ri and Ji = Ri

for almost all i. We claim that spf(R) =
∐
i spf(Ri).

To see this, let J denote the set ideals J =
∏
i Ji as above. This is easily seen to be a directed set. For

J ∈ J we see that R/J =
∏
iRi/Ji, where almost all terms in the product are zero. Thus spec(R/J) =∐

i∈I spec(Ri/Ji), where almost all terms in the coproduct are empty. As colimits commute with coproducts,
we see that spf(R) =

∐
I lim
−→J

spec(Ri/Ji). As the projection from J to the set of open ideals in Ri is cofinal,

we see that lim
−→J

spec(Ri/Ji) = spf(Ri), so that spf(R) =
∐

I spf(Ri) as claimed.

Now let {Xi} be an arbitrary diagram of solid formal schemes, and let X be its colimit in X̂. As the
functor Y 7→ Ysol is left adjoint to the inclusion X̂sol −→ X̂, we see that Xsol is the colimit of our diagram in
X̂sol. �

Remark 4.24. We will see in Corollary 4.40 that X̂sol is actually closed under finite limits.

Example 4.25. As a special case of the preceeding proposition, consider an infinite set A. Let R be the ring
of functions u : A −→ Z with the product topology, so that A = spf(R) =

∐
a∈A 1. We call formal schemes

of this type constant formal schemes. More generally, given a formal scheme X we write AX =
∐
a∈AX. If

X is solid then AX = spf(C(A,OX)), where C(A,OX) is the ring of functions A −→ OX , under the evident
product topology. Clearly, if E is an even periodic ring spectrum and we regard A as a discrete space then
AE = A× SE .

4.3. Formal schemes over a given base. Let X be a formal scheme. Write X̂X for the category of formal
schemes over X, and XX for the full subcategory of informal schemes over X. We also write Points(X) for
the category of pairs (R, x), where R is a ring and x ∈ X(R); the maps are as in Definition 2.14. Again,
the Yoneda isomorphism X(R) = X̂(spec(R), X) gives an equivalence Points(X) = X

op
X . Moreover, formal

schemes Y over X biject with ind-representable functors Y ′ : Points(X) −→ Sets by the rules

Y ′(R, x) = preimage of x under the map Y (R) −→ X(R)

Y (R) =
∐

x∈X(R)

Y ′(R, x).

Now consider a formal scheme X with presentation {Xi}, indexed by a filtered category I. We next
investigate the relationship between the categories X̂X and X̂Xi , which we now define.

Definition 4.26. Given a diagram {Xi} as above, we write D{Xi} for the category of diagrams {Yi} : I −→ X̂

equipped with a map of diagrams {Yi} −→ {Xi}. For any such diagram {Yi} and any map u : i −→ j in I, we
have a commutative square

Yi Yj

Xi Xj .
u

w
Yu

u

w
Xu

We write X̂{Xi} for the full subcategory of D{Xi} consisting of diagrams {Yi} for which all such squares are
pullbacks.
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We define functors F : D{Xi} −→ X̂X and G : X̂X −→ D{Xi} by

F{Yi} = lim
−→
i

Yi

GY = {Y ×X Xi}.

Proposition 4.27. The functor F is left adjoint to G, and it preserves finite limits. The functor G is full
and faithful, and its image is X̂{Xi}. The functors F and G give an equivalence between X̂X and X̂{Xi}.

Moreover, if W is an informal scheme over X and {Yi} ∈ X̂{Xi}, then any factorisation W −→ Xi −→ X of
the given map W −→ X gives an isomorphism W ×X F{Yi} = W ×Xi

Yi.

Proof. A map F{Yi} −→ Z is the same as a compatible system of maps Yi −→ Z over X. As the map Yi −→ X
has a given factorisation through Xi, this is the same as a compatible system of maps Yi −→ Z×XXi = G(Z)i
over Xi, or in other words a map {Yi} −→ G(Z). Thus F is left adjoint to G.

As filtered colimits commute with finite limits, we see that FG(Y ) = lim
−→i

(Y ×XXi) = Y ×X lim
−→i

Xi = Y .

This means that
D{Xi}(GY,GZ) = X̂X(Y, FGZ) = X̂X(Y,Z),

so G is full and faithful. This means that G is an equivalence of X̂X with its image, and it is clear that
the image is contained in X̂{Xi}. The commutation of finite limits and filtered colimits also implies that F
preserves finite limits.

We now prove the last part of the proposition; afterwards we will deduce that the image of G is precisely
X̂{xi}. Consider an informal scheme W and a map f : W −→ X, and an object {Yi} of X̂{Xi}. Let J be the
category of pairs (i, g), where i ∈ I and g : W −→ Xi and the composite W

g−→ Xi −→ X is the same as f . It
is not hard to check that J is filtered and that the projection functor J −→ I is cofinal. For each (i, g) ∈ J we
have a pullback diagram

W ×Xi
Yi Yi

W Xi.
u

w

u

w

By taking the colimit over J we get a pullback diagram

lim
−→

W ×Xi
Yi F{Yi}

W X.
u

w

u

w

On the other hand, for each map u : (i, g) −→ (j, h) in J we have Yi = Xi×Xj
Yj (by the definition of X̂{Xi})

and thus W ×Xi
Yi = W ×Xj

Yj . It follows easily that for each (i, g) the map W ×Xi
Yi −→ lim

−→
W ×Xj

Yj is

an isomorphism, and thus (by the diagram) that W ×X F{Yi} = W ×Xi Yi.
Now take W = Xi and g = 1 in the above. We find that Xi×XF{Yi} = Yi, and thus that FG{Yi} = {Yi},

and thus that {Yi} is in the image of G. This shows that the image of G is precisely X̂{Xi}, as required. �

Definition 4.28. Let Y be a formal scheme over a formal scheme X. We say that Y is relatively informal
over X if for all informal schemes X ′ over X, the pullback Y ×X X ′ is informal.

Proposition 4.29. The category of relatively informal schemes over X has limits, which are preserved by
the inclusion into X̂X .

Proof. We can write X as the colimit of a filtered diagram of informal schemes Xi. It is clear that the
category of relatively informal schemes is equivalent to the subcategory C of X̂{Xi} consisting of systems
{Yi} of informal schemes. As the category of informal schemes has limits, we see that the category of
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informal schemes over Xi has limits. Moreover, for each map Xi −→ Xj , the functor Xi×Xj
(−) : XXj

−→ XXi

preserves limits. Given this, it is easy to check that C has limits, as required. As the inclusion X −→ X̂

preserves limits, one can check that the same is true of the inclusions XXi
−→ X̂Xi

and C −→ X̂{Xi} = X̂X . �

4.4. Formal subschemes.

Definition 4.30. We say that a map f : X −→ Y of formal schemes is a closed inclusion if it is a regular
monomorphism in X̂. (This means that it is the equaliser of some pair of arrows Y ww Z, or equivalently
that it is the equaliser of the pair Y ww Y qX Y .) A closed formal subscheme of a formal scheme Y is a
subfunctor X of Y such that X is a formal scheme and the inclusion X −→ Y is a closed inclusion.

Remark 4.31. The functor Z 7→ Z(R) is representable (by spec(R)). It follows that if f : V −→ W is a
monomorphism in X̂ then V (R) −→ W (R) is injective for all R, so V is isomorphic to a subfunctor of W . If
f is a regular monomorphism, then the corresponding subfunctor is a closed subscheme.

Example 4.32. Let J be an ideal in OX , generated by elements {fi | i ∈ I} say. We define

V (J)(R) = {x ∈ X(R) | f(x) = 0 for all f ∈ J} = {x | fi(x) = 0 for all i}.
Define a scheme AI by AI(R) =

∏
i∈I R (this is represented by the polynomial algebra Z[xi | i ∈ I]). This

is just the product
∏
i∈I A1; by Proposition 4.12, it does not matter whether we interpret this in X or X̂. It

follows that there is a map f : X −→ AI with components fi, and another map g : X −→ AI with components
0. Clearly V (J) is the equaliser of f and g, and thus it is a closed formal subscheme of X. There is a natural
map OX/J −→ OV (J) which is an isomorphism in most cases of interest, but I suspect that this is not true in
general (compare Remark 4.39).

Example 4.33. If X is an informal scheme and Y is a closed informal subscheme of X then the evident
map X∧Y −→ X is a closed inclusion.

Proposition 4.34. A map f : X −→ Y of informal schemes is a closed inclusion in X̂ if and only if it is a
closed inclusion in X.

Proof. It follows from Proposition 4.7 that the pushout Y qX Y is the same whether constructed in X or
X̂. It follows in turn from Proposition 4.12 that the equaliser of the two maps Y ww Y qX Y is the same
whether constructed in X or X̂. The map f is a closed inclusion if and only if X maps isomorphically to this
equaliser, so the proposition follows. �

Proposition 4.35. If X ∈ X̂ and Y ∈ X, then a map f : X −→ Y is a closed inclusion if and only if there is
a directed set of closed informal subschemes Yi of Y such that X = lim

−→i
Yi.

Proof. First suppose that f is a closed inclusion. We can write X as a colimit of informal schemes, say
X = lim

−→i∈I
Xi. Write Zi = Y qXi

Y . One checks that these schemes give a functor I −→ X, and that

lim
−→i

Zi = Y qX Y . Let Yi be the equaliser of the two maps X ww Zi, so that Yi is a closed informal

subscheme of X, and again the schemes Yi give a functor I −→ X. As finite limits commute with filtered
colimits in X̂, we see that lim

−→i
Yi is the equaliser of the maps Y ww lim

−→i
Zi = Y qX Y . This is just X, because

f is assumed to be a regular monomorphism.
Conversely, suppose that {Yi} is a directed family of closed subschemes of an informal scheme Y . Write

Zi = Y qYi Y and Z = lim
−→i

Zi. By much the same logic as above, we see that there is a pair of maps Y ww Z

whose equaliser in X = lim
−→i

Yi, so that X is a closed formal subscheme of Y . �

Proposition 4.36. A map f : X −→ Y in X̂ is a closed inclusion if and only if for all informal schemes Y ′

and all maps Y ′ −→ Y , the pulled-back map f ′ : X ′ −→ Y ′ is a closed inclusion.

Proof. It is clear that the condition is necessary, because in any category a pullback of a regular monomor-
phism is a regular monomorphism. For sufficiency, suppose that f : X −→ Y is such that all maps of the
form f ′ : X ′ −→ Y ′ are closed inclusions. Write Y as a colimit of informal schemes Yi in the usual way, and
let fi : Xi −→ Yi be the pullback of f along the map Yi −→ Y . As finite limits in X̂ commute with filtered
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colimits, we see that X = lim
−→i

Xi. By assumption, fi is a closed inclusion. Write Zi = Yi qXi
Yi, so Xi is

the equaliser of the fork Yi ww Zi. Write Z = lim
−→i

Zi. As finite limits in X̂ commute with filtered colimits,

we see that X is the equaliser of the maps Y ww Z, and thus that f is a closed inclusion. �

Proposition 4.37. Let X
f−→ Y

g−→ Z be maps of formal schemes. If f and g are closed inclusions, then so
is gf . Conversely, if gf is a closed inclusion and g is a monomorphism then f is a closed inclusion.

Proof. The second part is a formal statement which holds in any category: if we have maps X
f−→ Y

g−→ Z

such that gf is the equaliser of a pair Z ww
p

q
W , then a diagram chase shows that X

f−→ Y is the equaliser of
pg and qg and thus is a regular monomorphism.

For the first part, we can assume by Proposition 4.36 that Z is an informal scheme. We then know from
Proposition 4.35 that there is a filtered system of closed subschemes Zi of Z such that Y is the colimit of
the Zi. The maps Y −→ Z and Zi −→ Y −→ Z are closed inclusions, so the second part tells us that Yi −→ Y is
a closed monomorphism. Let Xi be the preimage of Zi ⊆ Y under the map f : X −→ Y . The maps Xi −→ Zi
and Zi −→ Z are closed inclusions of informal schemes, so the composite Xi −→ Z is easily seen to be a closed
inclusion (because closed inclusions in the informal category are just dual to surjections of rings). As filtered
colimits commute with pullbacks, we see that X = lim

−→i
Xi. It follows from Proposition 4.35 that X −→ Z is

a closed inclusion. �

Proposition 4.38. Any closed formal subscheme of a solid formal scheme is again solid.

Proof. Let W
f−→ X ww

g

h
Y be an equaliser diagram, and suppose that X is solid. We need to show that W is

solid. Choose a presentation Y = lim
−→i∈I

Yi for Y . Let J be the set of tuples j = (J, i, g′, h′), where J is an

open ideal in OX and i ∈ I and g′, h′ : V (J) −→ Yi and the following diagram commutes.

V (J) Yi

X Y

w
w

g′

h′
v

u u
w
w

g

h

One can make J into a filtered category so that j 7→ J is a cofinal functor to the directed set of open ideals
of OX , and j 7→ i is a cofinal functor to I (see the proof of [8, Proposition 8.8.5]). The equaliser of g′ and
h′ is a closed subscheme of V (J), so it has the form V (Ij) for some ideal Ij ≥ J . As equalisers commute
with filtered colimits, we see that W = lim

−→J
V (Ij). Let K be the set of ideals of the form Ij for some j. The

functor j 7→ Ij from J to K is cofinal, so we have W = lim
−→I∈K

V (I). We can define a new linear topology on

R = OX by letting the ideals I ∈ K be a base of neighbourhoods of zero, and we conclude that W = spf(R).
Thus, W is solid. �

Remark 4.39. In the above proof, suppose that Y is also solid, and let K be the ideal in OX generated
by elements of the form g∗u − h∗u with u ∈ OY . One can then check that OW = lim

←−J
OX/(K + J), where

J runs over the open ideals in OX . The kernel of the map π : OX −→ OW is
⋂
J(J + K), which is just the

closure of K. One would like to say that π was surjective, but in fact its cokernel is lim
←−

1

J
(J +K), which can

presumably be nonzero.

Corollary 4.40. The subcategory X̂sol ⊆ X̂ of solid formal schemes is closed under finite limits.

Proof. We know from Proposition 4.23 that a finite product of solid schemes is solid, and a finite limit is a
closed formal subscheme of a finite product. �

4.5. Idempotents and formal schemes.

Proposition 4.41. Let X be a formal scheme. Then systems of formal subschemes Xi such that X =
∐
iXi

biject with systems of idempotents ei ∈ OX such that eiej = δijei and
∑
i ei converges to 1 in the natural
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topology in OX . More explicitly, we require that for every open ideal J ≤ OX the set S = {i | ei 6∈ J} is
finite, and

∑
S ei = 1 (mod J).

Proof. Suppose that X =
∐
i∈IXi. Then OX = X̂(X,A1) =

∏
i X̂(Xi,A1) =

∏
i OXi

as rings. If K is a
finite subset of I, we write XK =

∐
i∈K Xi. We then have X = lim

−→K
XK , and this is a filtered colimit, so

X(R) = lim
−→K

XK(R) for all R. Using this, it is not hard to check that OX =
∏
i OXi

as topological rings,

where the right hand side is given the product topology. Note that the product topology is defined by the
ideals of the form

∏
i Ji, where Ji is an open ideal in OXi

and Ji = OXi
for almost all i.

For each i there is an evident idempotent ei in OX =
∏
i OXi

, whose j’th component is δij . This gives a
system of idempotents as described in the proposition.

Conversely, suppose we start with such a system of idempotents. For any idempotent e ∈ OX it is easy to
check that D(e) = V (1 − e), so we can define Xi = D(ei) = V (1 − ei). We need to check that X =

∐
iXi.

We can write X = lim
−→J

Yj for some filtered system of informal schemes Yj . Let eij be the image of ei in OYj

and write Zij = D(eij) = V (1− eij) ⊆ Yj . As Yj is informal we know that the kernel of the map OX −→ OYj

is open and thus that eij = 0 for almost all i. We thus have a decomposition Yj =
∐
i Zij , in which only

finitely many factors are nonempty. If we fix i, it is easy to check that the schemes Zij are functors of j,
and that lim

−→j
Zij = Xi. As colimits commute with coproducts, we find that X =

∐
iXi as claimed. �

Corollary 4.42. Coproducts in X̂ or X̂X are strong.

Proof. Let {Yi} be a family of schemes over X, and write Y =
∐
i Yi. Let Z be another scheme over X,

and write Zi = Z ×X Yi. We need to show that Z ×X Y =
∐
i Zi. To see this, take idempotents ei ∈ OY

as in the proposition, so that Yi = D(ei) = V (1 − ei). Let e′i be the image of ei under the evident map
OZ −→ OY ; it is easy to check that Zi = D(e′i). As the idempotents ei are orthogonal and sum to 1 and
the map OZ×XY −→ OY is a continuous map of topological rings, we see that the e′i are also orthogonal
idempotents whose sum is 1. This shows that Z ×X Y =

∐
i Zi as claimed. �

4.6. Sheaves over formal schemes. In Section 2.6, we defined sheaves and vector bundles over all functors,
and in particular over formal schemes.

Remark 4.43. If M is a vector bundle and L is a line bundle over a formal scheme X, we can define functors
A(M)(R) and A(L)×(R) just as in Definitions 2.45 and 2.55. We claim that these are formal schemes. Given
a map f : W −→ X, it is easy to check that f∗A(M) = A(f∗M) (where the pullback on the left hand side
is computed in the functor category F). In particular, if W is informal then Proposition 2.54 shows that
f∗A(M) is a scheme. Now write X = lim

−→i
Xi in the usual way, and let Mi be the pullback of M over Xi.

We find easily that A(M) = lim
−→i

A(Mi), so A(M) is a formal scheme. Similarly, A(L)× is a formal scheme.

Remark 4.44. If M is a sheaf such that Mx is an infinitely generated free module for all x, we find that
A(M) is a formal scheme over X. Unlike the case of a vector bundle, it is not relatively informal over X.
We leave the proof as an exercise.

Remark 4.45. Let {Xi} be a presentation of a formal scheme X. If M is a sheaf over X then one can
check that Γ(X,M) = lim

←−i
Γ(Xi,M). In particular, if X is solid and MJ = Γ(V (J),M) for all open ideals

J ≤ OX we find that Γ(X,M) = lim
←−J

MJ . Moreover, if J ≤ K we find that MK = MJ/KMJ .

In particular, if N is an OX -module we find that Γ(X, Ñ) = lim
←−J

N/JN . We say that N is complete if

N = lim
←−J

N/JN . It follows that the functor N 7→ Ñ embeds the category of complete modules as a full

subcategory of SheavesX . Warning: it seems that the functor N 7→ lim
←−J

N/JN need not be idempotent in

bad cases, so lim
←−J

N/JN need not be complete.

We next consider the problem of constructing sheaves over filtered colimits.

Definition 4.46. Let {Xi} be a filtered diagram of functors, with colimit X. Let Sheaves{Xi} denote the
category of systems ({Mi}, φ) of the following type:
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(a) For each i we have a sheaf Mi over Xi.
(b) For each u : i −→ j (with associated map Xu : Xi −→ Xj) we have an isomorphism φ(u) : Mi ' X∗uMj .
(c) In the case u = 1: i −→ i we have φ(1) = 1.
(d) Given i

u−→ j
v−→ k we have φ(vu) = (X∗uφ(v)) ◦ φ(u).

Proposition 4.47. Let {Xi | i ∈ I} be a filtered diagram of functors, with colimit X. The category
Sheaves{Xi} is equivalent to SheavesX .

Proof. Given a sheaf M over X, we define a system of sheaves Mi = v∗iM , where vi : Xi −→ X is the given
map. If u : i −→ j then vj ◦ Xu = vi so we have a canonical identification Mi = X∗uMj , which we take as
φ(u). This gives an object of Sheaves{Xi}.

On the other hand, suppose we start with an object {Mi} of Sheaves{Xi}, and we want to construct
a sheaf M over X. Given a ring R and a point x ∈ X(R), we need to define a module Mx over R. As
X = lim

−→i
Xi(R), we can choose i ∈ I and y ∈ Xi(R) such that vi(y) = x. We would like to define Mx = Mi,y,

but we need to check that this is canonically independent of the choices made. We thus let J be the category
of all such pairs (i, y). Because X(R) = lim

−→i
Xi(R), we see that J is filtered. For each (i, y) ∈ J we have an

R-module Mi,y, and the maps φ(u) make this a functor J −→ ModR. We define Mx = lim
−→J

Mi,y. Because

this is a filtered diagram of isomorphisms, each of the canonical maps Mi,y −→ Mx is an isomorphism. We
leave it to the reader to check that this construction produces a sheaf, and that it is inverse to our previous
construction. �

Corollary 4.48. Let X −→ Y be a map of formal schemes. To construct a sheaf over X, it suffices to
construct sheaves over W ×Y X in a sufficiently natural way, for all informal schemes W over Y . It also
suffices to construct sheaves over Xy in a sufficiently natural way, for all points y of Y .

Proof. The two claims are really the same, as points of Y biject with informal schemes over Y by sending a
point y ∈ Y (R) to the usual map spec(R)

y−→ Y .
For the first claim, we choose a presentation Y = lim

−→i
Yi and write Xi = Yi ×Y X, and note that

X = lim
−→i

Xi. By assumption, we have sheaves Mi over Xi. “Sufficiently natural” means that we have maps

φ(u) making {Mi} into an object of Sheaves{Xi}, so the proposition gives us a sheaf over X. �

4.7. Formal faithful flatness.

Definition 4.49. Let f : X −→ Y be a map of formal schemes. We say that f is flat if the pullback functor
f∗ : X̂Y −→ X̂X preserves finite colimits. We say that f is faithfully flat if f∗ preserves and reflects finite
colimits.

Remark 4.50. For any map f : X −→ Y of formal schemes, we know that f∗ preserves all small coproducts.
Thus f is flat if and only if f∗ preserves coequalisers, if and only if f∗ preserves all small colimits.

Definition 4.49 could in principle conflict with Definition 2.56; the following proposition shows that this
is not the case.

Proposition 4.51. A map f : X −→ Y of informal schemes is flat (resp. faithfully flat) as a map of informal
schemes if and only if it is flat (resp. faithfully flat) as a map of formal schemes.

Proof. Recall that the inclusion X −→ X̂ preserves finite colimits. Given this, we see easily that a map that
is formally flat (resp. faithfully flat) flat is also informally flat (resp. faithfully flat).

Now suppose that f is informally flat. Let U ww V −→W be a coequaliser in X̂Y . By Proposition 4.10, we
can find a filtered system of diagrams Ui ww Vi (with Ui and Vi in X) whose colimit is the diagram U ww V .
We define Wi to be the coequaliser of Ui ww Vi. As colimits commute, we have W = lim

−→i
Wi. Clearly all this

can be thought of as happening over W and thus over Y . By assumption, the diagram f∗Ui ww f∗Vi −→ f∗Wi

is a coequaliser. We now take the colimit over i, noting that f∗ commutes with filtered colimits and that
colimits of coequalisers are coequalisers. This shows that f∗U ww f∗V −→ f∗W is a coequaliser. Thus, f is
flat.
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Now suppose that f is informally faithfully flat, and let u : U −→ V be a map of formal schemes over
Y such that f∗u is an isomorphism. Choose a presentation V = lim

−→i
Vi and write Ui = U ×V Vi, so that

U = lim
−→i

Ui. As f∗ preserves pullbacks, we see that the map f∗Ui −→ f∗Vi is the pullback of the isomorphism

f∗U −→ f∗V along the map f∗Vi −→ f∗V , and thus that the map f∗Ui −→ f∗Vi is itself an isomorphism.
As f is informally faithfully flat, we conclude that Ui ' Vi. By passing to colimits, we see that U ' V as
claimed. �

Remark 4.52. Propositions 2.67, 2.68, 2.70 and 2.76 are general nonsense, valid in any category with finite
limits and colimits. They therefore carry over directly to formal schemes.

Lemma 4.53. Let f : X −→ Y be a map of formal schemes. Let XY be the category of informal schemes
with a map to Y , and let f∗0 : XY −→ X̂X be the restriction of f∗ to XY . If f∗0 preserves coequalisers, then f
is flat.

Proof. Suppose that f∗0 preserves coequalisers. Let U ww V −→ W be a coequaliser in X̂Y . By Propo-
sition 4.10, we can find a filtered system of diagrams Ui ww Vi (with Ui and Vi in X) whose colimit is
the diagram U ww V . We define Wi to be the coequaliser of Ui ww Vi. As colimits commute, we have
W = lim

−→i
Wi. Clearly all this can be thought of as happening over W and thus over Y . By assumption, the

diagram f∗Ui ww f∗Vi −→ f∗Wi is a coequaliser. We now take the colimit over i, noting that f∗ commutes
with filtered colimits and that colimits of coequalisers are coequalisers. This shows that f∗U ww f∗V −→ f∗W
is a coequaliser. Thus, f is flat. �

Proposition 4.54. Let f : X −→ Y be a map of formal schemes. Suppose that Y has a presentation
Y = lim

−→i
Yi for which the maps fi : Xi = f∗Yi −→ Yi are (faithfully) flat. Then f is (faithfully) flat.

Proof. First suppose that each fi is flat. Let U ww V −→W be a coequaliser of informal schemes over Y . By
Lemma 4.53, it is enough to check that f∗U ww f∗V −→ f∗W is a coequaliser. We know from Proposition 4.7
that X̂(W,Y ) = lim

−→i
X̂(W,Yi), so we can choose a factorisation W −→ Yi −→ Y of the given map W −→ Y ,

for some i. We then have f∗W = W ×Y X = W ×Yi
Yi ×Y X = W ×Yi

Xi = f∗i W . Similarly, we have
f∗V = f∗i V and f∗U = f∗i U . As fi is flat, we see that f∗U ww f∗V −→ f∗W is a coequaliser, as required.

Now suppose that each fi is faithfully flat. Let s : U −→ V be a morphism in X̂Y such that f∗s is an
isomorphism. We need to show that s is an isomorphism. We have a pullback square of the following form.

Xi Yi

X Y.
u

ui

w
fi

u

vi

w
f

As f∗s is an isomorphism, we see that f∗i v
∗
i s = u∗i f

∗s is an isomorphism. As fi is faithfully flat, we conclude
that v∗i s : v∗i U −→ v∗i V is an isomorphism for all i. We also know that U = lim

−→i
v∗i U and V = lim

−→i
v∗i V , and

it follows easily that s is an isomorphism. �

Proposition 4.55. Let M be a vector bundle of rank r over a formal scheme X. Then there is a faithfully
flat map f : Bases(M) −→ X such that f∗M ' Or.

Proof. Let Bases(M)(R) be the set of pairs (x,B), where x ∈ X(R) and B : Rr −→ Mx is an isomorphism.
Define f : Bases(M) −→ X by f(x,B) = x. As in the informal case (Example 2.85) we see that Bases(M)
is a formal scheme over X, and that f∗M ' Or. If Xi is an informal scheme and u : Xi −→ X then one
checks that u∗ Bases(M) = Bases(u∗M), which is faithfully flat over Xi by Example 2.85. It follows from
Proposition 4.54 that Bases(M) is faithfully flat over X. �

Definition 4.56. A map f : X −→ Y of formal schemes is very flat if for all informal schemes Y ′ over Y , the
scheme X ′ = f∗Y ′ is informal and the map X ′ −→ Y ′ is very flat (in other words, OX′ is a free module over
OY ′). Similarly, we say that f is finite if for all such Y ′, the scheme X ′ is informal and the map X ′ −→ Y ′ is
finite.
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4.8. Coalgebraic formal schemes. Fix a scheme Z, and write R = OZ . We next study the category CZ of
coalgebras over R, and a certain full subcategory C′Z . It turns out that there is a full and faithful embedding
C′Z −→ X̂Z , and that the categorical properties of CZ are in some respects superior to those of X̂Z . Because of
this, the categories CZ and C′Z are often useful tools for constructing objects of X̂Z with specified properties.
Our use of coalgebras was inspired by their appearance in [3], although it is assumed there that R is a field,
which removes many technicalities.

We will use R and Z as interchangeable subscripts, so

X̂R = X̂Z = {formal schemes over Z},

for example. Write MR = MZ and CR = CZ for the categories of modules and coalgebras over R. (All
coalgebras will be assumed to be cocommutative and counital.) It is natural to think of CZ as a “geometric”
category, and we choose our notation to reflect this point of view. In particular, we shall see shortly that CZ
has finite products; we shall write them as U × V , although they are actually given by the tensor product
over R. We also write 1 for the terminal object, which is the coalgebra R with ψR = εR = 1R.

The following result is well-known when R is a field, but we outline a proof to show that nothing goes
wrong for more general rings.

Proposition 4.57. The category CZ has finite products, and strong colimits for all small diagrams. The
forgetful functor to MZ creates colimits.

Proof. Given two coalgebras U, V , we make U ⊗ V into a coalgebra with counit εU ⊗ εV : U ⊗ V −→ R and
coproduct

U ⊗ V ψU⊗ψV−−−−−→ U ⊗ U ⊗ V ⊗ V 1⊗τ⊗1−−−−→ U ⊗ V ⊗ U ⊗ V.
This is evidently functorial in U and V . There are two projections πU = 1 ⊗ εV : U ⊗ V −→ U and πV =
εU ⊗ 1: U ⊗ V −→ V , and one checks that these are coalgebra maps. One also checks that a pair of maps
f : W −→ U and W −→ V yield a coalgebra map h = (f, g) = (f ⊗ g) ◦ ψW : W −→ U ⊗ V , and that this is
the unique map such that πU ◦ h = f and πV ◦ h = g. Thus, U ⊗ V is the categorical product of U and V .
Similarly, we can make R into a coalgebra with ψR = εR = 1R, and this makes it a terminal object in CZ .

Now suppose we have a diagram of coalgebras Ui, and let U = lim
−→i

Ui denote the colimit in MZ . Because

tensor products are right exact, we see that U⊗U = lim
−→i,j

Ui⊗Uj , so there is an obvious map Ui⊗Ui −→ U⊗U .

By composing with the coproduct on Ui, we get a map Ui −→ U ⊗ U . These maps are compatible with the
maps of the diagram, so we get a map U = lim

−→i
Ui −→ U ⊗U . We use this as the coproduct on U . The counit

maps Ui −→ R also fit together to give a counit map U −→ R, and this makes U into a coalgebra. One can
check that this gives a colimit in the category CZ . Thus, CZ has colimits and they are created in MZ . It is
clear from the construction that V × lim

−→i
Ui = lim

−→i
(V × Ui), because tensoring with V is right exact. �

Let f : R −→ S = OY be a map of rings, and let Tf : MZ −→MY be the functor M 7→ S⊗RM . This clearly
gives a functor CZ −→ CY which preserves finite products and all colimits.

We now introduce a class of coalgebras with better than usual behaviour under duality.

Definition 4.58. Let U be a coalgebra over R, and suppose that U is free as an R-module, say U =
R{ei | i ∈ I}. For any finite set J of indices, we write UJ = R{ei | i ∈ J}; if this is a subcoalgebra of U , we
call it a standard subcoalgebra. We say that {ei} is a good basis if each finitely generated submodule of U is
contained in a standard subcoalgebra. We write C′Z for the category of those coalgebras that admit a good
basis. It is easy to see that C′Z is closed under finite products.

Proposition 4.59. There is a full and faithful functor sch = schZ : C′Z −→ X̂Z , which preserves finite products
and commutes with base change. Moreover, sch(U) is always solid and we have Osch(U) = U∨ := HomR(U,R).

Proof. Let U be a coalgebra in C′Z . For each subcoalgebra V ≤ U such that V is a finitely generated free
module over R, we define V ∨ = HomR(V,R). We can clearly make this into an R-algebra using the duals of
the coproduct and counit maps, so we have a scheme spec(V ∨) over Z. We define sch(U) = lim

−→V
spec(V ∨) ∈

X̂Z . If we choose a good basis {ei | i ∈ I}for U then it is clear that the standard subcoalgebras form a cofinal
33



family of V ’s, so we have sch(U) = lim
−→J

spec(U∨J ), where J runs over the finite subsets of I for which UJ is a

subcoalgebra. This is clearly a directed, and thus filtered, colimit. It follows that Osch(U) = lim
←−J

U∨J = U∨.

The resulting topology on U∨ = HomR(U,R) is just the topology of pointwise convergence, where we give
R the discrete topology. We can also think of this as

∏
I R, and the topology is just the product topology.

It is clear from this that sch(U) is solid.
If V is another coalgebra with good basis, then the obvious basis for U ⊗R V is also good. Moreover, if

UJ and VK are standard subcoalgebras of U and V , then UJ ⊗R VJ is a standard subcoalgebra of U ⊗R V ,
and the subcoalgebras of this form are cofinal among all standard subcoalgebras of U ⊗R V . It follows easily
that sch(U × V ) = sch(U ⊗R V ) = lim

−→J,K
spec(U∨J ) ×Z spec(V ∨K ). As finite limits commute with filtered

colimits in X̂, this is the same as sch(U)×Z sch(V ).
Now consider a map Y = spec(S) −→ Z of schemes. The claim is that the functors schY and schZ commute

with base change, in other words that schY (S ⊗R U) = Y ×Z schZ(U). As pullbacks commute with filtered
colimits, the right hand side is just lim

−→J
spec(S ⊗R UJ), which is the same as the left hand side. �

Definition 4.60. Let Z be an informal scheme. We write X̂′Z for the image of schZ , which is a full
subcategory of X̂Z . We say that a formal scheme Y is coalgebraic over Z if it lies in X̂′Z . We say that Y is
finitely coalgebraic over Z if OY is a finitely generated free module over OZ , or equivalently Y is finite and
very flat over Z; this easily implies that Y is coalgebraic over Z.

More generally, let Z be a formal scheme, and Y a formal scheme over Z. We say that Y is (finitely)
coalgebraic over Z if for all informal schemes Z ′ over Z, the pullback Z ′ ×Z Y is (finitely) coalgebraic over
Z ′. We again write X̂′Z for the category of coalgebraic formal schemes over Z.

Example 4.61. Let Z be a space such that H∗(Z; Z) is a free Abelian group, concentrated in even degrees. It
is not hard to check that E0Z is a coalgebra over E0 which admits a good basis, and that ZE = schE0(E0Z).
Details are given in Section 8.

Remark 4.62. The functor schX : C′X −→ X̂′X is an equivalence of categories, with inverse Y 7→ cY =
Homcts

OX
(OY ,OX).

Remark 4.63. For any coalgebra U , we say that an element u ∈ U is group-like if ε(u) = 1 and ψ(u) = u⊗u,
or equivalently if the map R −→ U defined by r 7→ ru is a coalgebra map. We write GL(U) = CR(R,U) for
the set of group-like elements. If U is a finitely generated free module over R, then it is easy to check that
GL(U) = AlgR(U∨, R). From this one can deduce that

X̂Z(Y, schZ(U)) = GL(OY ⊗R U),

where we regard OY ⊗R U as a coalgebra over OY . This gives another useful characterisation of schZ(U).

Proposition 4.64. Let {Ui} be a diagram in CZ with colimit U , and suppose that U and Ui actually lie in
C′Z . Then sch(U) is the strong colimit in X̂Z of the formal schemes sch(Ui).

Proof. Note that U = lim
−→i

Ui as R-modules (because colimits in CZ are created in MZ), and it follows

immediately that U∨ = lim
←−i

U∨i as rings. There are apparently two possible topologies on U∨. The first is

as in the definition of schR(U), where the basic neighbourhoods of zero are the submodules ann(M), where
M runs over finitely generated submodules of U . The second is the inverse limit topology: for each index i
and each finitely generated submodule N of Ui, the preimage of the annihilator of N under the evident map
U∨ −→ U∨i is a neighbourhood of zero. This is just the same as the annihilator of the image of N in U , and
neighbourhoods of this form give a basis for the inverse limit topology. Given this, it is easy to see that the
two topologies in question are the same. We thus have an inverse limit of topological rings. As the category
of formal schemes is just dual to the category of formal rings, we have a colimit diagram of formal schemes,
so sch(U) = lim

−→i
sch(Ui).

We need to show that the colimit is strong, in other words that for any formal scheme T over Z we have
T ×Z schZ(U) = lim

−→i
(T ×Z schZ(Ui)). First suppose that T = spec(B) is an informal scheme. We then

have T ×Z schZ(U) = schT (B ⊗R U) and similarly for each Ui, and B ⊗R U = lim
−→i

B ⊗R Ui because tensor
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products are right exact. By the first part of the proof (with R replaced by B) we see that T ×Z schZ(U) =
lim
−→i

(T ×Z schZ(Ui)) as required.

If T is a formal scheme, we write it as a strong filtered colimit of informal schemes Tk. The colimit
of the isomorphisms Tk ×Z schZ(U) = lim

−→i
(Tk ×Z schZ(Ui)) is the required isomorphism T ×Z schZ(U) =

lim
−→i

(T ×Z schZ(Ui)). �

Example 4.65. If X is coalgebraic over Y we claim that Xn
Y /Σn is a strong colimit for the action of Σn

on Xn
Y . To see this, we first suppose that Y is informal and X = schY (U) for some coalgebra U that is free

over X with good basis {ei | i ∈ I} say. Then Xn
Y = schY (U⊗n), and the set of terms ei = ei1 ⊗ . . . ⊗ ein

for i = (i1, . . . , in) ∈ In is a good basis for In. For each orbit j ∈ In/Σn, we choose an element i of the
orbit and let fj be the image of ei in U⊗n/Σn. We find that the terms fj form a good basis for U⊗n/Σn,
so this coalgebra lies in C′Y . It follows from Proposition 4.64 that Xn

Y = schY (U⊗n/Σn), and that this is a
strong colimit. For a general base Y , we choose a presentation Y = lim

−→i
Yi and write Xi = X ×Y Yi and

Zi = (Xi)nYi
/Σn. By what we have just proved, this is an object of X̂{Yi}, with lim

−→i
Zi = Xn

Y /Σn. It is now

easy to see that this is a strong colimit, using the ideas of Proposition 4.27.

We conclude this section with a result about gradings.

Proposition 4.66. Let Y be a coalgebraic formal scheme over an informal scheme X, and suppose that X
and Y have compatible actions of Gm. Then cY has a natural structure as a graded coalgebra over OX .

Proof. Write R = OX and U = cY . Proposition 2.96 makes R into a graded ring. Next, observe that
OY = U∨ and OGm×Y = U∨⊗̂Z[t±1], which is the ring of doubly infinite Laurent series

∑
k∈Z akt

k such that
ak ∈ U∨ and ak −→ 0 as |k| −→ ∞. Thus, the action α : Gm × Y −→ Y gives a continuous homomorphism
α∗ : U∨ −→ U∨⊗̂Z[t±1], say α∗(a) =

∑
k akt

k. The basic neighbourhoods of zero in U∨ are the kernels of the
maps U∨ −→ W∨, where W is a standard subcoalgebra of U . Similarly, the basic neighbourhoods of zero in
U∨⊗̂Z[t±1] are the kernels of the maps to V ∨[t±1], where V is a standard subcoalgebra. Thus, continuity
means that for every standard subcoalgebra V ≤ U , there is a standard subcoalgebra W such that whenever
a(W ) = 0 we have ak(V ) = 0 for all k. In particular, it follows that the map πk : a −→ ak is continuous. Just
as in the proof of Proposition 2.96, we see that

∑
k ak = a and that πjπk = δjkπk. It follows that U∨ is a

kind of completed direct sum of the subgroups image(πk). We would like to dualise this and thus split U as
an honest direct sum.

First, we need to show that the maps πi have a kind of R-linearity. Let r be an element of R, and let ri
be the part in degree i, so that r =

∑
i ri and ri = 0 for almost all i. Using the compatibility of the actions,

we find that (ra)i =
∑
j rjai−j (which is really a finite sum).

Suppose that u ∈ U . Choose a standard subcoalgebra V containing u, and let W be a standard subcoal-
gebra such that whenever a(W ) = 0 we have ai(V ) = 0 for all i.

Suppose that a ∈ U∨. It follows from our asymptotic condition on Laurent series that ai(u) = 0 when |i|
is large, so we can define χk(u)(a) =

∑
i ai(u)i+k ∈ R. We then have

χk(u)(ra) =
∑
i

((ra)i(u))i+k

=
∑
i,j

(rjai−j(u))i+k

=
∑
i,j

rj(ai−j(u))i+k−j

=
∑
m,j

rjam(u)m+k

= rχk(u)(a).

Thus, the map χj(u) : U∨ −→ R is R-linear. Clearly, if a(W ) = 0 then χj(u)(a) = 0, so χj(u) can be
regarded as an element of (U∨/ann(W ))∨ = W∨∨ = W (because W is a finitely generated free module).
More precisely, there is a unique element uj ∈ U such that χj(u)(a) = a(uj) for all a, and in fact uj ∈W .
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Next, we choose a finite set of elements in U∨ which project to a basis for W∨. We can then choose a
number N such that bi(u) = 0 whenever b lies in that set and |i| > N . Because aj(u) = 0 for all j whenever
a(W ) = 0, we conclude that ai(u) = 0 for all a ∈ U∨ and all i such that |i| > N . It follows that ui = 0 when
|i| > N . This justifies the following manipulation: a(u) =

∑
i,j ai(u)j =

∑
j a(uj) = a(

∑
j uj). We conclude

that u =
∑
j uj . We define a map φi : U −→ U by φi(u) = ui, and we define Ui = image(φi). We leave it

to the reader to check that φiφj = δijφj , so that U =
⊕

i Ui, and that this grading is compatible with the
R-module structure and the coalgebra structure. �

4.9. More mapping schemes. Recall the functor MapZ(X,Y ) , given in Definition 2.89. We now prove
some more results which tell us when MapZ(X,Y ) is a scheme or a formal scheme.

First, note that for any functor W over Z, we have

FZ(W,MapZ(X,Y )) = FZ(W ×Z X,Y ) = FW (W ×Z X,W ×Z Y ).

Indeed, if W is informal then this follows from the definitions and the Yoneda lemma, by writing W in the
form spec(R). The general case follows from this by taking limits, because every functor is the colimit of
a (not necessarily small or filtered) diagram of representable functors. It is also not hard to give a direct
proof.

Conversely, suppose we have a functor M over Z and a natural isomorphism FZ(W,M) ' FZ(W ×ZX,Y )
for all informal schemes W over Z. It is then easy to identify M with MapZ(X,Y ).

Lemma 4.67. Let X and Y be functors over Z, and suppose that X and Z are formal schemes. Then
MapZ(X,Y )(R) is a set for all R, so the functor MapZ(X,Y ) exists.

Proof. We have only a set of elements z ∈ Z(R), so it suffices to check that for any such z there is only a
set of maps Xz −→ Yz of functors over spec(R). Here Xz is a formal scheme, with presentation {Wi} say.
Clearly F(Wi, Yz) = Yz(OWi

) is a set, and Fspec(R)(Xz, Yz) is a subset of
∏
i F(Wi, Yz). �

Recall also from Proposition 2.94 that MapZ(X,Y ) is a scheme when X, Y and Z are all informal schemes,
and X is finite and very flat over Z.

Definition 4.68. We say that a formal scheme Y over Z is of finite presentation if there is an equaliser
diagram in X̂Z of the form

Y −→ An × Z ww Am × Z.

Theorem 4.69. Let X and Y be formal schemes over Z. Then MapZ(X,Y ) is a formal scheme if
(a) X is coalgebraic over Z and Y is relatively informal over Z, or
(b) X is finite and very flat over Z, or
(c) X is very flat over Z and Y is of finite presentation over Z.

This will be proved at the end of the section, after some auxiliary results.

Lemma 4.70. If Z ′ is a functor over Z then MapZ′(X ×Z Z ′, Y ×Z Z ′) = MapZ(X,Y )×Z Z ′.

Proof. If W is a scheme over Z ′ then

FZ′(W,MapZ(X,Y )×Z Z ′) = FZ(W,MapZ(X,Y ))

= FZ(W ×Z X,Y )

= FZ′(W ×Z X,Y ×Z Z ′)
= FZ′(W ×Z′ (X ×Z Z ′), Y ×Z Z ′).

Thus, MapZ(X,Y )×Z Z ′ has the required universal property. �

Lemma 4.71. If X is a strong colimit of formal schemes Xi and MapZ(Xi, Y ) is a formal scheme and is
relatively informal over Z for all i then MapZ(X,Y ) is a formal scheme and is equal to lim

←−i
MapZ(Xi, Y )

(where the inverse limit is computed in X̂Z).

Note that coproducts and filtered colimits are always strong, so the lemma applies in those cases.
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Proof. Because MapZ(Xi, Y ) is relatively informal, Proposition 4.29 allows us to form the limit lim
←−i

MapZ(Xi, Y )

in X̂Z . If W is a formal scheme over Z then we have

X̂Z(W, lim
←−
i

MapZ(Xi, Y )) = lim
←−
i

X̂Z(W,MapZ(Xi, Y ))

= lim
←−
i

X̂Z(W ×Z Xi, Y )

= X̂Z(lim
−→
i

W ×Z Xi, Y )

= X̂Z(W ×Z X,Y ).

This proves that lim
←−i

MapZ(Xi, Y ) = MapZ(X,Y ) as required. �

We leave the next lemma to the reader.

Lemma 4.72. Suppose that Y is an inverse limit of a finite diagram of formal schemes {Yi} over Z. Then
MapZ(X,Y ) = lim

←−i
MapZ(X,Yi), where the limit is computed in FZ . Thus, if MapZ(X,Yi) is a formal

scheme for all i, then MapZ(X,Y ) is a formal scheme. �

Lemma 4.73. Let {Zi} be a filtered system of informal schemes with colimit Z. Let X and Y be formal
schemes over Z, with Xi = X ×Z Zi and Yi = Y ×Z Zi. If MapZi

(Xi, Yi) is a formal scheme for all i then
MapZ(X,Y ) is a formal scheme and is equal to lim

−→i
MapZi

(Xi, Yi).

Proof. Lemma 4.70 tells us that the system of formal schemes

Mi = MapZi
(Xi, Yi)

defines an object of the category X̂{Zi} of Proposition 4.27. Thus, if we define M = lim
−→i

Mi we find that

X̂Z(W,M) is the set of maps of diagrams {W ×Z Zi} −→ {Mi} over {Zi}. This is the same as the set of maps
of diagrams {W ×Z Xi} = {W ×Z Zi×Zi

Xi} −→ {Yi} over {Zi}. By the adjunction in Proposition 4.27, this
is the same as the set of maps W ×Z X = lim

−→i
W ×Z Xi −→ Y over Z. Thus, M has the defining property of

MapZ(X,Y ). �

Lemma 4.74. Let X be relatively informal over Z, and let {Yi} be a filtered system of formal schemes over
Z with colimit Y . If MapZ(X,Yi) is a formal scheme for all i, then MapZ(X,Y ) is a formal scheme and is
equal to lim

−→i
MapZ(X,Yi).

Proof. Write M = lim
−→i

MapZ(X,Yi). Let W be an informal scheme over Z. As X is relatively informal, we

see that W ×Z X is informal. It follows that the functors X̂Z(W,−) and X̂Z(W ×Z X,−) preserve filtered
colimits. We thus have

X̂Z(W,M) = lim
−→
i

X̂Z(W,MapZ(X,Yi))

= lim
−→
i

X̂Z(W ×Z X,Yi)

= X̂Z(W ×Z X, lim−→
i

Yi)

= X̂Z(W ×Z X,Y ),

as required. �

Lemma 4.75. If X and Z are informal and X is very flat over Z then the functor MapZ(X,A1 × Z) is a
formal scheme.
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Proof. We can choose a basis for OX over OZ and thus write OX as a filtered colimit of finitely generated
free modules Mi over OZ . From the definitions we see that MapZ(X,A1)(R) is the set of pairs (x, u), where
x ∈ X(R) (making R into an OX -algebra) and u is a map R[t] −→ R⊗OZ

OX of R-algebras. This is of course
equivalent to an element of R⊗OZ

OX = lim
−→i

R⊗OZ
Mi. Thus, we see that MapZ(X,A1×Z) = lim

−→i
A(Mi),

which is a formal scheme. �

Proof of Theorem 4.69. We shall prove successively that MapZ(X,Y ) is a formal scheme under any of the
following hypotheses. Cases (3), (5) and (7) give the results claimed in the theorem.

(1) X, Y and Z are informal, and X is finite and very flat. In this case MapZ(X,Y ) is informal.
(2) Y is informal, and X is finite and very flat. In this case MapZ(X,Y ) is relatively informal.
(3) X is finite and very flat.
(4) Y and Z are informal, and X is coalgebraic. In this case, MapZ(X,Y ) is informal.
(5) Y is relatively informal, and X is coalgebraic. In this case, MapZ(X,Y ) is relatively informal.
(6) X and Z are informal, X is very flat, and Y is of finite presentation.
(7) X is very flat and Y is of finite presentation.

Proposition 2.94 gives case (1). For case (2), write Z = lim
−→i

Zi in the usual way. Then case (1) tells us that

MapZi
(X ×Z Zi, Y ×Z Zi) is an informal scheme. Using this and Lemma 4.73, we see that MapZ(X,Y ) is a

formal scheme. Using case (1) and Lemma 4.70 we see that MapZ(X,Y ) is relatively informal. In case (3),
we write Y as a filtered colimit of informal schemes Yj . Case (2) tells us that MapZ(X,Yj) is a relatively
informal scheme, so Lemma 4.74 tells us that MapZ(X,Y ) is a formal scheme. In case (4), it follows easily
from the definitions that X can be written as the filtered colimit of a system of finite, very flat schemes
Xi. It then follows from case (1) that MapZ(Xi, Y ) is an informal scheme. Using Lemma 4.71 we see that
MapZ(X,Y ) = lim

←−i
MapZ(Xi, Y ). This is an inverse limit of informal schemes, and thus is an informal

scheme. We deduce (5) from (4) in the same way that we deduced (2) from (1). Case (6) follows easily from
Lemmas 4.75 and 4.72. Again, the argument for (1)⇒(2) also gives (6)⇒(7). �

5. Formal curves

In this section, we define formal curves. We also study divisors, differentials, and meromorphic functions
on such curves.

Let X be a formal scheme, and let C be a formal scheme over X. We say that C is a formal curve over
X if it is isomorphic in X̂X to Â1 ×X. (In some sense, it would be better to allow formal schemes that are
only isomorphic to Â1×X fpqc-locally on X, but this seems unnecessary for the topological applications so
we omit it.) A coordinate on C is a map x : C −→ Â1 giving rise to an isomorphism C ' Â1 ×X.

Example 5.1. If E is an even periodic ring spectrum then (CP∞)E and (HP∞)E are formal curves over
SE .

5.1. Divisors on formal curves. Let C be a formal curve over X, and let D be a closed subscheme of
X. If X is informal, we say that D is a effective divisor of degree n on C if D is informal, and OD is a free
module of rank n over OX . If X is a general formal scheme, we say that D is a divisor if D×XX ′ is a divisor
on C ×X X ′, for all informal schemes X ′ over X. If Y is a formal scheme over X, we refer to divisors on
C ×X Y as divisors on C over Y .

Proposition 5.2. There is a formal scheme Div+
n (C) over X such that maps Y −→ Div+

n (C) over X biject
with effective divisors of degree n on C over Y . Moreover, a choice of coordinate on C gives rise to an
isomorphism Div+

n (C) ' Ân ×X.

Proof. This is much the same as Example 2.10. We define

Div+
n (C)(R) =

{(a,D) | a ∈ X(R) and D is an effective divisor of degree n on Ca }.

We make this a functor by pullback, just as in Example 2.10. To see that Div+
n (C) is a formal scheme, choose

a coordinate x on C. Given a point (a,D) as above, we find that Ca = C ×X spec(R) = spf(R[[x]]), where
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the topology on R[[x]] is defined by the ideals (xk). We know that D is a closed subscheme of Ca, and that
D is informal. It follows that D = spec(R[[x]]/J) for some ideal J such that xk ∈ J for some k. Let λ(x) be
the endomorphism of OD given by multiplication by x, and let fD(t) =

∑n
i=0 ai(D)tn−i be the characteristic

polynomial of λ(x). As xk ∈ J , we see that λ(x)k = 0. If R is a field, then we deduce by elementary linear
algebra that fD(t) = tn. If p is a prime ideal in R then by considering the divisor spec(κ(p)) ×spec(R) D,
we conclude that fD(t) = tn (mod p[t]). Using Proposition 2.37, we deduce that ai(D) ∈ Nil(R) for i > 0.
Thus, the ai’s give a map Div+

n (C) −→ Ân ×X. As in Example 2.10, the Cayley-Hamilton theorem tells us
that fD(x) ∈ J and thus that OD = R[x]/fD(x) = R[[x]]/fD(x).

Conversely, suppose we have elements b0, . . . , bn with b0 = 1 and bi ∈ Nil(R) for i > 0 and we define
g(t) =

∑
i bit

n−i and D = spf(R[[x]]/g(x)). In OD we have xn = −
∑
i>0 bix

n−i, which is nilpotent, so x is
nilpotent, so (g(x)) is open in R[[x]]. This means that D is informal and that OD = R[x]/g(x), which is easily
seen to be a free module of rank n over R. Thus, D is an effective divisor of rank n on Ca. We conclude
that Div+

n (C) is isomorphic to Ân, and in particular is a formal scheme.
If Y is an arbitrary formal scheme over X, we can choose a presentation Y = lim

−→i
Yi, so Yi is an informal

scheme over X. The above tells us that maps Yi −→ Div+
n (C) over X biject with effective divisors of degree

n on C over Yi. Thus, maps Y −→ Div+
n (C) over X biject with systems of divisors Di over Yi, such that for

each map Yi −→ Yj we have Di = Dj ×Yj
Yi. Using Proposition 4.27, we see that these biject with effective

divisors of degree n on C over Y . �

Example 5.3. It is essentially well-known that BU(n)E = Div+
n (GE), where GE = (CP∞)E . A proof will

be given in Section 8.

Remark 5.4. It is not hard to check that for any map Y −→ X of formal schemes and any formal curve C
over X we have Div+

n (C×X Y ) = Div+
n (C)×X Y (because both sides represent the same functor X̂Y −→ Sets).

Definition 5.5. Let D be an effective divisor on a curve C over X. We shall define an associated line
bundle J(D) over C. By Corollary 4.48, it is enough to do this in a sufficiently natural way when X is an
informal scheme. In that case we have OD = OC/J(D) for some ideal J(D) in OC . In terms of a coordinate
x, we see from the proof of Proposition 5.2 that J(D) is generated by a monic polynomial f(x) whose lower
coefficients are nilpotent. Thus f(x) = xn − g(x) where g(x)k = 0 say. If fh = 0 then xnkh = gkh = 0 so
h = 0, so f is not a zero-divisor and J(D) is free of rank one over OC . Thus, J(D) can be regarded as a line
bundle over C as required (using Remark 4.45).

Proposition 5.6. There is a natural commutative and associative addition σ : Div+
j (C) ×X Div+

k (C) −→
Div+

j+k(C), such that J(D + E) = J(D)⊗ J(E).

Proof. Let a : spec(R) −→ X be an element of X(R), and let D and E be effective divisors of degrees j and k
on Ca over spec(R). We then have D = V (J(D)) and E = V (J(E)) where J(D) and J(E) are ideals in OCa .
We define F = V (J(D)J(E)). If we choose a coordinate x on C we find (as in the proof of Proposition 5.2)
that J(D) = (fD(x)) and J(E) = (fE(x)), where fD and fE are monic polynomials whose lower coefficients
are nilpotent. This means that g = fDfE is a polynomial of the same type, and it follows that F = V (g)
is a divisor of degree j + k as required. We define σ(D,E) = D + E = F . It is clear from the construction
that J(D + E) = J(D)⊗ J(E). �

Proposition 5.7. Let C be a formal curve over a formal scheme X. Then Div+
n (C) = CnX/Σn, and this is

a strong colimit. Moreover, the quotient map CnX −→ CnX/Σn is faithfully flat.

Proof. First consider the case n = 1. Fix a ring R and a point a ∈ X(R), and write Ca = C ×X spec(R),
which is a formal curve over Y = spec(R). A point c ∈ C lying over a is the same as a section of the projection
Ca −→ Y . Such a section is a split monomorphism, and thus a closed inclusion; we write [c] for its image, which
is a closed formal subscheme of Ca. The projection Ca −→ Y carries [c] isomorphically to Y , which shows
that [c] is an effective divisor of degree 1 on C over Y . Thus, this construction gives a map C −→ Div+

1 (C).
If x is a coordinate on C then it is easy to see that x(c) ∈ Nil(R) and [c] = spf(R[[x]]/(x−x(c))). Using this,
we see easily that our map is an isomorphism, giving the case n = 1 of the Proposition.

We now use the iterated addition map CnX = Div+
1 (C)nX −→ Div+

n (C) to get a map CnX/Σn −→ Div+
n (C).
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Next, because C ' Â1 × X, it is easy to see that C is coalgebraic over X and thus (by Example 4.65)
that CnX/Σn is a strong colimit. Given this, we can reduce easily to the case where X is informal, say
X = spec(R). Choose a coordinate x on C. This gives isomorphisms ODiv+

n (C) = R[[a1, . . . , an]] = S and
OCn

X
= R[[x1, . . . , xn]] = T and OCn

X/Σn
= TΣn . The claim is thus that the map S −→ TΣn is an isomorphism,

and that T is faithfully flat over TΣn . The map S −→ TΣn sends ai to the coefficient of xn−i in
∏
j(x− xj),

which is (up to sign) the i’th elementary symmetric function of the variables xj . It is thus a well-known
theorem of Newton that S = TΣn . It is also well-known that the elements of the form

∏n
j=1 x

dj

j with
0 ≤ dj < j form a basis for T over TΣn , so that T is indeed faithfully flat over TΣn . �

We next consider pointed curves, in other words curves C equipped with a specified “zero-section” 0: X −→
C such that the composite X 0−→ C −→ X is the identity. If C is such a curve and x is a coordinate on C, we
say that x is normalised if x(0) = 0. If y is an unnormalised coordinate then x = y − y(0) is a normalised
one, so normalised coordinates always exist.

Definition 5.8. Let C be a pointed formal curve over X. Define

f : Div+
n (C) −→ Div+

n+1(C)

by f(D) = D + [0]. For n ∈ Z with n < 0 we write Div+
n (C) = ∅. Define

Div+(C) =
∐
n≥0

Div+
n (C)

Divn(C) = lim
−→

(Div+
n (C)

f−→ Div+
n+1(C)

f−→ . . .)

Div(C) =
∐
n∈Z

Divn(C)

= lim
−→

(Div+(C)
f−→ Div+(C)

f−→ . . .).

It is not hard to see that fk induces an isomorphism Divn(C) ' Divn+k(C), so Div(C) can be identified
with

∐
n Div0(C) = Z×Div0(C).

A choice of normalised coordinate on C gives an isomorphism Div+
n (C) ' X×Ân. Under this identification,

f becomes the map
(x, a1, . . . , an) 7→ (x, a1, . . . , an, 0).

We thus have an isomorphism Div0(C) = Â(∞) (using the notation of Example 4.4) and thus Div = Z×Â(∞).

Definition 5.9. Given a divisor D on a pointed curve C over X, we define the Thom sheaf of D to be the
line bundle L(D) = 0∗J(D) over X. It is clear that L(D + E) = L(D) ⊗ L(E). Note that a coordinate on
C gives a generator fD(x) for J(D) and thus a generator uD for L(D), which we call the Thom class. This
is natural for maps of X, and satisfies uD+E = uD ⊗ uE .

Definition 5.10. If C is a pointed formal curve over X, we define a functor Coord(C) ∈ FX by

Coord(C)(R) = {(a, x) | a ∈ X(R) and x is a normalised coordinate on Ca }.

Proposition 5.11. The functor Coord(C) is a formal scheme over X, and is unnaturally isomorphic to
Gm × A∞ ×X.

Proof. Choose a normalised coordinate x on C, and suppose that a ∈ X(R). Then any normalised function
y : Ca −→ Â1 has the form

y(c) = f(x(c)) =
∑
k>0

ukx(c)k

for a uniquely determined sequence of coefficients uk. Moreover, y is a coordinate if and only if f : Â1 ×
spec(R) −→ Â1×spec(R) is an isomorphism, if and only if there is a power series g with g(f(t)) = t = f(g(t)).
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It is well-known that this happens if and only if u1 is invertible. Thus, the set of coordinates on Ca bijects
naturally with (Gm × A∞)(R), and Coord(C) ' Gm × A∞ ×X is a formal scheme, as required. �

Remark 5.12. We will see later that when E is an even periodic ring spectrum and GE = (CP∞)E we
have Coord(GE) = spec(E0MP ).

5.2. Weierstrass preparation.

Definition 5.13. A Weierstrass series over a ring R is a formal power series g(x) =
∑
k akx

k ∈ R[[x]] such
that there exists an integer n such that ak is nilpotent for k < n, and an is a unit. The integer n is called
the Weierstrass degree of g(x). (It is clearly well-defined unless R = 0). A Weierstrass polynomial over a
ring R is a monic polynomial h(x) =

∑n
k=0 bkx

k such that bk is nilpotent for k < n.

The following result is a version of the Weierstrass Preparation Theorem; see [6, Theorem 3] (for example)
for a more classical version.

Lemma 5.14. Let R be a ring, and let g(x) be a Weierstrass series over R, of Weierstrass degree n. Then
there is a unique ring map α : R[[y]] −→ R[[x]] sending y to g(x), and this makes R[[x]] into a free module over
R[[y]] with basis {1, x, . . . , xn−1}.

Proof. We can easily reduce to the case where an = 1. It is also easy to check that there is a unique map α
sending y to g(x), and that it sends any series

∑
j bjy

j to the sum
∑
j bjg(x)j , which is x-adically convergent.

For any j ≥ 0 and 0 ≤ k < n we define zjk = g(x)jxk. Given any m ≥ 0 we can write m = nj + k for
some j ≥ 0 and 0 ≤ k < n, and we put wm = zjk. For any R-module M , we define a map

βM :
∏
m

M −→M [[x]]

by βM (b) =
∑
m bmwm. It is easy to check that this sum is again x-adically convergent. The claim in the

lemma is equivalent to the statement that βR is an isomorphism.
Write I = (a0, . . . , an−1). This is finitely generated, so the same is true of Ir for all r, and it follows that

Ir
∏
mM =

∏
m I

rM and so on. We also see that wm = xm (mod I, xm+1).
Now consider a module M with IM = 0, so that bwm = bxm (mod xm+1) for b ∈ M . Given any

series c(x) =
∑
m cmx

m ∈ M [[x]], we see by induction on m that there is a unique sequence (bj) such that∑
j<m bmwm = c(x) (mod xm) for all m. It follows that βM is an isomorphism whenever IM = 0. Next,

whenever we have a short exact sequence L � M � N we have short exact sequences
∏
m L �

∏
mM �∏

mN and L[[x]] � M [[x]] � N [[x]], and we can use the five-lemma to see that βM is iso if βL and βN are.
Using this we see by induction that βR/Ir is iso for all r. On the other hand, when R is large we have Ir = 0
and so βR is an isomorphism. �

Corollary 5.15. In the situation of the lemma, the quotient ring R[[x]]/g(x) is a free module of rank n over
R, with basis {1, . . . , xn−1}. �

Corollary 5.16. If g(x) is a Weierstrass series over a ring R then there is a unique factorisation g(x) =
h(x)u(x), where h(x) is a Weierstrass polynomial, and u(x) is invertible.

Proof. By the previous corollary, we have−xn =
∑n−1
j=0 bjx

j (mod g(x)) for some unique sequence b0, . . . , bn−1 ∈
R. Put h(x) = xn +

∑
j bjx

j , so h is a monic polynomial of degree n with h(x) = 0 (mod g(x)), say
h(x) = g(x)v(x). Now write g(x) in the form

∑
k akx

k and put I = (a0, . . . , an−1), so I is a nilpotent ideal.
Modulo I we find that g(x) is a unit multiple of xn, so xn = 0 (mod I, g(x)). The uniqueness argument
applied mod I now tells us that h(x) = xn (mod I), so h(x) is a Weierstrass polynomial. It is also clear
that v(x) becomes a unit mod I[[x]], but I[[x]] is nilpotent so v(x) is a unit. We can thus take u(x) = 1/v(x)
to get the required factorisation. �

We now give a more geometric restatement of the above results.

Definition 5.17. Let C
q−→ X and D r−→ X be formal curves over a formal scheme X, and let f : C −→ D be

a map over X. We then have a curve r∗C = C ×X D over D, with projection map s : (c, d) 7→ d. We also
have a map f ′ : C −→ r∗C of formal schemes over D, given by f ′(c) = (c, f(c)). We say that f is an isogeny
if the map f ′ makes C into a divisor on r∗C over D. This implies in particular that f is finite and very flat.
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Lemma 5.18. Let X be an informal scheme, and let f : C −→ D be a map of formal curves over X. Let
x and y be coordinates on C and D respectively, and suppose that f∗y = g(x) for some Weierstrass series
g(x). Then f is an isogeny.

Proof. Write R = OX , and let n be the Weierstrass degree of g(x). We then have C = spf(R[[x]]) and
D = spf(R[[y]]) and r∗C = spf(R[[x, y]]). In this last case we think of x as the coordinate on r∗C and y as a
parameter on the base. The map f ′ corresponds to the map α : R[[x, y]] −→ R[[x]] that sends x to x and y to
g(x). We thus need to show that α is surjective (making f ′ a closed inclusion) and that it makes A[[x]] into
a free module of rank n over A[[y]]. The surjectivity is clear, and the freeness follows from Lemma 5.14. �

Example 5.19. One can check that the evident map CP∞ −→ HP∞ gives an isogeny (CP∞)E −→ (HP∞)E
of formal curves.

Definition 5.20. Let X be an informal scheme, and C a formal curve over X. We then let MC/X be
the ring obtained from OC by inverting all coordinates on C. We refer to this as the ring of meromorphic
functions on C.

Lemma 5.21. Let X be an informal scheme, and C a formal curve over X, and x a coordinate on C. Then
MC/X = OC [1/x], which is the ring of series

∑
k∈Z akx

k such that ak ∈ OX and ak = 0 for k � 0.

Proof. Let y be another coordinate on C; it will suffice to check that y becomes invertible in OC [1/x]. As
x and y are both coordinates, we find that y =

∑
k≥0 akx

k for some series such that a0 is nilpotent and a1

is a unit. In other words, we have y = b + xc(x), where b is nilpotent and c(0) is invertible in OX , so c(x)
is invertible in OC . It is thus clear that y − b has inverse x−1c(x)−1 in OC [1/x]. The sum of a unit and a
nilpotent element is always invertible, so y is a unit as required. �

Remark 5.22. The elements of MC/X should be thought of as Laurent expansions of functions whose poles
are all very close to the origin, the expansion being valid outside a small disc containing all the poles.

Lemma 5.23. Let x be a coordinate on C, and let f(x) =
∑
k∈Z akx

k be an element of MC/X . Then f is
invertible in MC/X if and only if X can be written as a coproduct X =

∐
k∈Z Xk, where Xk = ∅ for almost

all k, such that aj is nilpotent on Xk for j < k, and ak is invertible on Xk.

Proof. First suppose that f(x) is invertible, say f(x)g(x) = 1 with g(x) =
∑
j∈Z bjx

j . Write Ij = (ajb−j)
and Jj =

∑
k 6=j Ij . Because f(x)g(x) = 1 it is clear that

∑
j Ij = OX and thus Ji + Jj = OX when i 6= j.

There exists K such that a−j = b−j = 0 when j > K. It follows that Ij = 0 and Jj = OX when |j| > K.
Next, let p be a prime ideal in OX . As OX/p is an integral domain, it is clear that modulo p we must have
f(x) = akx

k + . . . and g(x) = b−kx
−k + . . . for some k. This implies that aibj ∈ p whenever i+ j < 0. As the

intersection of all prime ideals is the set of nilpotents, the elements aibj must be nilpotent when i + j < 0.
If i 6= j then either i− j or j− i is negative, so aib−iajb−j is nilpotent. It follows that IiIj is nilpotent when
i 6= j, and thus that

⋂
j Jj is nilpotent. It follows from the results of Section 2.5 that there are unique ideals

J ′j such that Jj ≤ J ′j ≤
√
Jj and OX =

∏
j OX/J

′
j . We take Xj = spec(OX/J ′j); one can check that this has

the claimed properties.
Conversely, suppose that X has a decomposition of the type discussed. We reduce easily to the case

where X = Xk for some k. After replacing f by x−kf , we may assume that k = 0. This means that
f(x) =

∑
j∈Z ajx

j , where a0 is invertible and aj is nilpotent for j < 0 and aj = 0 for j � 0. The invertibility
or otherwise of f is unaffected if we subtract off a nilpotent term, so we may assume that aj = 0 for j < 0.
The resulting series is invertible in OC and thus certainly in MC/X . �

Definition 5.24. Let x be a coordinate on C, and let f be an invertible element of MC/X , so we have a
decomposition X =

∐
kXk as above. If X = Xk then we say that f has constant degree k. More generally,

we let deg(f) be the map from X to the constant scheme Z that takes the value k on Xk. One can check
that these definitions are independent of the choice of coordinate.

Lemma 5.25. Let x be a coordinate on C, and let f be an invertible element of MC/X , with constant
degree k. Then there is a unique factorisation f(x) = xku(x)g(x), where u(x) ∈ O×C , and g(x) =

∑
j≥0 bjx

−j

where b0 = 1 and bj is nilpotent for j > 0 and bj = 0 for j � 0.
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Proof. Clearly we have h(x) = xNf(x) ∈ OC for some N > 0. We see from Lemma 5.23 that h(x) is a
Weierstrass power series of Weierstrass degree N + k. It follows from Corollary 5.16 that h(x) has a unique
factorisation of the form h(x) = k(x)u(x), where k(x) is a Weierstrass polynomial of degree N + k, and
u(x) ∈ O×C . We write g(x) = x−N−kh(x); this clearly gives a factorisation of the required type, and one can
check that it is unique. �

Proposition 5.26. Let C be a formal curve over a formal scheme X. For any ring R, we define

Mer(C,Gm)(R) = {(u, f) | u ∈ X(R) , f ∈M×Cu/spec(R)}.

Then Mer(C,Gm) is a formal scheme over X, and there is a short exact sequence of formal groups

Map(C,Gm) � Mer(C,Gm) � Div(C),

which admits a non-canonical splitting.

Proof. As Map(C,Gm)(R) = {(u, f) | u ∈ X(R) , f ∈ O×Cu
}, there is an obvious inclusion Map(C,Gm) −→

Mer(C,Gm) of group-valued functors. Next, let Y (R) be the set of series g(x) =
∑
j≥0 bjx

−j such that
b0 = 1 and bj is nilpotent for j > 0 and bj = 0 for j � 0. Then Y = lim

−→k

∏
0<j<k Â1 is a formal

scheme, and Lemma 5.25 gives an isomorphism Mer(C,Gm) ' Map(C,Gm) × Z × Y . This shows that
Mer(C,Gm) is a formal scheme. We next define a map div: Mer(C,Gm) −→ Div(C). Suppose that f ∈ OCu

is such that OCu
/f is a free module of rank n over R. Then D = spf(OCu

/f) ∈ Divn(G)(R)and we define
div(f) = D. Given another such function g ∈ OCu

, we define div(f/g) = div(f) − div(g). This is well-
defined, because if f/g = f ′/g′ then fg′ = f ′g (because series of this form are never zero-divisors) and thus
div(f) + div(g′) = div(f ′) + div(g) and so div(f) − div(g) = div(f ′) − div(g′). It is easy to see that we
get a well-defined homomorphism div: Mer(C,Gm) −→ Div(C), which is zero on Map(C,Gm). Conversely,
suppose that div(f/g) = 0, so that div(f) = div(g). Then f and g are non-zero-divisors and they generate
the same ideal in OCu

, so they are unit multiples of each other and thus f/g ∈ Map(C,Gm)(R). Thus
ker(div) = Map(C,Gm).

Now let j : C −→ Div(C) be the evident inclusion. Given a point a ∈ C(R), we also define σ(a) = x−x(a) =
x(1 − x(a)/x) ∈ Mer(C)(R). This gives a map σ : C −→ Mer(C,Gm), and it is clear that div ◦ σ = j. As
Div(C) is the free Abelian formal group generated by C, we see that there is a unique homomorphism
τ : Div(C) −→ Mer(C,Gm) with τ ◦ j = σ. We thus have div ◦ τ ◦ j = j and thus div ◦ τ = 1. It follows that
the sequence Map(C,Gm) � Mer(C,Gm) � Div(C) is a split exact sequence. The splitting depends on a
choice of coordinate, but the other maps are canonical. �

5.3. Formal differentials. We next generalise Definition 2.65 to a certain (rather small) class of formal
schemes.

Definition 5.27. We say that a formal scheme W over X is formally smooth of dimension n over X if it
is isomorphic in X̂X to Ân ×X. In particular, W is formally smooth of dimension one if and only if it is a
formal curve.

Definition 5.28. Let W be formally smooth of dimension n over X; we shall define a vector bundle Ω1
W/X of

rank n over W . By Corollary 4.48, it suffices to do this in a sufficiently natural way whenever X is an informal
scheme. In that case, we let J be the kernel of the multiplication map OW×XW = OW ⊗̂OX

OW −→ OW , so
that V (J) is the diagonal subscheme in W ×X W . We then write Ω1

W/X = J/J2, which is a module
over OW×XW /J = OW . If f ∈ OW then we write d(f) = f ⊗ 1 − 1 ⊗ f + J2 ∈ Ω1

W/X , and note that
d(fg) = fd(g) + gd(f) as usual. As W is formally smooth, we can choose x1, . . . , xn ∈ OW giving an
isomorphism W ' Ân ×X and thus OW ' OX [[x1, . . . , xn]]. One checks that Ω1

W/X is freely generated over
OW by {d(x1), . . . , d(xn)}. Thus, Ω1

W/X can be regarded as a vector bundle of rank n over W , as required.
We write ΩkW/X for the k’th exterior power of Ω1

W/X .

Any map f : V −→ W of formally smooth schemes over X gives rise to a map f∗ : f∗Ω1
W/X −→ Ω1

V/X of
vector bundles over V . If we have coordinates xi on W and yj on V then xi ◦ f = ui(y1, . . . , yd) for certain
power series ui over OX , and we have f∗(dxi) =

∑
j(∂ui/∂yj)dyj . Thus, f∗ is a coordinate-free way of

encoding the partial derivatives of the series ui.
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If W is formally smooth over X and g : Y −→ X then g∗W = Y ×XW is easily seen to be formally smooth
over Y , with Ω1

g∗W/Y = h∗Ω1
W/X , where h : g∗W −→W is the evident projection map.

Definition 5.29. If R is an Fp-algebra, then we have a ring map φR from R to itself defined by φR(a) = ap.
We call this the algebraic Frobenius map. Now let X be a functor over spec(Fp). If R is an Fp-algebra, we
define (FX)R = X(φR) : X(R) −→ X(R). If R is not an Fp-algebra then spec(Fp)(R) = ∅ and thus X(R) = ∅
and we define (FX)R = 1: X(R) −→ X(R). This gives a map FX : X −→ X, which we call the geometric
Frobenius map.

Remark 5.30. If h : X −→ Y is a map of functors over spec(Fp) then one can check that FY ◦h = h ◦FX . If
X is a scheme then FX is characterised by the fact that g(FX(a)) = g(a)p for all rings R, points a ∈ X(R),
and functions g ∈ OX . If X = spec(A) then FX = spec(φA).

Definition 5.31. Let X be a functor over spec(Fp), and let W be functor over X, with given map q : W −→ X.
We then have a functor F ∗XW over X defined by

(F ∗XW )(R) = {(a, b) ∈W (R)×X(R) | q(a) = FX(b)}.
We define a map FW/X : W −→ F ∗XW by FW/X(a) = (FW (a), q(a)). Note that if W is formally smooth over
X then the same is true of F ∗XW . Moreover, if we have coordinates xi on W and we use the obvious resulting
coordinates yi on F ∗XW then we have yi(FW/X(a)) = xi(a)p.

Proposition 5.32. Let f : V −→ W be a map of formally smooth schemes over X, and suppose that
f∗ = 0: Ω1

W/X −→ Ω1
V/X .

(a) If X lies over spec(Q) then there is a unique map g : X −→ W of schemes over X such that f is the
composite V −→ X

g−→W . In other words, f is constant on the fibres of V .
(b) If X lies over spec(Fp) for some prime p, then there is a unique map f ′ : F ∗XW −→ V such that

f = f ′ ◦ FW/X .

Proof. Choose coordinates xi on W and yj on V , so xi ◦ f = ui(y1, . . . , yd) for certain power series ui over
OX . We have 0 = f∗(dxi) =

∑
j(∂ui/∂yj)dyj , so ∂ui/∂yj = 0 for all i and j. In the rational case we conclude

that the series ui are constant, and in the mod p case we conclude that ui(y1, . . . , yd) = vi(y
p
1 , . . . , y

p
d) for

some unique series vi. The conclusion follows easily. �

5.4. Residues. We now describe an algebraic theory of residues, which is essentially the same as that
discussed in [10] and presumably identical to the unpublished definition by Cartier mentioned in [19].

Definition 5.33. If f(x) =
∑
k∈Z akx

k ∈ R[[x]][1/x], we define ρ(f) = a−1.

Remark 5.34. Recall from Remark 5.22 that the elements of R[[x]][1/x] should be compared with mero-
morphic functions on a neighbourhood of zero in C of moderate size, whose poles are concentrated very
near the origin. The expansion in terms of x should be thought of as a Laurent expansion that is valid
outside a tiny disc containing all the poles. Thus, the coefficient of 1/x is the sum of the residues at all the
poles, and not just the pole at the origin. To justify this, note that if a is nilpotent (say aN = 0) we have
1/(x− a) =

∑N−1
k=0 ak/xk+1 so ρ(1/(x− a)) = 1.

Proposition 5.35. For any f ∈ R[[x]][1/x] we have ρ(f ′) = 0. If f is invertible we have ρ(f ′/f) = deg(f),
where deg(f) is as in Definition 5.24. Moreover, we have ρ(fn.f ′) = 0 for n 6= −1.

Proof. It is immediate from the definitions that ρ(f ′) = 0. Now let f be invertible; we may assume that
it has constant degree d say. Lemma 5.25 gives a factorisation f(x) = xdu(x)g(x), where u(x) ∈ R[[x]]×,
and g(x) =

∑
j≥0 bjx

−j where b0 = 1 and bj is nilpotent for j > 0 and bj = 0 for j � 0. We then have
f ′/f = d/x+u′/u+g′/g. It is clear that u′/u ∈ R[[x]] so ρ(u′/u) = 0. Similarly, we find that g′ only involves
powers xk with k < −1. Moreover, if h(x) = 1 − g(x) then h is a polynomial in 1/x and is nilpotent, and
1/g =

∑N
k=0 h

k for some N so 1/g is a polynomial in 1/x. It follows that g′/g only involves powers xk with
k < −1, so ρ(g′/g) = 0. Thus ρ(f ′/f) = d as claimed.

Finally, suppose that n 6= −1. Note that (n+1)ρ(fn.f ′) = ρ((fn+1)′) = 0. If R is torsion-free we conclude
that ρ(fn.f ′) = 0. If R is not torsion-free, we recall that f(x) has the form

∑∞
i=m aix

i for some m, where
ai is nilpotent for i < d and ad is invertible. Thus there is some N > 0 such that aNi = 0 for all i < d.
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Define R′ = Z[bi | i ≥ m][1/bd]/(bNi | m ≤ i < d) and g(x) =
∑
i bix

i ∈ R′[[x]][1/x]×. It is clear that R′ is
torsion-free and thus that ρ(gn.g′) = 0. There is an evident map R′ −→ R carying g to f , so we deduce that
ρ(fn.f ′) = 0 as claimed. �

Corollary 5.36. If g(x) ∈ R[[x]] is a Weierstrass series of degree d > 0 and f(x) ∈ R[[x]][1/x] then
ρ(f(g(x))g′(x)) = dρ(f(x)).

Proof. Suppose that f(x) =
∑
k≥m akx

k. We first observe that the claim makes sense: as g is a Weierstrass
series of degree d > 0 we know that g(0) is nilpotent, so gN ∈ R[[x]]x for some N , so gNk ∈ R[[x]]xk

for k ≥ 0. Moreover, Lemma 5.23 implies that g is invertible in R[[x]][1/x]. Thus, the terms in the sum
f(g(x)) =

∑
k≥m akg(x)k are all defined, and the sum is convergent. We thus have

ρ(f(g(x))) =
∑
k

akρ(gk.g′) = d a−1 = dρ(f)

as required. �

Definition 5.37. Let C be a formal curve over an affine scheme X. We write MΩ1
C/X for MC/X⊗OC

Ω1
C/X ,

which is a free module of rank one over MC/X . It is easy to check that there is a unique map d : MC/X −→
MΩ1

C/X extending the usual map d : OC −→ Ω1
C/X and satisfying d(fg) = f d(g) + g d(f).

Corollary 5.38. Let C be a formal curve over an affine scheme X. Then there is a natural residue map
res = resC/X : MΩ1

C/X −→ OX such that

(a) res(df) = 0 for all f ∈MC/X .
(b) res((df)/f) = deg(f) for all f ∈M×C/X .
(c) If q : C −→ C ′ is an isogeny then res(q∗α) = deg(q)res(α) for all α.

Proof. Choose a coordinate x on C, so that any α ∈MC/X⊗OC
Ω1
C/X has a unique expression α = f(x)dx for

some f ∈ OX [[t]][1/t]. Define res(α) = ρ(f). If y is a different coordinate then x = g(y) for some Weirstrass
series g of degree 1 and dx = g′(y)dy so α = f(g(y))g′(y)dy and we know that ρ(f(g(y))g′(y)) = ρ(f) so our
definition is independent of the choice of the coordinate. The rest of the corollary is just a translation of the
properties of ρ. �

See Remark 8.34 for a topological application of this.

6. Formal groups

A formal group over a formal scheme X is just a group object in the category X̂X . In this section, we will
study formal groups in general. In the next, we will specialise to the case of commutative formal groups G
over X with the property that the underlying scheme is a formal curve; we shall call these ordinary formal
groups. For technical reasons, it is convenient to compare our formal groups with group objects in suitable
categories of coalgebras. To combine these cases, we start with a discussion of Abelian group objects in an
arbitrary category with finite products. We then discuss the existence of free Abelian formal groups, or of
schemes of homomorphisms between formal groups. As a special case, we discuss the Cartier duality functor
G 7→ Hom(G,Gm). Finally, we define torsors over a commutative formal group, and show that they form a
strict Picard category.

6.1. Group objects in general categories. Let D be a category with finite products (including an empty
product, in other words a terminal object). There is an evident notion of an Abelian group object in D; we
write Ab D for the category of such objects. We also consider the category Mon D of Abelian monoids in
D. A basepoint for an object U of D is a map from the terminal object to U . We write Based D for the
category of objects of D equipped with a specified basepoint. There are evident forgetful functors

Ab D −→ Mon D −→ Based D −→ D.

If U ∈ D and G ∈ Ab D then the set D(U,G) has a natural Abelian group structure. In fact, to give such
a group structure is equivalent to giving maps 1 0−→ G

σ←− G×G making it an Abelian group object, as one
sees easily from Yoneda’s lemma.
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Let {Gi} be a diagram in Ab D, and suppose that the underlying diagram in D has a limit G. Then
D(U,G) = lim

←−i
D(U,Gi) has a natural Abelian group structure. It follows that there is a unique way to

make G into an Abelian group object such that the maps G −→ Gi become homomorphisms, and with
this structure G is also the limit in Ab D. In other words, the forgetful functor Ab D −→ D creates limits.
Similarly, we see that all the functors Ab D −→ Mon D −→ Based D −→ D and their composites create limits.

Suppose that G, H and K are Abelian group objects in D and that f : G −→ K and g : H −→ K are
homomorphisms. One checks that the composite G ×H f×g−−−→ K ×K σ−→ K is also a homomorphism, and
that it is the unique homomorphism whose composites with the inclusions G −→ G×H and H −→ G×H are
f and g. This means that G×H is the coproduct of G and H in Ab D, as well as being their product.

We next investigate another type of colimit in Ab D.

Definition 6.1. A reflexive fork in any category D is a pair of objects U, V , together with maps d0, d1 : U −→
V and s : V −→ U such that d0s = 1 = d1s. The coequaliser of such a fork means the coequaliser of the maps
d0 and d1.

Proposition 6.2. Let D be a category with finite products. Let

V w
s
U ww

d0

d1
V

be a reflexive fork in Mon D, and let U ww
d0

d1
V w

e
W be a strong coequaliser in D. Then there is a monoid

structure on W such that e is a homomorphism, and this makes the above diagram into a coequaliser in
Mon D.

Proof. Let σU : U ×U −→ U and σV : V ×V −→ V be the addition maps. We have a commutative diagram as
follows:

V × U U × U U

V × V V × V V
uu

1×d0 1×d1

w
s×1

uu

d0×d0 d1×d1

w
σU

uu

d0 d1

w
σV

The right hand square commutes because d0 and d1 are homomorphisms, and the left hand one because
d0s = d1s = 1. Using this, we see that eσV (1 × d0) = eσV (1 × d1), and a similar proof shows that
eσV (d0 × 1) = eσV (d1 × 1). In terms of elements, this just says that e(d0(u) + v) = e(d1(u) + v). As our
coequaliser diagram was assumed to be strong, we see that the diagram

V × U ww
1×d0
1×d1

V × V w
1×e

V ×W

is a coequaliser. This implies that there is a unique map τ : V ×W −→W with τ(1× e) = eσV : V ×V −→W .
Now consider the diagram

U × V V × V V

U ×W V ×W W.

ww
d0×1

d1×1

u

1×e

u

1×e

w
σV

u

e

ww
d0×1

d1×1
w

τ

We have already seen that eσV (d0×1) = eσV (d1×1), and it follows that τ(d0×1)(1×e) = τ(d1×1)(1×e).
As the relevant coequaliser is preserved by the functor U × (−), we see that 1U × e is an epimorphism, so
we can conclude that τ(d0 × 1) = τ(d1 × 1). As the functor (−)×W preserves our coequaliser, this gives us
a unique map σW : W ×W −→ W such that σW (e × 1) = τ : V ×W −→ W . One checks that this makes W
into an Abelian group object, and that e is a homomorphism. One can also check that this makes W into a
coequaliser in Ab D. �

Remark 6.3. The same result holds, with essentially the same proof, with Mon D replaced by Ab D or
Based D. The same methods also show that a reflexive fork in the category of R-algebras (for any ring R)
has the same coequaliser when computed in the category of R-algebras, or of R-modules, or of sets.
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We next try to construct free Abelian groups or monoids on objects of D or Based D. If U ∈ D and
V ∈ Based D, we “define” objects M+(U), N+(V ) ∈ Mon D and M(U), N(V ) ∈ Ab(D) by the equations

Mon D(M+(U),M) = D(U,M)

Mon D(N+(V ),M) = Based D(V,M)

Ab D(M(U), G) = D(U,G)

Ab D(N(V ), G) = Based D(V,G).

More precisely, if there is an object H ∈ Ab D with a natural isomorphism

Ab D(H,G) = Based D(V,G)

for all G ∈ Ab D, then H is unique up to canonical isomorphism, and we write N(V ) for H. Similar
remarks apply to the other three cases. Given a monoid object M , we also “define” its group completion
G(M) ∈ Ab D by the equation Ab D(G(M), H) = Mon D(M,H).

There are fairly obvious ways to try to construct free group and monoid objects, using a mixture of
products and colimits. However, there are two technical points to address. Firstly, it turns out that we need
our colimits to be strong colimits in the sense of Definition 2.18. Secondly, in some places we can arrange to
use reflexive coequalisers, which is technically convenient.

Proposition 6.4. Let U be an object of D. For each k ≥ 0, the symmetric group Σk acts on Uk. Suppose
that the quotient Uk/Σk exists as a strong colimit and also that L =

∐
k≥0 U

k/Σk exists as a strong
coproduct. Then L = M+(U).

Proof. Let I be the category with object set N, and with morphisms

I(j, k) =

{
∅ if j 6= k

Σk if j = k.

It is easy to see that there is a functor k 7→ Uk from I to D, and that L is a strong colimit of this functor.
It follows that L×Um is the colimit of the functor k 7→ Uk ×Um, and thus (using the “Fubini theorem” for
colimits) that

L× L = lim
−→

(k,m)∈I×I

Uk × Um.

Similarly, L× L× L is the colimit of the functor (k,m, n) 7→ Uk × Um × Un from I× I× I to D.

Let jk : Uk −→ L be the evident map. We then have maps Uk × Um ' Uk+m jk+m−−−→ L, and these fit
together to give a map σ : L × L −→ L. We also have a zero map 0 = j0 : 1 = U0 −→ L. We claim that
this makes L into a commutative monoid object in D. To check associativity, for example, we need to show
that σ ◦ (σ × 1) = σ ◦ (1 × σ) : L3 −→ L. By the above colimit description of L3, it is enough to check this
after composing with the map jk × jm × jn : Uk+m+n −→ L3, and it is easy to check that both the resulting
composites are just jk+m+n. We leave the rest to the reader.

Now suppose we have a monoid M ∈ Mon D and a map f : U −→ M in D. We then have maps fk =

(Uk
fk

−→ Mk σ−→ M), which are easily seen to be invariant under the action of Σk, so we get an induced
map f ′ : L −→ M in D. We claim that this is a homomorphism. It is clear that f ′ ◦ 0 = 0, so we need
only check that f ◦ σ = σ ◦ (f × f) : L2 −→ M . Again, we need only check this after composing with the
map jk × jm : Uk+m −→ L2, and it then becomes easy. We also claim that f ′ is the unique homomorphism

g : L −→ M such that g ◦ j1 = f . Indeed, we have jk = (Uk
jk
1−→ Lk

σ−→ L), so for any such g we have

g ◦ jk = (Uk
fk

−→Mk σ−→M) = f ′ ◦ jk. By our colimit description of L, we see that g = f ′ as claimed.
This shows that monoid maps g : L −→ M biject naturally with maps f : U −→ M , by the correspondence

g 7→ g ◦ j1. This means that L = M+(U) as claimed. �

Proposition 6.5. Let V be an object of Based D, and suppose that Vk = V k/Σk exists as a strong colimit
for all k ≥ 0. The basepoint of U then induces maps Vk −→ Vk+1. Suppose also that the sequence of Vk’s has
a strong colimit L. Then L = N+(V ).
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Proof. This is essentially the same as the proof of Proposition 6.4, and is left to the reader. �

We next try to construct group completions of monoid objects. We digress briefly to introduce some
convenient language. Let M be a monoid object, so that D(U,M) is naturally a monoid for all U . We thus
have a map fU : D(U,M3) = D(U,M)3 −→ D(U,M2) defined by f(a, b, c) = (c + 2a, 3b + c) (for example).
This is natural in U , so Yoneda’s lemma gives us a map f : M3 −→M2. From now on, we will allow ourselves
to abbreviate this definition by saying “let f : M3 −→ M2 be the map (a, b, c) 7→ (c + 2a, 3b + c)”. This is
essentially the same as thinking of D as a subcategory of [Dop,Sets], by the Yoneda embedding.

Given a monoid object M , we define maps d0, d1 : M3 −→M2 and s : M2 −→M by

d0(a, b, x) = (a, b)

d1(a, b, x) = (a+ x, b+ x)

s(a, b) = (a, b, 0).

This is clearly a reflexive fork in Mon D.

Proposition 6.6. If the above fork has a strong coequaliser q : M2 −→ H in D, then H has a unique group
structure making q into a homomorphism of monoids, and with that group structure we have H = G(M).

Proof. Firstly, Proposition 6.2 tells us that there is a unique monoid structure on H making q into a
monoid map, and that this makes H into the coequaliser in Mon D. We define a monoid map ν′ : M2 −→ H
by ν′(a, b) = q(b, a). Clearly ν′d0(a, b, x) = qd0(b, a, x) and ν′d1(a, b, x) = qd1(b, a, x) but qd0 = qd1 so
ν′d0 = ν′d1, so there is a unique map ν : H −→ H with ν′ = νq. We then have

q(a, b) + νq(a, b) = q(a, b) + q(b, a)

= q(a+ b, a+ b)

= qd1(0, 0, a+ b)

= qd0(0, 0, a+ b)

= q(0, 0) = 0.

This shows that (1 + ν)q = 0, but q is an epimorphism so 1 + ν = 0. This means that ν is a negation
map for H, making it into a group object. We let j : M −→ H be the map a 7→ q(a, 0), which is clearly a
homomorphism of monoids. Clearly q(a, b) = q(a, 0) + q(0, b) = j(a) + νj(b) = j(a)− j(b).

Now let K be another Abelian group object, and let f : M −→ K be a homomorphism of monoids. We
define f ′ : M2 −→ K by f ′(a, b) = f(a) − f(b). It is clear that f ′d0 = f ′d1, so we get a unique monoid map
f ′′ : H −→ K with f ′′q = f ′. In particular, we have f ′′j(a) = f ′′q(a, 0) = f ′(a, 0) = f(a), so that f ′′j = f . If
g : H −→ K is another homomorphism with gj = f then gq(a, b) = g(j(a)− j(b)) = f(a)− f(b) = f ′′q(a, b),
and q is an epimorphism so g = f ′′.

This shows that group maps H −→ K biject with monoid maps M −→ K by the correspondence g 7→ gj,
which means that H = G(M) as claimed. �

6.2. Free formal groups. We next discuss the existence of free Abelian formal groups.

Proposition 6.7. Let Y be a formal scheme over a formal scheme X. Write X as a filtered colimit of
informal schemes Xi, and put Yi = Y ×X Xi. If M+(Yi) exists in Mon X̂Xi for all i, then M+(Y ) exists and
is equal to lim

−→i
M+(Yi). Similar remarks apply to M(Y ) and (if Y has a given section 0: X −→ Y ) to N+(Y )

and N(Y ).

Proof. We use the notation of Definition 4.26 and Proposition 4.27. It is clear that {M+(Yi)} is the free
Abelian monoid object on {Yi} in the category D{Xi}. As the functor F : D{Xi} −→ X̂X preserves finite
limits, we see that L = lim

−→i
M+(Yi) = F{M+(Yi)} is an Abelian monoid object in X̂X . Using the fact that

F preserves finite products and is left adjoint to G, we see that

X̂X(Lm, Z) = D{Xi}({M
+(Yi)mXi

}, {Z ×X Xi})
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for all Z ∈ X̂Z . Using this, one can check that

Mon X̂(L,M) = Mon D{Xi}({M
+(Yi)}, {M ×X Xi})

= D{Xi}({Yi}, {M ×X Xi}) = X̂X(Y,M),

as required. We leave the case of M(Y ) and so on to the reader. �

Proposition 6.8. If Y is a coalgebraic formal scheme over X, then the free Abelian monoid scheme M+(Y )
exists. If Y also has a specified section 0: X −→ Y (making it an object of Based X̂X) then N+(Y ) exists.

Proof. By the previous proposition, we may assume that X is informal, and that Y = schX(U) for some
coalgebra U over R = OX with a good basis {ei | i ∈ I}. We know from Example 4.65 that Y kX/Σk is a strong
colimit for the action of Σk on Y kX . Moreover,

∐
k Y

k/Σk exists as a strong coproduct by Corollary 4.42. We
conclude from Proposition 6.4 that M+(Y ) =

∐
k Y

k/Σk. In the based case, we observe that the diagram
{Y k/Σk} is just indexed by N and thus is filtered, and filtered colimits exists and are strong in X̂X by
Proposition 4.12. Given this, Proposition 6.5 completes the proof. �

Remark 6.9. If X is informal we see that the coalgebra cM+(Y ) is just the symmetric algebra generated
by cY over OX . In the based case, if e0 ∈ cY is the basepoint then cN+(Y ) = cM+(Y )/(e0 − 1).

We next show that in certain cases of interest, the free Abelian monoid N+(Y ) constructed above is
actually a group.

Definition 6.10. A good filtration of a coalgebra U over a ring R is a sequence of submodules FsU for s ≥ 0
such that

(a) ε : F0U −→ A is an isomorphism.
(b) For s > 0 the quotient GsU = FsU/Fs−1U is a finitely generated free module over R.
(c)

⋃
s FsU = U

(d) ψ(FsU) ⊆
∑
s=t+u FsU ⊗ FtU .

We write C′′ = C′′R = C′′Z for the category of coalgebras that admit a good filtration. Given a good filtration,

we write η for the composite A ε−1

−−→ F0U � U . One can check that this is a coalgebra map, so it makes U
into a based coalgebra. A good basepoint for U is a basepoint which arises in this way. We say that a very
good basis for U is a basis {e0, e1, . . .} for U over R such that

(i) e0 = η(1)
(ii) ε(ei) = 0 for i > 0
(iii) There exist integers Ns such that {ei | i < Ns} is a basis for FsU .

One can check that very good bases exist, and that a very good basis is a good basis.

Proposition 6.11. If U and V lie in C′′Z then so do U × V and Uk/Σk. If we choose a good basepoint for
U then we can define N+(U), and it again lies in C′′Z .

Proof. Choose good filtrations on U and V . Define a filtration on U × V = U ⊗ V by setting Fs(U ⊗ V ) =∑
s=t+u FtU⊗FuV . It is not hard to check that this is good. Essentially the same procedure gives a filtration

of U⊗m. This is invariant under the action of the symmetric group Σm, so we get an induced filtration of
the group of coinvariants U⊗mΣm

. Our filtrations on these groups are compatible as m varies, so we get an
induced filtration of N(U) = lim

−→m
U⊗mΣm

. Using a very good basis for U and the associated monomial basis

for N(U), we can check that the filtration of N(U) is good. �

Proposition 6.12. Let U be an Abelian monoid object in CZ , with addition map σ : U ×U = U ⊗U −→ U .
If U admits a good filtration such that the basepoint is good and σ(FsU ⊗ FtU) ⊆ Fs+tU for all s, t ≥ 0,
then U is actually an Abelian group object.

Proof. First note that we can use σ to make U into a ring. We need to construct a negation map (otherwise
known as an antipode) χ : U −→ U , which must be a coalgebra map satisfying σ(1 ⊗ χ)ψ = ηε. In terms of
elements, if ψ(a) = 1⊗ a+

∑
a′ ⊗ a′′ then the requirement is that χ(a) = ηε(a)−

∑
a′χ(a′′). The idea is to

use this formula to define χ on FsU by recursion on s.
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Write ψ = ψ − η ⊗ 1: U −→ U ⊗ U . Note that ψ(FsU) ⊆
∑s
t=0 Fs−tU ⊗ FtU , and that (ε ⊗ 1)ψ = 0.

Choose a very good basis {ei} for U , and write ψ(ei) =
∑
j,k aijkej ⊗ ek. Suppose that Ns−1 ≤ i < Ns, so

that ei ∈ FsU \ Fs−1U . If j > 0 and k ≥ Ns−1 then ej ⊗ ek 6∈ Fs(U ⊗ U) so aijk = 0. On the other hand,
the equation (ε⊗ 1)ψ(ei) = 0 gives

∑
m ai0mem = 0 for all m, so ai0k = 0, so aijk = 0 for all j. This applies

for all k ≥ Ns−1, and thus in particular for k ≥ i.
We now define χ(ei) recursively by χ(e0) = e0 and

χ(ei) = −
∑

0≤k<i

aijkejχ(ek)

for i > 0. By the previous paragraph, we actually have χ(ei) = −
∑
k≥0 aijkejχ(ek), and it follows that

σ(1⊗χ)ψ = ηε as required. We still have to check that χ is a coalgebra map. For the counit, it is clear that
εχ(e0) = ε(e0). If we assume inductively that ε(χ(ek)) = ε(ek) = 0 for 0 < k < i then we find that

εχ(ei) = −
∑

0≤k<i

aijkε(ej)εχ(ek) = ai00 = (ε⊗ ε)ψ(ei) = ε(ei) = 0.

A similar, but slightly more complicated, induction shows that ψχ = (χ ⊗ χ)ψ, so χ is a coalgebra map as
required. �

Proposition 6.13. Let C be a pointed formal curve over a formal scheme X. Then there are natural
isomorphisms

M+(C) = Div+(C)

N+(C) = N(C) = Div0(C)

M(C) = Div(C).

Proof. This follows easily from the constructions in Section 6.1 and the results above. �

6.3. Schemes of homomorphisms.

Definition 6.14. Given formal groups G and H over X and a ring R, we let HomX(G,H)(R) be the set
of pairs (x, u), where x ∈ X(R) and u : Gx −→ Hx is a homomorphism of formal groups over spec(R). This
is a subfunctor of MapX(G,H), so we have defined an object HomX(G,H) ∈ F. It is not hard to define an
equaliser diagram

HomX(G,H) −→ MapX(G,H) ww
d0

d1
MapX(G×X G,H).

In more detail, note that a point of MapX(G,H) is a map x : spec(R) −→ X together with a map f : Gx −→ Hx

of schemes over spec(R). Given such a pair (x, f), we define g, h : Gx×spec(R)Gx −→ Hx by g(a, b) = f(a+ b)
and h(a, b) = f(a) + f(b), and then we define di by d0(f) = g and d1(f) = h.

Proposition 6.15. Let G and H be formal groups over X. If G is finite and very flat over X, or if G is
coalgebraic and H is relatively informal, or if G is very flat and H is of finite presentation, then HomX(G,H)
is a formal scheme and there is a natural isomorphism

X̂X(Y,HomX(G,H)) = Ab X̂Y (G×X Y,H ×X Y )

for all Y ∈ X̂X .

Proof. Theorem 4.69 tells us that MapX(G,H) and MapX(G ×X G,H) are formal schemes, and X̂X is
closed under finite limits in F, so HomX(G,H) is a formal scheme. The natural isomorphism comes from
the Yoneda lemma when Y is informal, and follows in general by passage to colimits. �

Example 6.16. Let Ĝa be the additive formal group (over the terminal scheme 1 = spec(Z)) defined by
Ĝa(R) = Nil(R), with the usual addition. Thus, the underlying scheme of Ĝa is just Â1. This is coalgebraic
over 1, so we see that End(Ĝa) = Hom1(Ĝa, Ĝa) exists. One checks that any map Â1 × Y −→ Â1 × Y
over Y is given by a unique power series f(x) ∈ OY [[x]] such that f(0) is nilpotent. It follows easily that
End(Ĝa)(R) is the set of power series f ∈ R[[x]] such that f(x + y) = f(x) + f(y) ∈ R[[x, y]]. If R is
an algebra over Fp, then a well-known lemma says that f(x + y) = f(x) + f(y) if and only if f can be
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written in the form f(x) =
∑
k akx

pk

, for uniquely determined coefficients ak ∈ R. One can deduce that
spec(Fp)× End(Ĝa) = spec(Fp[ak | k ≥ 0]).

Example 6.17. A similar analysis shows that End(Gm)(R) is the set of Laurent polynomials f ∈ R[u±1]
such that f(u)f(v) = f(uv) and f(1) = 1. If f(u) =

∑
k eku

k, we find that the elements ek ∈ R are
orthogonal idempotents with

∑
k ek = 1. It follows that End(Gm) is the constant formal scheme Z, with the

n’th piece in the coproduct corresponding to the endomorphism u 7→ un.

Example 6.18. We can also form the scheme Exp = Hom(Ĝa,Gm). In this case, Exp(R) is the set of
power series f(x) =

∑
k a

[k]xk such that f(0) = 1 and f(x + y) = f(x)f(y), or equivalently a[0] = 1 and

a[i]a[j] =
(
i+ j
i

)
a[i+j]. In other words, a point of Exp(R) is an element a = a[1] of R together with a

specified system of divided powers for a. Clearly, if R is a Q-algebra then there is a unique possible system
of divided powers, viz. a[k] = ak/k!, so spec(Q)× Exp ' spec(Q)× A1.

Now let R be an Fp-algebra. Given an element a ∈ R with ap = 0, we define T (a)(x) =
∑p−1
j=0 a

jxj/j!;
it is not hard to see that T (a) ∈ Exp(R). Given a sequence of such elements a = (a0, a1, . . .), we define
T (a)(x) =

∏
i T (ai)(xp

i

); it is not hard to check that the product is convergent in the x-adic topology on
R[[x]], and that T (a) ∈ Exp(R). Thus T defines a map spec(Fp) ×DN

p −→ spec(Fp) × Exp. It can be shown
that this is an isomorphism.

More generally, we have Exp = spec(DZ[a]), where DZ[a] is the divided-power algebra on one generator
a over Z. The previous paragraph is equivalent to the fact that DFp [a] = DZ[a]/p = Fp[ak | k ≥ 0]/(apk),
where ak = a[pk].

6.4. Cartier duality. Let G be a coalgebraic commutative formal group over a formal scheme X. By
Proposition 6.15, we can define the group scheme DG = HomX(G,Gm × X). We call this the Cartier
dual of G. Note also that the product structure on G makes cG into commutative group in the category
of coalgebras, in other words a Hopf algebra, and in particular an algebra over OX . We can thus define
H = spec(cG), which is an informal scheme over X. The coproduct on cG gives a product on H, making it
into a group scheme over X. Moreover, we know that cG is a free module over OX , so that H is very flat
over OX . Thus, by Proposition 6.15, we can define a formal group scheme DH = HomX(H,Gm ×X). We
again call this the Cartier dual of H. These definitions appear in various levels of generality in many places
in the literature; the treatment in [3] is similar in spirit to ours, although restricted to the case where OX is
a field.

Proposition 6.19. If G and H are as above, then DG = H and DH = G.

Proof. First suppose that X = spec(R) is informal. We shall analyse the set X̂X(X,DG) of sections of
the map DG −→ X. From the definitions, we see that a section of the map DG −→ X is the same as a
map G −→ Gm × X of formal groups over X, or equivalently a map of Hopf algebras OGm×X −→ OG. As
OGm×X = R[u±1] with ε(u) = 1 and ψ(u) = u ⊗ u, such a map is equivalent to an element v ∈ O×G with
ε(v) = 1 and ψ(v) = v ⊗ v. In fact, if v is any element with ε(v) = 1 and ψ(v) = v ⊗ v then the Hopf
algebra axioms imply that vχ(v) = 1 so we do not need to require separately that v be invertible. As G
is coalgebraic we have OG = HomR(cG,R), so we can regard v as a map cG −→ R of R-modules. The
conditions ε(v) = 1 and ψ(v) = v ⊗ v then become v(1) = 1 and v(ab) = v(a)v(b), so the set of such v’s is
just AlgR(cG,R) = X̂X(X,H).

Now let X be arbitrary. The above (together with the commutation of various constructions with pull-
backs, which we leave to the reader) shows that for any informal scheme W over X we have X̂X(W,DG) =
X̂W (W,D(G×X W )) = X̂W (W,H ×X W ) = X̂X(W,H). It follows that DG = H as claimed.

We now show that DH = G. Just as previously, we may assume that X = spec(R) is informal, and it is
enough to show that DH and G have the same sections. Again, the sections of DH are just the elements
v ∈ OH = cG with ε(v) = 1 and ψ(v) = v ⊗ v. In this case, we identify cG with the continuous dual of OG,
so v is a continuous map OG −→ R of R-algebras, and thus a section of spf(OG) = G as required. �

6.5. Torsors. Let G be a formal group over a formal scheme X. Let T be a formal scheme over X with
an action of G. More explicitly, we have an action map α : G ×X T −→ T , so whenever g and t are points
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of G and T with the same image in X, we can define g.t = α(g, t). This is required to satisfy 1.t = t and
g.(h.t) = (gh).t (whenever g, h and t all have the same image in X). We write GX̂X for the category of such
T . Note that G itself can be regarded as an object of GX̂X .

If Y is a scheme with a specified map p : Y −→ X we shall allow ourselves to write GX̂Y instead of (p∗G)X̂Y .
It is easy to see that p∗ gives a functor GX̂X −→ GX̂Y .

Definition 6.20. Let G be a formal group over a formal scheme X, and let T be a formal scheme over X
with an action of G. We say that T is a G-torsor over X if there exists a faithfully flat map p : Y −→ X such
that p∗T ' p∗G in GX̂Y . We write GTX for the category of G-torsors over X.

Example 6.21. Let M be a vector bundle over X of rank d, and let Bases(M) be as in Example 2.85. Let
GLd be the group scheme of invertible d × d matrices. Then GLd×X acts on Bases(M), and if M is free
then Bases(M) ' GLd×X. As we can always pull back along a faithfully flat map p : Y −→ X to make M
free, and Bases(p∗M) = p∗ Bases(M), we find that Bases(M) is a torsor for GLd×X.

Example 6.22. Let C be a pointed formal curve over X, let Coord(C) be as in Definition 5.10, and let
IPS be as in Example 2.9. Then Coord(C) is a torsor for group scheme IPS × X. In fact, this torsor is
trivialisable (i.e. isomorphic to IPS×X even without pulling back) but not canonically so.

Proposition 6.23. Every morphism in GTX is an isomorphism, so GTX is a groupoid.

Proof. First, let u : G −→ G be a map of G-torsors. As u is G-equivariant we have u(g) = g.u(1), so
h 7→ h.u(1)−1 is an inverse for u. Now let u : S −→ T be an arbitrary map of G-torsors. Then there is
a faithfully flat map p : Y −→ X such that p∗S ' p∗T ' p∗G, so the first case tells us that p∗u is an
isomorphism. As p is faithfully flat, we see that p∗ reflects isomorphisms, so u is an isomorphism. �

Proposition 6.24. Every homomorphism φ : G −→ H of formal groups over X gives rise to functors

φ• : HX̂X −→ GX̂X

φ• : GTX −→ HTX ,

such that
HX̂X(φ•T,U) = GX̂X(T, φ•U)

for all U ∈ HX̂X .

Proof. The functor φ• is just φ•U = U , with G-action g.u := φ(g).u. Let φ•T be the coequaliser of the maps
(h, g, t) 7→ (hφ(g), t) and (h, g, t) 7→ (h, g.t) from H ×X G ×X T to H ×X T . Note that these maps have a
common splitting (h, t) 7→ (h, 1, t), so we have a reflexive fork. In the case T = G, the coequaliser is just the
map H ×X G −→ H given by (h, g) 7→ hφ(g). In fact, this coequaliser is split by the maps h 7→ (h, 1) and
(h, g) 7→ (h, g, 1), so it is a strong coequaliser.

Now consider a general G-torsor T . We claim that the coequaliser that defines φ•T is strong. By
proposition 2.69, we can check this after pulling back along a faithfully flat map p : Y −→ X. We can choose
p so that p∗T ' p∗G, and then the claim follows from the previous paragraph.

We can let H act on the left on H ×X G×X T and H ×X G, and then the maps whose coequaliser defines
φ•T are both H-equivariant. The reader can easily check that if a fork in HX̂X has a strong coequaliser in
X̂X then the coequaliser has a unique H-action making it the coequaliser in HX̂X . This implies that φ•T is
the coequaliser of our fork in HX̂X , and one can deduce that

HX̂X(φ•T,U) = GX̂X(T, φ•U)

for all U ∈ HX̂X .
All that is left is to check that φ•T is a torsor. For this, we just choose a faithfully flat map p such that

p∗T ' p∗G, and observe that p∗φ•T = φ•p
∗T ' p∗H. �

Proposition 6.25. If G is an Abelian formal group over X, then there is a functor ⊗ : GTX ×GTX −→ GTX
which makes GTX into a symmetric monoidal category with unit G. Moreover, the twist map of T ⊗ T is
always the identity, and every object is invertible under ⊗, so that GTX is a strict Picard category.
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Proof. If S and T are G-torsors over X, then it is easy to see that S ×X T has a natural structure as a
G ×X G-torsor. As G is Abelian, the multiplication map µ : G ×X G −→ G is a homomorphism, so we can
define S⊗T = µ•(S×X T ). We leave it to the reader to check that this gives a symmetric monoidal structure
with unit G. If we let χ : G −→ G denote the map g 7→ g−1 then χ is also a homomorphism, so we can define
T−1 = χ•T . We then have T ⊗ T−1 = (µ(1× χ))•(T ×X T ) = 0•(T ×X T ) = G, so T−1 is an inverse for T .
Finally, we need to show that the twist map τ : T⊗T −→ T⊗T is the identity. As the map q : T×X T −→ T⊗T
is a regular epimorphism, it suffices to show that τq = q, and clearly τq(a, b) = q(b, a) so we need to show
that q(a, b) = q(b, a). In the case T = G we have T ⊗ T = G and the map q is just q(a, b) = ab, so the claim
holds. For general T , we just pull back along a faithfully flat map p such that p∗T ' p∗G and use the fact
that p∗ is faithful. �

Proposition 6.26. Let Gm denote the multiplicative group, which is defined by Gm(R) = R×. Then
the functor L 7→ A(L)× (as in Definition 2.55 and Remark 4.43) is an equivalence from the category of line
bundles over X and isomorphisms, to the category of Gm-torsors over X. Moreover, this equivalence respects
tensor products.

Proof. Let L be a line bundle over X. For any x ∈ X(R), we have a rank one projective module Lx over
R, and clearly R× = Gm(R) acts on the set of bases for Lx (even though this set may be empty). If L
is free then it is clear that A(L)× ' A(O)× = Gm × X, and thus that A(L)× is a torsor. In general, we
know from Proposition 4.55 that L is fpqc-locally isomorphic to O, so A(L)× is fpqc-locally isomorphic to
A(O)× = Gm ×X, and thus is a torsor.

In the opposite direction, let T be a Gm-torsor over X. Define a formal scheme A over X by the coequaliser

A1 ×Gm × T ww
λ

ρ
A1 × T −→ A,

where λ(a, u, t) = (au, t) and ρ(a, u, t) = (a, ut). Locally in the flat topology we may assume that T =
Gm ×X, and it is easy to check that A1 ×X is the split coequaliser of the fork. Thus Proposition 2.69 tells
us that A is the strong coequaliser of the original fork. Also, we can make A1 × Gm × T and A1 × T into
modules over the ring scheme A1. As the functor A1 × (−) preserves our coequaliser, the formal scheme A
is also a module over A1. This means that if we define Lx to be the preimage of x ∈ X(R) under the map
A(R) −→ X(R), then Lx is an R-module. Locally on X we have T ' Gm × X and thus A ' A1 and thus
Lx ' R. One can deduce that L is a line bundle over X, with A(L) = A and thus A(L)× = T .

We leave it to the reader to check that this gives an equivalence of categories, which preserves tensor
products. �

7. Ordinary formal groups

Recall that an ordinary formal group over a scheme X is a formal group G over X that is isomorphic to
X × Â1 as a formal scheme over X. In particular, G is a pointed formal curve over X, so we can choose
a normalised coordinate x on G giving an isomorphism G ' Â1 ×X in Based X̂X . However, for the usual
reasons it is best to proceed as far as possible in a coordinate-free way. Lazard’s book [17] gives an account
in this spirit, but in a somewhat different framework.

If we do choose a coordinate x on G then we have a function (g, h) 7→ x(g + h) from G×X G to Â1. As
G ×X G ' Â2 × X, we see that this can be written uniquely in the form x(g + h) =

∑
i,j aijx(g)ix(h)j =

Fx(x(g), x(h)) for some power series Fx(s, t) ∈ OX [[s, t]]. It is easy to see that this is a formal group law
(Example 2.6), so we get a map X −→ FGL. This construction gives a canonical map Coord(G) −→ FGL. We
can let the group scheme IPS act on FGL as in Example 2.9, and on Coord(G) by f.x = f(x). It is easy to
see that the map Coord(G) −→ FGL is IPS-equivariant.

Definition 7.1. Let G be a formal group over an affine scheme X. Let I be the ideal in OX of functions
g : X −→ A1 such that g(0) = 0.

Define ωG = ωG/X = I/I2, and let d0(g) denote the image of g in ωG/X . We also define

Prim(Ω1
G/X) = {α ∈ Ω1

G/X | σ
∗α = π∗0α+ π∗1α ∈ ΩG×XG/X}.

Here π0, π1 : G×X G −→ G are the two projections, and σ : G×X G −→ G is the addition map.
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We now give a formal version of the fact that left-invariant differential forms on a Lie group biject with
elements of the cotangent space at the identity element.

Proposition 7.2. ωG/X is a free module on one generator over OX . Moreover, there are natural isomor-
phisms ωG/X ' Prim(Ω1

G/X) and Ω1
G/X = OG ⊗OX

ωG/X .

Proof. Let x be a normalised coordinate on G. We then have OG = OX [[x]], and it is easy to check that
I = (x) so I2 = (x2) so ωG/X is freely generated over OX by d0(x).

Now let K be the ideal in OG×XG of functions k such that k(0, 0) = 0. In terms of the usual description
OG×XG = OX [[x′, x′′]], this is just the ideal generated by x′ and x′′. Given g ∈ I, we define δ(g)(u, v) =
g(u+ v)− g(u)− g(v). We claim that δ(g) ∈ K2. Indeed, we clearly have δ(g)(0, v) = 0, so δ(g) is divisible
by x′. We also have δ(g)(u, 0) = 0, so δ(g) is divisible by x′′. It follows easily that δ(g) is divisible by x′x′′

and thus that it lies in K2 as claimed.
Next, let J be the ideal of functions on G×X G that vanish on the diagonal (so we have Ω1

G/X = J/J2).
For any function g ∈ I we define λ(g) ∈ J by λ(g)(u, v) = g(u − v). As g(0) = 0 we see that λ(g) ∈ J , so
λ induces a map ωG/X −→ Ω1

G/X . We claim that λ(g) ∈ Prim(Ω1
G/X). To make this more explicit, let L be

the ideal of functions l on G4
X such that l(s, s, u, u) = 0. The claim is that σ∗λ(g)− π∗0λ(g)− π∗1λ(g) = 0 in

L/L2, or equivalently that the function

k : (s, t, u, v) 7→ λ(g)(s+ u, t+ v)− λ(g)(s, t)− λ(g)(u, v)

lies in L2. To see this, note that k = δ(g) ◦ θ, where θ(s, t, u, v) = (s − t, u − v). It is clear that θ∗K ⊂ L
and thus that θ∗K2 ⊂ L2, and we have seen that δ(g) ∈ K2 so k ∈ L2 as claimed. Thus, we have a map
λ : ωG/X −→ Prim(Ω1

G/X).
Next, given a function h(u, v) in J , we have a function µ(h)(u) = h(u, 0) in I. It is clear that µ induces

a map Ω1
G/X −→ ωG/X with µ ◦ λ = 1. Now suppose that h gives an element of Prim(Ω1

G/X) and that
µ(h) ∈ I2. Define k(s, t, u, v) = h(s + u, t + v) − h(s, t) − h(u, v). The primitivity of h means that k ∈ L2.
Define φ : G×X G −→ G×X G×X G×X G by φ(s, t) = (t, t, s− t, 0). One checks that φ∗L ⊆ J and that

h(s, t) = k(t, t, s− t, 0) + h(t, t) + h(s− t, 0).

Noting that h(t, t) = 0, we see that h = φ∗k + ψ∗µ(h), where ψ(u, v) = u− v. As µ(h) ∈ I2 and k ∈ L2 we
conclude that h ∈ J2. This means that µ is injective on Prim(Ω1

G/X). As µλ = 1, we conclude that λ and µ
are isomorphisms.

Finally, we need to show that the map f ⊗ α 7→ fλ(α) gives an isomorphism OG ⊗OX
ωG/X −→ Ω1

G/X .
As Ω1

G/X is freely generated over OG by d(x), we must have λ(d0(x)) = u(x)d(x) for some power series u.
As ωG/X is freely generated over OX by d0(x), it will suffice to check that u is invertible, or equivalently
that u(0) is a unit in OX . To see this, observe that µ(f d(g)) = f(0)d0(g), so that d0(x) = µλ(d0(x)) =
µ(u(x)d(x)) = u(0)d0(x), so u(0) = 1. �

More explicitly, let F be the formal group law such that x(a + b) = F (x(a), x(b)), and define H(s) =
D2F (s, 0), where D2F is the partial derivative with respect to the second variable. We observe that H(0) = 1,
so H is invertible in R[[s]]. We then define α = H(x)−1dx ∈ Ω1

G/X . One can check that, in the notation of
the above proof, we have α = λ(d0(x)), and thus that α generates Prim(Ω1

G/X).

7.1. Heights.

Proposition 7.3. Let G and H be ordinary formal groups over an affine scheme X, and let s : G −→ H be
a homomorphism. Suppose that the induced map s∗ : ωH −→ ωG is zero.

(a) If X is a scheme over spec(Q), then s = 0.
(b) If X is a scheme over spec(Fp) for some prime p then there is a unique homomorphism s′ : F ∗XG −→ H

of formal groups over X such that s = s′ ◦ FG/X .

Proof. It follows from the definitions that our identification of ωG/X with Prim(ΩG/X) is natural for ho-
momorphisms. Thus, if α ∈ Prim(ΩH/X) then s∗α = 0. We also know that ΩH/X = OH ⊗OX

ωH/X , so
any element of ΩH/X can be written as fα with f ∈ Prim(ΩH/X). Thus s∗(fα) = (f ◦ s).s∗α = 0. Thus,
Proposition 5.32 applies to s. If X lies over spec(Q) then we conclude that s is constant on each fibre. As it is
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a homomorphism, it must be the zero map. Suppose instead that X lies over spec(Fp). In that case we know
that there is a unique map s′ : G′ = F ∗XG −→ H such that s = s′ ◦FG/X , and we need only check that this is
a homomorphism. In other words, we need to check that the map t′(u, v) = s′(u + v)− s′(u)− s′(v) (from
G′×XG′ toH) is zero. Because s and FG/X are homomorphisms, we see that t′◦FG×XG/X = 0: G×XG −→ H.
Using the uniqueness clause in Proposition 5.32, we conclude that t′ = 0 as required. �

Corollary 7.4. Let G and H be ordinary formal groups over an affine scheme X, which lies over spec(Fp).
Let s : G −→ H be a homomorphism. Then either s = 0 or there is an integer n ≥ 0 and a homomorphism
s′ : (FnX)∗G −→ H such that s = s′ ◦ FnG/X and (s′)∗ is nonzero on ωH/X .

Proof. Suppose that there is a largest integer n (possibly 0) such that s can be factored in the form s =
s′ ◦ FnG/X . Write G′ = (FnX)∗G, so that s′ : G′ −→ H. If (s′)∗ = 0 on ωH/X then the proposition gives a
factorisation s′ = s′′ ◦ FG′/X and thus s = s′′ ◦ Fn+1

G/X contradicting maximality. Thus (s′)∗ 6= 0 as claimed.
On the other hand, suppose that there is no largest n. Choose coordinates x and y on G and H, so there is
a series g such that y(s(u)) = g(x(u)) for all points u of G. As s is a homomorphism we have g(0) = 0. If s
factors through FnG/X we see that g(x) = h(xp

n

) for some series h. As this happens for arbitrarily large n,
we see that g is constant. As g(0) = 0 we conclude that g = 0 and thus s = 0. �

Definition 7.5. Let G and H be ordinary formal groups over an affine scheme X, which lies over spec(Fp).
Let s : G −→ H be a homomorphism. If s = 0, we say that s has infinite height. Otherwise, the height of s is
defined to be the integer n occurring in Corollary 7.4. The height of the group G is defined to be the height
of the endomorphism pG : G −→ G (which is just p times the identity map).

Definition 7.6. Let G be an ordinary formal group over an affine scheme X. Let Xn be the largest closed
subscheme of X on which G has height at least n, and write Gn = G ×X Xn. We then have a map
sn : Hn = (FnX)∗Gn −→ Gn such that pGn

= sn ◦ FnG/X , and thus a map s∗n : ωGn
−→ ωHn

of trivialisable
line bundles over Xn. If we trivialise these line bundles then s∗n becomes an element un ∈ OXn , which is
well-defined up to multiplication by a unit, and Xn+1 = V (un) = spec(OXn/un). Note also that u0 = p.

We say that G is Landweber exact if for all p and n, the element un is not a zero-divisor in OXn
. Because

X0 = X and u0 = p, this implies in particular that OX is torsion-free.

7.2. Logarithms.

Definition 7.7. A logarithm for an ordinary formal group G is a map of formal schemes u : G −→ Â1 satisfying
u(g + h) = u(g) + u(h), or in other words a homomorphism G −→ Ĝa. A logarithm for a formal group law
F over a ring R is a power series f(s) ∈ R[[s]] such that f(F (s, t)) = f(s) + f(t) ∈ R[[s, t]]. Clearly, if x is a
coordinate on G and F is the associated formal group law then logarithms for F biject with logarithms for
G by u(g) = f(x(g)). It is also clear that when u is a logarithm, the differential du lies in ωG. We thus have
a map d : Hom(G, Ĝa) −→ A(ωG).

Proposition 7.8. If OX is a Q-algebra then the map d : Hom(G, Ĝa) −→ A(ωG) is an isomorphism.

Proof. If u = f(x) is a logarithm and du = f ′(x)dx = 0 then f is constant (because OX is rational so
we can integrate) but f(0) = 0 (because u(0) = u(0 + 0) = u(0) + u(0)) so f = 0 so u = 0. Thus d
is injective. Conversely, suppose that α = g(x)dx ∈ ωG. Let f be the integral of g with f(0) = 0, so
u = f(x) : G −→ Â1 and du = α. Consider the function w(g, h) = u(g+h)−u(g)−u(h), so w : G×X G −→ Â1

and dw = σ∗α−π∗1α−π∗2α = 0. Thus w is constant and w(0, 0) = 0 so u(g+h) = u(g)+u(h) as required. �

Corollary 7.9. Any ordinary formal group over a scheme X over spec(Q) is isomorphic to the additive
group A1 ×X. �

7.3. Divisors. An ordinary formal group G over X is in particular a pointed formal curve over X, so it
makes sense to consider the schemes Div+

n (G) = GnX/Σn and so on. Moreover, Proposition 6.13 tells us that
Div+(G) = M+(G) and so on.

Proposition 7.10. The formal scheme Div+(G) has a natural structure as a commutative semiring object
in the category X̂X .
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Proof. Everywhere in this proof, products really mean fibre products over X.
We define a map νi,j : Gi ×Gj −→ Gij by

νi,j(a1, . . . , ai, b1, . . . , bj) = (a1 + b1, . . . , ai + bj).

Using the fact that the colimits involved are strong, we see that there is a unique map µi,j : Gi/Σi×Gj/Σj −→
Gij/Σij that is compatible with the maps νi,j in the evident sense. We can use the isomorphisms Div+

i (G) =
Gi/Σi and Div+(G) =

∐
i Div+

i (G) to piece these maps together, giving a map µ : Div+(G) × Div+(G) −→
Div+(G). Given two divisors D and E we write D ∗ E = µ(D,E). The above discussion really just shows
that the definition (

∑
i[ai]) ∗ (

∑
j [bj ]) =

∑
i,j [ai + bj ] makes sense. It is easy to check (although tedious to

write out in detail) that the operation ∗ is associative and commutative, and that the divisor [0] is a unit
for it, and that it distributes over addition. Thus, Div+(G) is a semiring object in X̂X as claimed. �

Remark 7.11. One can also interpret and prove the statement that Div+(G) is a graded λ-semiring object
in X̂X , with

λk(
n∑
i=1

[ai]) =
∑

i1<...<ik

[ai1 + . . .+ aik ].

Proposition 7.12. The formal scheme Div(G) has a natural structure as a commutative ring object in the
category X̂X .

Proof. We know that Div(G) = M(G) is a group under addition. It thus makes sense to define a map
µ(n,m) : Div+(G)×X Div+(G) −→ Div(G) by

µ(n,m)(D,E) = D ∗ E −mE − nD + nm[0].

It is easy to check that
µ(n+ i,m+ j)(D + i[0], E + j[0]) = µ(n,m)(D,E).

Recall that Div(G) = lim
−→n

Div+(G), where the maps in the diagram are of the form D 7→ D + i[0]. This is

a filtered colimit and thus a strong one, so Div(G) ×X Div(G) = lim
−→m,n

Div+(G) ×X Div+(G), where the

maps have the form (D,E) 7→ (D + i[0], E + j[0]). It follows that the maps µ(n,m) fit together to give a
map µ : Div(G) ×X Div(G) −→ Div(G). We leave it to the reader to check that this product makes Div(G)
into a ring object. �

8. Formal schemes in algebraic topology

In this section, we show how suitable cohomology theories give rise to functors from suitable categories of
spaces to formal schemes. In particular, the space CP∞ gives rise to a formal group G. We show how vector
bundles over spaces give rise to divisors on G over the corresponding formal schemes, and we investigate
the schemes arising from classifying spaces of Abelian Lie groups. We then give a related construction that
associates informal schemes to ring spectra. Using this we relate the Thom isomorphism to the theory of
torsors, and maps of ring spectra to homomorphisms of formal groups.

8.1. Even periodic ring spectra. In this section, we define the class of cohomology theories that we wish
to study. We would like to restrict attention to commutative ring spectra, but unfortunately that would
exclude some examples that we really need to consider. We therefore make the following ad hoc definition,
which should be ignored at first reading.

Definition 8.1. Let E be an associative ring spectrum, with multiplication µ : E ∧ E −→ E. A map
Q : E −→ ΣdE is a derivation if we have

Q ◦ µ = µ ◦ (1 ∧Q+Q ∧ 1).

A ring spectrum E is quasi-commutative if there is a derivation Q of odd degree d and a central element
v ∈ π2dE such that 2v = 0 and

µ− µ ◦ τ = vµ ◦ (Q ∧Q).
Note that if 2 is invertible in π∗E then v = 0 and E is actually commutative.
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Definition 8.2. An even periodic ring spectrum is a quasi-commutative ring spectrum E such that
(1) π1E = 0
(2) π2E contains a unit.

This implies that πodd(E) = 0. Thus, the derivation Q in Definition 8.1 acts trivially on E∗, so E∗ is a
commutative ring. Similarly, if X is any space such that E1X = 0 then E0X is commutative.

Example 8.3. The easiest example is E∗X = H∗(X; Z[u±1]), where we give u degree 2. This is represented
by the even periodic ring spectrum

HP =
∨
k∈Z

Σ2kH.

Example 8.4. The next most elementary example is the complex K-theory spectrum KU . This is an even
periodic ring spectrum, by the Bott periodicity theorem. If p is a prime then we can smash this with the
mod p Moore space to get a spectrum KU/p. It is true but not obvious that this is a ring spectrum. It is
commutative when p > 2, but only quasi-commutative when p = 2. The derivation Q in Definition 8.1 is
just the Bockstein map β : KU/2 −→ ΣKU/2.

Example 8.5. Let MP be the Thom spectrum associated to the tautological virtual bundle over Z×BU .
It is more usual to consider the connected component BU = 0×BU of Z×BU , giving the Thom spectrum
MU . It turns out that MP =

∨
k∈Z Σ2kMU , and that this is an even periodic ring spectrum. Moreover, a

fundamental theorem of Quillen tells us that MP0 = L = OFGL.

Example 8.6. It turns out [5, 28] that given any ring E0 that can be obtained from MP0[ 1
2 ] by inverting

some elements and killing a regular sequence, there is a canonical even periodic ring spectrum E with
π0E = E0. If we work over MP0 rather than MP0[ 1

2 ] then things are more complicated, but typically not
too different in cases of interest, except that we only have quasi-commutativity rather than commutativity.
Because MP0 = OFGL, the theory of formal group laws provides us with many naturally defined rings E0 to
which we can apply this result.

8.2. Schemes associated to spaces. Let E be an even periodic ring spectrum. We write SE = spec(E0).

Example 8.7. As mentioned above, Quillen’s theorem tells us that SMP = FGL. Less interestingly, we
have SHP = SK = 1 = spec(Z), the terminal scheme.

If Z is a finite complex, we write ZE = spec(E0Z) ∈ XSE
. This is a covariant functor of Z. If Z is an

arbitrary space, we write Λ(Z) for the category of pairs (W,w), where W is a finite complex and w is a
homotopy class of maps W −→ Z.

Lemma 8.8. The category Λ(Z) is filtered and essentially small.

Proof. It is well-known that every finite CW complex is homotopy equivalent to a finite simplicial complex,
and that there are only countably many isomorphism types of finite simplicial complexes. It follows easily
that Λ(Z) is essentially small. If (W,w) and (V, v) are objects of Λ(Z) then there is an evident map
u : U = V qW −→ Z whose restrictions to V and W are v and w. Thus (U, u) ∈ Λ(Z), and there are maps
(V, v) −→ (U, u)←− (W,w) in Λ(Z).

On the other hand, suppose we have a parallel pair of maps f0, f1 : (V, v) −→ (W,w) in Λ(Z). Let U be the
space (W q V × I)/ ∼, where (x, t) ∼ ft(x) whenever x ∈ V and t ∈ {0, 1}. Let g : W −→ U be the evident
inclusion, so clearly gf0 ' gf1. We are given that wf0 and wf1 are homotopic to v. A choice of homotopy
between wf0 and wf1 gives a map u : U −→ X with ug = w. Thus g is a map (W,w) −→ (U, u) in Λ(Z) with
gf0 = gf1. This proves that Λ(Z) is filtered. �

Remark 8.9. Let Z be a space with a given CW structure, and let ΛCW(Z) be the directed set of finite
subcomplexes of Z. Then there is an evident functor ΛCW(Z) −→ Λ(Z), which is easily seen to be cofinal. We
can also define Λstable(Z) to be the filtered category of finite spectra W equipped with a map w : W −→ Σ∞Z+.
There is an evident stabilisation functor Λ(Z) −→ Λstable(Z), and one checks that this is also cofinal.
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Remark 8.10. Given two spaces Y and Z, there is a functor Λ(Y ) × Λ(Z) −→ Λ(Y × Z) given by
((V, v), (W,w)) 7→ (V ×W, v×w). This is always cofinal, as one can see easily from the previous remark (for
example).

Definition 8.11. For any space Z, we write

ZE = lim
−→

(W,w)∈Λ(Z)

spec(E0W ) ∈ X̂SE
.

We also give E0Z the linear topology defined by the ideals I(W,w) = ker(E0Z
w∗−−→ E0W ). Thus

spf(E0Z) = lim
−→

Λ(Z)

spec(image(E0Z −→ E0W )).

We write Ê0Z for the completion of E0Z. There is an evident map ZE −→ spf(E0Z). Also, if Y is another
space then the projection maps Y ←− Y × Z −→ Z give rise to a map (Y × Z)E −→ YE ×SE

ZE .

Remark 8.12. We know from [1] that the map E0Z −→ lim
←−Λ(Z)

E0W is surjective; the kernel is the ideal of

phantom maps. It is clear that the map E0(Z)/I(W,w) −→ E0W is injective, so the same is true of the map

lim
←−

E0(Z)/I(W,w) −→ lim
←−

E0W.

It follows by diagram chasing that Ê0Z = lim
←−

E0(Z)/I(W,w) = lim
←−

E0W , and that this is a quotient of E0Z.

From this we see that E0Z is complete if and only if there are no phantom maps Z −→ E.

Definition 8.13. We say that Z is tolerable (relative to E) if ZE = spf(E0Z) and (Y ×Z)E = YE ×SE
ZE

for all finite complexes Y .

Proposition 8.14. If Z is tolerable and Y is arbitrary then

(Y × Z)E = YE ×SE
ZE .

If Y is also tolerable then so is Y × Z, and Ê0(Y × Z) = Ê0(Y )⊗̂E0Ê0(Z). Of course if E0Y , E0Z and
E0(Y × Z) are complete this means that E0(Y × Z) = E0Y ⊗̂E0E0Z.

Proof. If we fix V ∈ Λ(Y ) then the functor from Λ(Z) to Λ(V × Z) given by W 7→ V × W is clearly
cofinal, so lim

−→W
(V × W )E = (V × Z)E , and this is the same as VE ×SE

ZE because Z is tolerable and

V is finite. If we now take the colimit over V and use the fact that filtered colimits of formal schemes
commute with finite limits, we find that lim

−→V,W
(V ×W )E = YE ×SE

ZE . It follows from Remark 8.10 that

(Y × Z)E = lim
−→V,W

(V ×W )E , so the first claim follows.

Now suppose that Y is tolerable. Then

(Y × Z)E = YE ×SE
ZE

= spf(E0Y )×SE
spf(E0Z)

= spf(Ê0Y )×SE
spf(Ê0Z)

= spf(Ê0Y ⊗̂E0Ê0Z).

It follows that Ê0(Y ×Z) = O(Y×Z)E
= Ê0Y ⊗̂E0Ê0Z as claimed. It also follows that (Y ×Z)E is solid, and

thus that (Y × Z)E = spf(E0(Y × Z)).
Now let X be a finite complex. We need to show that (X×Y ×Z)E = XE×SE

(Y ×Z)E = XE×SE
YE×SE

ZE . In fact, we have (X×Y )E = XE×SE
YE because Y is tolerable, and ((X×Y )×Z)E = (X×Y )E×SE

ZE
because Z is tolerable, and the claim follows. �

Definition 8.15. A space Z is decent if H∗Z is a free Abelian group, concentrated in even degrees.

Example 8.16. The spaces CP∞, BU(n), Z×BU , BSU and ΩS2n+1 are all decent.
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Proposition 8.17. Let Z be a decent space. Then Z is tolerable for any E, and ZE is coalgebraic over SE .
Moreover, for any map E −→ E′ of even periodic ring spectra, the resulting diagram

ZE′ ZE

SE′ SE

u

w

u

w

is a pullback.

Proof. We may assume that Z is connected (otherwise treat each component separately). As H1Z = 0 we see
that π1Z is perfect, so we can use Quillen’s plus construction to get a homology equivalence Z −→ Z+ such that
π1(Z+) = 0. By the stable Whitehead theorem, this map is a stable equivalence, so E0(Y ×Z+) = E0(Y ×Z)
for all Y . We may thus replace Z by Z+ and assume that π1Z = 0. This step is not strictly necessary, but
it seems the cleanest way to avoid trouble from the fundamental group. Given this, it is well-known that
Z has a CW structure in which all the cells have even dimension. It follows that the Atiyah-Hirzebruch
spectral sequence collapses and that E∗Z is a free module over E∗, with one generator ei for each cell. As
E∗ is two-periodic, we can choose these generators in degree zero. Similarly, E∗(Z ×Z) is free on generators
ei ⊗ ej and thus is isomorphic to E∗(Z) ⊗E∗ E∗(Z), so we can use the diagonal map to make E∗Z into a
coalgebra over E∗. By periodicity, E0(Z × Z) = E0(Z) ⊗E0 E0(Z) and E0Z is a coalgebra over E0, and is
freely generated as an E0-module by the ei.

If W is a finite subcomplex of Z, it is easy to see that E0W is a standard subcoalgebra of E0Z (in the
language of Definition 4.58). Moreover, any finite collection of cells lies in a finite subcomplex, so it follows
that any finitely generated submodule of E0Z lies in a standard subcoalgebra. It follows that {ei} is a good
basis for E0Z, so that E0Z ∈ C′SE

.
It follows from the above in the usual way that E ∧Z+ is equivalent as an E-module spectrum to a wedge

of copies of E (one for each cell), and thus that E∗Z = HomE∗(E∗Z,E∗). Using the periodicity we conclude
that E0Z = HomE0(E0Z,E

0). It follows that spf(E0Z) = schSE
(E0Z) is a solid formal scheme, which is

coalgebraic over SE . It is also easy to check that spf(E0Z) is the colimit of the schemes spec(E0W ) as W
runs over the finite subcomplexes. It follows from Remark 8.9 that spf(E0Z) = ZE .

Now let Y be another space. Let W be a finite subcomplex of Z, and let (V, v) be an object of Λ(Y ). The
usual Künneth arguments show that E0(W ×V ) = E0W ⊗E0 E0V , and thus that (W ×V )E = WE ×SE

VE .
Using Remark 8.10 we conclude that

(Z × Y )E = lim
−→
W,V

WE ×SE
VE = (lim

−→
W

WE)×SE
(lim
−→
V

VE) = ZE ×SE
YE .

This proves that Z is tolerable. We leave it to the reader to check that a map E −→ E′ gives an isomorphism
ZE′ = ZE ×SE

SE′ . �

Example 8.18. It follows from the proposition that the spaces CP∞, BU(n), Z× BU , BSU and ΩS2n+1

are all tolerable, and the corresponding schemes are coalgebraic over SE . The case of CP∞ is particularly
important. We note that CP∞ = BS1 = K(Z, 2) is an Abelian group object in the homotopy category, so
GE = CP∞E is an Abelian formal group over SE . Because H∗CP∞ = Z[[x]], the Atiyah-Hirzebruch spectral
sequence tells us that E0CP∞ = E0[[x]] (although this does not give a canonical choice of generator x). This
means that GE ' Â1 × SE in Based X̂SE

, so that GE is an ordinary formal group.

We next recall that for n > 0 there is a quasicommutative rings spectrum P (n) = BP/In with P (n)∗ =
Fp[vk | k ≥ 0], where vk has degree −2(pk − 1). The cleanest construction now available is given in [5, 28],
although of course there are much older constructions using Baas-Sullivan theory. We also have P (0) = BP ,
with P (0)∗ = Z(p)[vk | k > 0].

Definition 8.19. Let E be an even periodic ring spectrum. We say that E is an exact P (n)-module (for
some n ≥ 0) if it is a module-spectrum over P (n), and the sequence (vn, vn+1, . . .) is regular on E∗.
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Proposition 8.20. Let E be an exact P (n)-module. Let Z be a CW complex of finite type such that
K(m)∗Z is concentrated in even degrees for infinitely many m. If n = 0, assume that Hs(Z; Q) = 0 for
s� 0. Then Z is tolerable for E.

Remark 8.21. When combined with Proposition 8.14 this gives a useful Künneth theorem.

The proof will follow after Corollary 8.27. Many spaces are known to which this applies: simply connected
finite Postnikov towers of finite type, classifying spaces of many finite groups and compact Lie groups, the
spaces QS2m, BO, ImJ and BU〈2m〉 for example. See [24] for more details. The proof of our proposition
will also rely heavily on the results of that paper.

We next need some results involving the pro-completion of the category of graded Abelian groups, which
we denote by Pro(Ab∗). It is necessary to distinguish this carefully from the category Pro(Ab)∗ of graded
systems of pro-groups. A tower of graded groups can be regarded as an object in either category, but the
morphisms are different. A tower {A0∗ ←− A1∗ ←− · · · } in Pro(Ab∗) is pro-trivial if for all j, there exists
k > j such that the map Ak∗ −→ Aj∗ is zero. It is pro-trivial in Pro(Ab)∗ if for all j and d there exists k
such that the map Akd −→ Ajd is zero. Because k is allowed to depend on d, this is a much weaker condition
than triviality in Pro(Ab∗). Note also that if R∗ −→ R′∗ is a map of graded rings, and {Mα∗} is a pro-system
of R∗-modules that is trivial in Pro(Ab∗), then the same is true of R′∗ ⊗R∗ M∗. However, the corresponding
statement for Pro(Ab)∗ is false.

Remark 8.22. If E is an exact P (n)-module, we know from work [29] of Yagita that the functor M 7→
E∗ ⊗P (n)∗ M is an exact functor on the category of P (n)∗P (n)-modules that are finitely presented as
modules over P (n)∗. (This category is Abelian, because the ring P (n)∗ is coherent.) It follows that E∗Z =
E∗ ⊗P (n)∗ P (n)∗Z for all finite complexes Z.

The following lemma is largely a paraphrase of results in [24].

Lemma 8.23. Fix n ≥ 0. Suppose that Z is a CW complex of finite type, and write Zr for the r-skeleton
of Z. If n = 0 we also assume that Hs(Z; Q) = 0 for s � 0. Let F r+1 = ker(P (n)∗Z −→ P (n)∗Zr)
denote the (r + 1)’st Atiyah-Hirzebruch filtration in P (n)∗Z. Then the tower {P (n)∗Zr}r≥0 is isomorphic
to {P (n)∗(Z)/F r+1}r≥0 in Pro(Ab∗), and thus is Mittag-Leffler. Moreover, the groups P (n)∗(Z)/F r+1 are
finitely presented modules over P (n)∗, and their inverse limit is P (n)∗Z.

Proof. Write P = P (n) for brevity. Write Ar = P ∗Zr and

Br = P ∗(Z)/F r+1 = image(P ∗Z −→ Ar).

We then have an inclusion of towers {Br} −→ {Ar}, for which we need to provide an inverse in the Pro-
category. We claim that for each r, there exists m(r) > r such that the image of the map Am(r) −→ Ar is
preciselyBr. We will deduce the lemma from this before proving it. Definem0 = 0 andmk+1 = m(mk) > mk.
By construction, the map Amk+1 −→ Amk

factors through Bmk
⊆ Amk

. One checks that the resulting maps
Amk+1 −→ Bmk

are compatible as k varies, and that they provide the required inverse. We also know that
P ∗ is a coherent ring, so the category of finitely presented modules is Abelian and closed under extensions.
It follows in the usual way that Ar is finitely presented for all r, and thus that Br = image(Am(r) −→ Ar) is
finitely presented.

We now need to show that m(r) exists. By the basic setup of the Atiyah-Hirzebruch spectral sequence, it
suffices to show that for large m, the first r + 1 columns in the spectral sequence for P ∗Zm are the same as
in the spectral sequence for P ∗Z. This is Lemma 4.4 of [24]. (When n = 0, we need to check that we are in
the case P (0) = BP of their Definition 1.5. This follows from our assumption that Hs(Z; Q) = 0 for s� 0.)

Finally, we need to show that P ∗Z = lim
←−r

P ∗(Z)/F r+1. This is essentially [24, Corollary 4.8]. �

Corollary 8.24. Let Z and n be as in the Lemma, and let E be an exact P (n)-module. Then E0Z is
complete, and ZE = spf(E0Z), and E∗Z = E∗⊗̂P (n)∗P (n)∗Z. Moreover we have isomorphisms

{E∗(Zr)} ' {E∗(Z)/F r+1} ' {E∗ ⊗P (n)∗ P (n)∗Zr}
' {E∗ ⊗P (n)∗ (P (n)∗(Z)/F r+1)}

in Pro(Ab∗).
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Proof. We reuse the notation of the previous proof. We also define A′r = E∗ ⊗P∗ Ar and B′r = E∗ ⊗P∗ Br.
As Zr is finite we see that A′r = E∗Zr. Next recall that for any r we can choose m > r such that
Br = image(Am −→ Ar). As the functor E∗ ⊗P∗ (−) is exact on finitely presented comodules, we see that
B′r is the image of the map A′m −→ A′r and in particular that the map B′r −→ A′r is injective. Next, the
map E∗ ⊗P∗ P ∗Z −→ E∗ ⊗P∗ P ∗Zm = E∗Zm = A′m clearly factors through E∗Z, so our epimorphism
P ∗Z −→ Am −→ Br gives an epimorphism E∗ ⊗P∗ P ∗Z −→ A′m −→ B′r which factors through E∗Z, so the map
E∗Z −→ B′r is surjective. Thus B′r = image(E∗Z −→ E∗Zr) = E∗(Z)/F r+1. We can now apply the functor
E∗ ⊗P∗ (−) to the pro-isomorphisms in the Lemma to get the pro-isomorphisms in the present corollary.
This makes it clear that the tower {E∗Zr} is Mittag-Leffler so the Milnor sequence tells us that

E∗Z = lim
←−
r

E∗Zr = lim
←−
r

E∗(Z)/F r+1.

This means in particular that E0Z is complete with respect to the linear topology generated by the ideals
F r+1, which is easily seen to be the same as the topology in Definition 8.11. Moreover, we have an isomor-
phism {A′r} ' {B′r} in the Pro category of groups, and it is easy to see from the construction that this is
actually an isomorphism in the Pro category of rings as well, so by applying spec(−) we get an isomorphism
in the Ind category of schemes, which is just the category of formal schemes. From the definitions we have
ZE = lim

−→r
spec(A′r) and spf(E0Z) = lim

−→r
spec(B′r), so we conclude that ZE = spf(E0Z). �

Lemma 8.25. Let E and Z be as in Corollary 8.24, and suppose that K(m)∗Z is concentrated in even
degrees for infinitely many m. Then the ring E∗Z is Landweber exact over P (n)∗, so the function spectrum
F (Z+, E) is an exact P (n)-module.

Proof. We know from [24, Lemma 5.3] that P (m)∗Z is concentrated in even degrees for all m, and from [24,
Corollary 4.6] that the tower {P (m)∗Zr} has the Mittag-Leffler property. It follows that the tower {P (m)oddZr}
is pro-trivial. Next, consider the cofibration Σ2(pm−1)P (m) vm−−→ P (m) −→ P (m + 1) −→ Σ2pm−1P (m). This
gives a pro-exact sequence of towers

0 −→ {P (m)evZr} vm−−→ {P (m)evZr} −→ {P (m+ 1)evZr} −→ 0.

It follows that the sequence (vn, vn+1, . . .) acts regularly on the tower {P (n)∗Zr}. Next, for any spectrum X
we have a map P (m)∧X −→ P (m)∧BP ∧X which makes P (m)∗X a comodule over P (m)∗BP = BP∗BP/In.
Moreover, we have P (m)∗X⊗P (m)∗ P (m)∗BP = P (m)∗X⊗BP∗BP∗BP so this actually makes P (m)∗X into
a comodule over BP∗BP . One can check from this construction that the maps Σ2(pm−1)P (m) vm−−→ P (m) −→
P (m + 1) −→ Σ2pm−1P (m) give rise to maps of comodules, so our whole diagram of towers is a diagram of
finitely-presented comodules over P (n)∗BP . The functor E∗ ⊗P (n)∗ (−) is exact on this category. It is easy
to conclude by induction that {E∗⊗P (n)∗ P (m)∗Zr} ' {E∗(Zr)/Im}, that the odd dimensional part of these
towers is pro-trivial, the towers are Mittag-Leffler, and the sequence (vn, vn+1, . . .) is regular on the tower
{E∗(Zr)}. We can now pass to the inverse limit (using the Mittag-Leffler property to show that the lim

←−
1

terms vanish) to see that the sequence (vn, vn+1, . . .) is regular on E∗(Z). �

Our next few results are closely related to those of [24, Section 9], although a precise statement of the
relationship would be technical.

Lemma 8.26. Let Z be a CW complex of finite type such that K(m)∗Z is concentrated in even degrees for
infinitely many m. If n = 0 we also assume that Hs(Z; Q) = 0 for s � 0. Then for any finite spectrum W
we have pro-isomorphisms

{P (n)∗(Zr ×W )} ' {P (n)∗Zr ⊗P (n)∗ P (n)∗W}
' {P (n)∗(Z)/F r+1 ⊗P (n)∗ P (n)∗W},

and these towers are Mittag-Leffler. Moreover, we have isomorphisms

P (n)∗(Z ×W ) = P (n)∗Z ⊗P (n)∗ P (n)∗W = P (n)∗Z⊗̂P (n)∗P (n)∗W.

Proof. Write P = P (n) for brevity. The usual Landweber exactness argument shows that W 7→ P ∗Z ⊗P∗
P ∗W is a cohomology theory and thus that it coincides with P ∗(Z×W ). We can also do the same argument
with pro-groups. We saw in the proof of the previous lemma that the sequence (vn, vn+1, . . .) acts regularly
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on the pro-group {P ∗Zr}, so the pro-group {TorP
∗

1 (P (m)∗, P ∗Zr)} is trivial for all m ≥ n. Any finitely
presented comodule M∗ has a finite Landweber filtration whose quotients have the form P (m)∗ for m ≥ n,
and we see by induction on the length of the filtration that {TorP

∗

1 (M∗, P ∗Zr)} is trivial. This implies
that the construction M∗ 7→ {M∗ ⊗P∗ P ∗Zr} gives an exact functor from finitely presented comodules to
Pro(Ab∗), so that W 7→ {P ∗W ⊗P∗ P ∗Zr} is a Pro(Ab∗)-valued cohomology theory on finite complexes.
The construction W 7→ {P ∗(W × Zr)} gives another such cohomology theory, and we have a natural
transformation from the first to the second that is an isomorphism when W is a sphere, so it is an isomorphism
in general. Thus {P ∗(Zr ×W )} = {P ∗Zr ⊗P∗ P ∗W}, as claimed. We have seen that the tower {P ∗Zr}
is pro-isomorphic to {P ∗(Z)/F r+1}, so it follows that {P ∗Zr ⊗P∗ P ∗W} ' {P ∗(Z)/F r+1 ⊗P∗ P ∗W}.
The second of these is a tower of isomorphisms, so all three of our towers are Mittag-Leffler as claimed.
As Z × W is the homotopy colimit of the spaces Zr × W , the Milnor sequence gives an isomorphism
P ∗(Z ×W ) = lim

←−r
P ∗(Z)/F r+1 ⊗P∗ P ∗W , and the right hand side is by definition P ∗(Z)⊗̂P∗P ∗W , which

completes the proof. �

Corollary 8.27. Let E be an exact P (n)-module. Let Z be a CW complex of finite type such that K(m)∗Z
is concentrated in even degrees for infinitely many m. If n = 0 we also assume that Hs(Z; Q) = 0 for s� 0.
Then for any finite spectrum W we have pro-isomorphisms

{E0(Zr ×W )} ' {E0Zr ⊗E0 E0W} ' {E0(Z)/F r+1 ⊗E0 E0W},

and these towers are Mittag-Leffler. Moreover, we have isomorphisms

E0(Z ×W ) = E0Z ⊗E0 E0W = E0Z⊗̂E0E0W.

Proof. If we apply the functor E∗ ⊗P (n)∗ (−) to the pro-isomorphisms in the lemma, we get the pro-
isomorphisms in the corollary. We deduce in the same way as in the lemma that E0(Z×W ) = E0Z⊗̂E0E0W .
On the other hand, we see from Lemma 8.25 that

E∗(Z ×W ) = [W+, F (Z+, E)]∗ = E∗Z ⊗P (n)∗ P (n)∗W =

E∗Z ⊗E∗ (E∗ ⊗P (n)∗ P (n)∗W ) = E∗Z ⊗E∗ E∗W.

Thus E0(Z ×W ) = E0Z ⊗E0 E0W as claimed. �

Proof of Proposition 8.20. Corollary 8.24 shows that ZE = spf(E0Z). Write

F r+1 = ker(E0Z −→ E0Zr),

so ZE = lim
−→r

V (F r). Let W be a finite complex. We then have

ZE ×SE
WE = lim

−→
r

V (F r)×SE
WE

= lim
−→
r

spec(E0(Z)/F r ⊗E0 E0(W ))

= spf(E0(Z)⊗̂E0E0(W ))

= spf(E0(Z ×W )),

where we have used Corollary 8.27. We can apply Lemma 8.23 to Y ×Z and conclude that spf(E0(Y ×Z)) =
(Y × Z)E , giving the required isomorphism (Y × Z)E = YE ×SE

ZE . �

8.3. Vector bundles and divisors. Let V be a complex vector bundle of rank n over a tolerable space Z.
We write P (V ) for the space of pairs (z,W ), where z ∈ Z and W is a line (i.e. a one-dimensional subspace) in
Vz. This is clearly a fibre bundle over Z with fibres CPn−1. We write D(V ) = P (V )E . There is a tautological
line bundle L over P (V ), whose fibre over a pair (z,W ) is W . This is classified by a map P (V ) −→ CP∞. By
combining this with the projection to Z, we get a map P (V ) −→ CP∞×Z and thus a map D(V ) −→ G×S ZE .
The well-known theorem on projective bundles translates into our language as follows.

Proposition 8.28. The above map is a closed inclusion, making D(V ) into an effective divisor of degree n
on G.
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Proof. Choose an orientation x of E, so x ∈ Ẽ0CP∞. We also write x for the image of x under the map
P (V ) −→ CP∞, which is just the Euler class of L. We claim that E∗P (V ) is freely generated over E∗Z by
{1, x, . . . , xn−1}, which will prove the claim. This is clear when V is trivialisable. For the general case, we
may assume that Z is a regular CW complex. The claim holds when Z is a finite union of subcomplexes on
which V is trivialisable, by a well-known Mayer-Vietoris argument. It thus holds when Z is a finite complex,
and the general case follows by passing to colimits. �

Proposition 8.29. If V and W are two vector bundles over a tolerable space Z then D(V ⊕W ) = D(V ) +
D(W ).

Proof. Choose an orientation, and let x be the Euler class of the usual line bundle over P (V ⊕W ). The
polynomial fD(V⊕W )(t) is the unique one of degree dim(V ⊕W ) of which x is a root, so it suffices to check that
fD(V )(x)fD(W )(x) = 0. There are evident inclusions P (V ) −→ P (V ⊕W ) ←− P (W ) with P (V ) ∩ P (W ) = ∅.
Write A = P (V ⊕ W ) \ P (V ) and B = P (V ⊕ W ) \ P (W ), so that A ∪ B = P (V ⊕ W ). By a well-
known argument, if a, b ∈ E0P (V ∪W ) and a|A = 0 and b|B = 0 then ab = 0, so it suffices to check that
fD(V )(x)|B = 0 and fD(W )(x)|A = 0. It is not hard to see that the inclusions P (V ) −→ B is a homotopy
equivalence and thus that fD(V )(x)|B = 0, and the other equation is proved similarly. �

Proposition 8.30. If M is a complex line bundle over a tolerable space Z, which is classified by a map
u : Z −→ CP∞, then D(M) is the image of the map (u, 1)E : ZE −→ (CP∞ × Z)E = G×S ZE .

Proof. This follows from the definitions, using the obvious fact that P (M) = Z. �

Proposition 8.31. There is a natural isomorphism BU(n)E = Div+
n (G).

Proof. This is essentially well-known, but we give some details to illustrate how everything fits together.
Let T (n) be the maximal torus in U(n), so that BT (n) ' (CP∞)n and BT (n)E = GnS . Thus, the inclusion
i : T (n) −→ U(n) gives a map GnS −→ BU(n)E . If σ ∈ Σn is a permutation, then the evident action of σ on
T (n) is compatible with the action on U(n) given by conjugating with the associated permutation matrix.
This matrix can be joined to the identity matrix by a path in U(n), so the conjugation is homotopic to the
identity. Thus, our map GnS −→ BU(n)E factors through a map Div+

n (G) = GnS/Σn −→ BU(n)E . On the other
hand, the tautological bundle Vn over BU(n) gives rise to a divisor D(Vn) over BU(n)E and thus a map
BU(n)E −→ Div+

n (G). The composite GnS = BT (n)E −→ BU(n)E −→ Div+
n (G) = GnS/Σn classifies the divisor

D(i∗Vn). Let M1, . . . ,Mn be the evident line bundles over BT (n), so that i∗Vn = M1⊕ . . .⊕Mn. One checks
from this and Propositions 8.29 and 8.30 that the composite is just the usual quotient map GnS −→ GnS/Σn,
and thus the composite Div+

n (G) −→ BU(n)E −→ Div+
n (G) is the identity.

Next, we take the space of n-frames in C∞ as our model for EU(n). There is then a homeomor-
phism EU(n)/(S1 × U(n − 1)) −→ P (Vn) (sending (w1, . . . , wn) to the pair (L,W ), where W is the span
of {w1, . . . , wn} and L is the span of w1). The left hand side is a model for CP∞×BU(n− 1). By induction
on n, we may assume that BU(n− 1)E = Gn−1/Σn−1. This gives a commutative diagram as follows.

G×Gn−1/Σn−1 P (Vn)E

Gn/Σn BU(n)E

w
'

u uu

v w

The top horizontal is an isomorphism by induction and the right hand vertical is faithfully flat, and thus a
categorical epimorphism. It follows that the bottom map is an epimorphism, but we have already seen that
it is a split monomorphism, so it is an isomorphism as required. �

Definition 8.32. Let x be a coordinate on G. If V is a vector bundle of rank n over a tolerable space
Z, then we have D(V ) = spf(E0Z[[x]]/f(x)) for a unique monic polynomial f(x) =

∑n
i=0 ci(V )xn−i, with

ci(V ) ∈ E0Z. We call ci(V ) the i’th Chern class of V .

Definition 8.33. We write L(V ) for L(D(V )), the Thom sheaf of D(V ), which is a line bundle over ZE . It
is easy to see that L(V ) = Ẽ0ZV , where ZV = P (C⊕ V )/P (V ) is the Thom space of V .
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Remark 8.34. Let E be an even periodic ring spectrum and put G = GE = (CP∞)E and S = SE =
spec(E0) as usual. Then the Thom spectra CP∞−n form a tower, and there is a natural identification MG/S =
lim
−→n

E0(CP∞−n). We also have ωG/S = Ẽ0CP 1 = Ẽ0S2 = π2E. The theory of invariant differentials

identifies MΩ1
G/S with MG/S ⊗E0 ωG/S = lim

−→n
E0(Σ2CP∞−n). The S1-equivariant Segal conjecture gives an

equivalence between holim
←− n

Σ2CP∞−n and the profinite completion of S0, and one can show that the resulting

map MΩ1
G/S = lim

−→n
E0(Σ2CP∞−n) −→ E0 is just resG/S .

Proposition 8.35. There are natural isomorphisms

(
∐
n

BU(n))E = M+(G) = Div+(G)

BUE = N+(G) = N(G) = Div0(G)

(Z×BU)E = M(G) = Div(G)

(Z×BU)E = MapS(G,Gm).

Proof. This is well-known, and follows easily from Proposition 8.31 and the remarks following Definition 5.8.
The fourth statement follows from the third one by Cartier duality. �

Next, recall that there is a “complex reflection map” r : S1×CPn−1
+ −→ U(n), where r(z, L) has eigenvalue

z on the line L < Cn and eigenvalue 1 on L⊥. This gives an unbased map CPn−1 −→ ΩU(n). We can also
fix a line L0 < Cn and define r(z, L) = r(z, L)r(z, L0)−1, giving a map r : CPn−1 −→ ΩSU(n). Moreover,
the Bott periodicity isomorphisms ΩU = Z × BU and ΩSU = BU give us maps ΩU(n) −→ Z × BU and
ΩSU(n) −→ BU . It is easy to see that (CPn−1)E is the divisor Dn = n[0] = spec(E0[[x]]/xn) on GE over SE .

Proposition 8.36. There are natural isomorphisms

(ΩU(n))E = M(Dn)

(ΩSU(n))E = N(Dn)

(ΩU(n))E = MapS(Dn,Gm)

(ΩSU(n))E = BasedMapS(Dn,Gm).

Under these identifications, the map ΩU(n) −→ Z×BU gives the obvious map M(Dn) −→M(GE) and so on.

Proof. For the second statement, it is enough (by Remark 6.9) to check that E∗(ΩSU(n)) is the symmetric
algebra generated by the reduced E-homology of CPn−1. This is well-known for ordinary homology, and
it follows for all E by a collapsing Atiyah-Hirzebruch spectral sequence. See [22, 23] for more details. The
inclusion S1 = U(1) −→ U(n) and the determinant map det : U(n) −→ S1 give a splitting U(n) = S1 × SU(n)
of spaces and thus ΩU(n) = Z×ΩSU(n) of H-spaces and the first claim follows in turn using this. The last
two statements follow by Cartier duality. �

8.4. Cohomology of Abelian groups. Let A be a compact Abelian Lie group, and write A∗ for the
character group Hom(A,S1), which is a finitely generated discrete Abelian group. Let G be an ordinary
formal group over a base S. For any point s ∈ S(R) we write Γ(Gs) = X̂spec(R)(spec(R), Gs) for the
associated group of sections. A coordinate gives a bijection between Γ(Gs) and Nil(R), which becomes a
homomorphism if we use an appropriate formal group law to make Nil(R) a group. We define a formal
scheme Hom(A∗, G) by

Hom(A∗, G)(R) = {(s, φ) | s ∈ S(R) and φ : A∗ −→ Γ(Gs)}.
(If A∗ is a direct sum of r cyclic groups then this can be identified with a closed formal subscheme of GrS in
an evident way, which shows that it really is a scheme.)

Proposition 8.37. For any finite Abelian group A, there is a natural map BAE −→ Hom(A∗, G). This is
an isomorphism if E is an exact P (n)-module for some n.
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Proof. An element α ∈ A∗ = Hom(A,S1) gives a map BA −→ BS1 of spaces and thus a map BAE −→
(BS1)E = G of formal groups over S. One checks that the resulting map A∗ −→ Ab X̂S(BAE , G) is a
homomorphism, so by adjointing things around we get a map BAE −→ Hom(A∗, G). If A is a torus then
A∗ ' Zr and BAE = Gr = Hom(A∗, G), so our map is an isomorphism. Moreover, in this case BA ' (CP∞)r

which is decent and thus tolerable for any E. If A = Z/m then there is a well-known way to identify BA
with the circle bundle in the line bundle Lm, where L is the tautological bundle over CP∞. This gives a
long exact Gysin sequence

E∗BA←− E∗CP∞ [m](x)←−−−− E∗CP∞.
The second map here is multiplication by [m](x), which is the image of x under the map G

×m−−→ G. If this
map is injective then the Gysin sequence is a short exact sequence and we have E0BA = E0CP∞/[m](x),
and we conclude easily that spf(E0BA) = ker(G m−→ G) = Hom(A∗, G). One can apply similar arguments
to the skeleta S2k+1/(Z/m) of BA and find that spf(E0BA) = BAE .

In the case of two-periodic Morava K-theory we recover the well-known calculation showing that K(n)∗BA
is concentrated in even degrees for all n. We also have Hs(BA,Q) = 0 for s > 0 so Proposition 8.20 tells us
that BAE is tolerable for any E that is an exact P (n)-module for any n. Moreover, it is easy to see that
[m](x) is not a zero-divisor in this case so BAE = Hom(A∗, G). We have just shown this when A∗ is cyclic,
but it follows easily for all A by Proposition 8.14. �

8.5. Schemes associated to ring spectra. If R is a commutative ring spectrum with a ring map E −→ R,
we have a scheme spec(π0R) over SE . If Z is a finite complex we can take R = F (Z+, E) and we recover
the case ZE = spec(E0Z) = spec(π0R). If M is an arbitrary commutative ring spectrum, we can take
R = E ∧M . In this case we write ME = spec(E0M) for the resulting scheme. If Y is a commutative
H-space we can take M = Σ∞Y+, and we write Y E for ME = spec(E0Y ) in this case. If we have a Künneth
isomorphism E0Y

k = (E0Y )⊗k then E0Y is a Hopf algebra, so Y E is a group scheme over S. If Y is decent
then E0Y is a coalgebra with good basis. In this case Proposition 6.19 applies, and we have a Cartier duality
Y E = D(YE) = HomS(YE ,Gm) and YE = D(Y E) = HomS(Y E ,Gm).

If {Rα} is an inverse system of ring spectra as above, we have a formal scheme lim
−→α

spec(π0Rα). If Zα
runs over the finite subcomplexes of a CW complex Z, then the rings F (Zα+, E) give an example of this, and
the associated formal scheme is just ZE . Another good example is to take the tower of spectra E/pk, where
E is an even periodic ring spectrum such that E0 is torsion-free. More generally, if E has suitable Landweber
exactness properties then we can smash E with a generalised Moore spectrum S/I (see [13, Section 4], for
example) and get a new even periodic ring spectrum E/I, and then we can consider a tower of these. There
are technicalities about the existence of products on the spectra E/I, which we omit here.

8.6. Homology of Thom spectra. Let Z be a space equipped with a map Z z−→ Z×BU , and let T (Z, z) be
the associated Thom spectrum. It is well-known that T is a functor from spaces over Z×BU to spectra, which
preserves homotopy pushouts. Moreover, if (Y, y) is another space over Z×BU then we can use the addition
on Z×BU to make (Y×Z, (y, z)) into a space over Z×BU and we find that T (Y×Z, (y, z)) = T (Y, y)∧T (Z, z).

The above construction really needs an actual map Z z−→ Z×BU and not just a homotopy class. However,
we do have the following result.

Lemma 8.38. If Z is a decent space then the spectrum T (Z, z) depends only on the homotopy class of z,
up to canonical homotopy equivalence. Thus T can be regarded as a functor from the homotopy category of
decent spaces over Z×BU to spectra. In particular, we can define T (Z, V ) when V is a virtual bundle over
Z.

Proof. Suppose we have two homotopic maps z0, z1 : Z −→ Z×BU . We can then choose a map w : Z × I −→
Z × BU such that wj0 = z0 and wj1 = z1, where jt(a) = (a, t). The maps jt induce maps of spectra

T (Z, zt)
ft−→ T (Z×I, w), and the Thom isomorphism theorem implies that these give equivalences in homology

so they are weak equivalences. We thus have a weak equivalence f−1
1 f0 : T (Z, z0) −→ T (Z, z1). This much is

true even when Z is not decent.
To see that our map is canonical when Z is decent, note that KU∗Z is concentrated in even degrees,

so the space F of unpointed maps from Z to Z × BU has trivial odd-dimensional homotopy groups with
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respect to any basepoint. We can think of z0 and z1 as points of F , and w as a path between them. If w′

is another path then then we can glue w and w′ to get a map of S1 to F , which can be extended to give a
map u : D2 −→ F because π1F = 0. It follows that we have a commutative diagram as follows:

T (Z, z0) T (Z × I, w)

T (Z ×D2, u)

T (Z × I, w′) T (Z, z1)

w
f0









�

u

f ′0

A
A
A
AAD

A
A
A
AAC

u

f ′1









�

u

f1

It follows easily that f−1
1 ◦ f0 = (f ′1)−1 ◦ f ′0, as required. �

A coordinate on GE is the same as a degree zero complex orientation of E, which gives a multiplicative
system of Thom classes for all virtual complex bundles. In particular, this gives isomorphisms E∗T (Y, y) '
E∗Y , which are compatible in the evident way with the isomorphisms T (Y × Z, (y, z)) = T (Y, y) ∧ T (Z, z).

If Z z−→ {n} ×BU(n) classifies an honest n-dimensional bundle V over Z then we have T (Z, z) = Σ∞ZV .
In particular, the inclusion CP∞ = BU(1) −→ {1} × BU just gives the Thom spectrum Σ∞(CP∞)L, which
is well-known to be the same as Σ∞CP∞ (without a disjoint basepoint).

Now let Z be a decent commutative H-space. Let z : Z −→ Z×BU be an H-map, and write M = T (Z, z).
We note that addition gives a map (Z × Z, (z, z)) −→ (Z, z) of spaces over Z × BU and thus a map of
spectra M ∧M −→ M , which makes M into a commutative ring spectrum. Similarly, the diagonal gives
a map (Z, z) −→ (Z × Z, (0, z)) and thus a map M

δ−→ Σ∞Z+ ∧M . Finally, we consider the shearing map
(a, b) 7→ (a, a + b). This is an isomorphism (Z × Z, (z, z)) −→ (Z × Z, (0, z)) over Z × BU , which gives an
isomorphism M ∧M −→ Σ∞Z+ ∧M of spectra.

A choice of coordinate gives a Thom isomorphism E∗M ' E∗Z, which shows that E∗M is free and in
even degrees. For the moment we just use this to show that we have Künneth isomorphisms, from which we
will recover a more natural statement about the relationship between E∗Z and E∗M .

Recall that we defined define ZE = spec(E0Z) = spec(E0Σ∞Z+) (which is a commutative group scheme
over S = SE) and ME = spec(E0M). Our diagonal map δ gives an action of ZE on ME . The shearing
isomorphism M ∧M = Σ∞Z+ ∧M shows that the action and projection maps give an isomorphism ZE ×S
ME −→ME ×S ME .

A choice of coordinate on G gives an isomorphism E0M ' E0Y . One can check (using the multiplicative
properties of Thom classes) that this is an isomorphism of E0Y -comodule algebras, so it gives an isomorphism
Y E ' ME of schemes, compatible with the action of Y E . This means that ME is a trivialisable torsor for
Y E .

In the universal case Y = Z × BU , this works out as follows. As mentioned previously, we have a map
CP∞ = {1} × BU(1) −→ Z × BU , and the Thom functor gives a map Σ∞CP∞ −→ MP . In particular, the
bottom cell gives a map S2 = CP 1 −→ MP , or an element u ∈ π2MP . The inclusion {−1} −→ Z× BU also
gives an element of π−2MP , which one checks is inverse to u. Thus, a ring map E0MP −→ R gives an E0-
algebra structure on R, and an E0-module map Ẽ0CP∞ −→ R, which sends Ẽ0S

2 into R×. In other words,
it gives a point s ∈ SE(R) together with an element y ∈ R⊗̂E0Ẽ0CP∞. We can identify R⊗̂E0Ẽ0CP∞ with
the ideal of functions on Gs that vanish at zero, and the extra condition on the restriction to S2 says that y
is a coordinate. This gives a natural map MPE −→ Coord(G). Well-known calculations show that E0MP is
the symmetric algebra over E0 on Ẽ0CP∞, with the bottom class inverted. This implies easily that the map
MPE −→ Coord(G) is an isomorphism. Recall also that (Z×BU)E = Map(G,Gm). Clearly, if u : G −→ Gm

and x is a coordinate on G, then the product ux is again a coordinate. This gives an action of Map(G,Gm)
on Coord(G), which makes Coord(G) into a torsor over Map(G,Gm). One can check that this structure
arises from our geometric coaction of Z×BU on MP .

8.7. Homology operations. Let G be an ordinary formal group over S, and let H be an ordinary formal
group over T . Let πS and πT be the projections from S × T to S and T . We write Hom(G,H) for
HomS×T (π∗SG, π

∗
TH), which is a scheme over S × T by Proposition 6.15. Recall that Hom(G,H)(R) is the
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set of triples (s, t, u) where s ∈ S(R) and t ∈ T (R) and u : Gs −→ Ht is a map of formal groups over spec(R).
We write Iso(G,H)(R) for the subset of triples for which u is an isomorphism. If we choose coordinates x
and y on G and H, then for any u we have y(u(g)) = φ(x(g)) for some power series φ ∈ R[[t]] with φ(0) = 0,
and u is an isomorphism if and only if φ′(0) is invertible. It follows that Iso(G,H) is an open subscheme of
Hom(G,H).

Proposition 8.39. Let E and E′ be even periodic ring spectra. Then there is a natural map SE∧E′ −→
Iso(GE , GE′) of schemes over SE × SE′ . This is an isomorphism if E or E′ is Landweber exact over MP .

Proof. We write S′ = SE′ and G′ = GE′ . The evident ring maps E −→ E ∧ E′ ←− E′ give maps S
q←−

SE∧E′
q′−→ S′, and pullback squares

G GE∧E′ G′

S SE∧E′ S′
u

u

u

w

u

u q w
q′

This gives an isomorphism v : q∗G −→ (q′)∗G′. Using this, we easily construct the required map.
Now consider the case E′ = MP , so that S′ = FGL. Then Iso(G,G′)(R) is the set of triples (s, F, x), where

s ∈ S(R) and F is a formal group law over R and x : Gs −→ spec(R)×Â1 is an isomorphism over spec(R) such
that x(g+h) = F (x(g), x(h)). In other words, x is a coordinate on Gs and F is the unique formal group law
such that x(g + h) = F (x(g), x(h)). Thus, we find that Iso(G,G′) = Coord(G) = MPE = spec(π0MP ) (see
Section 8.6). It follows after a comparison of definitions that our map SE∧E′ −→ Iso(G,G′) is an isomorphism.

Now suppose that E′′ is Landweber exact over E′, in the sense that there is a ring map E′ −→ E′′ which
induces an isomorphism E′′0 ⊗E′0 E

′
0Z = E′′0Z for all spectra Z. We then find that G′′ = G′ ×S′ S′′ and that

SE∧E′′ = SE∧E′ ×S′ S′′ = Iso(G,G′)×S′ S′′ = Iso(G,G′′),

as required. �

Remark 8.40. If there are enough Künneth isomorphisms, then E0Ω∞E′ will be a Hopf ring over E0 and
thus the ∗-indecomposables Ind(E0Ω∞E′) will be an algebra over E0 using the circle product. The procedure
described in [15] will then give a map spec(Ind(E0Ω∞E′)) −→ Hom(G,G′), which is an isomorphism in good
cases.

Definition 8.41. Let G and G′ be formal groups over S and S′, respectively. A fibrewise isomorphism from
G to G′ is a square of the form

G G′

S S′

w
f

u u

w
g

such that the induced map G −→ f∗G′ is an isomorphism of formal groups over S.

Definition 8.42. We write OFG for the category of ordinary formal groups over affine schemes and fibrewise
isomorphisms, and EPR for the category of even periodic ring spectra. We thus have a functor EPRop −→ OFG
sending E to GE . We write LOFG for the subcategory of OFG consisting of Landweber exact formal groups,
and LEPR for the category of those E for which GE is Landweber exact.

Proposition 8.43. If E ∈ EPR and E′ ∈ LEPR then the natural map

EPR(E′, E) −→ OFG(GE , GE′)

is an isomorphism. Moreover, the functor LEPRop −→ LOFG is an equivalence of categories.
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Proof. Using [13, Proposition 2.12 and Corollary 2.14], we see that there is a cofibration P −→ Q −→ E′ −→ ΣP ,
in which P and Q are retracts of wedges of finite spectra with only even cells, and the connecting map
E′ −→ ΣP is phantom. If W is an even finite spectrum then we see from the Atiyah-Hirzebruch spectral
sequence that E1W = 0 and E0W is projective over E0 and [W,E] = Hom(E0W,E0) and [ΣW,E] = 0. It
follows that all these things hold with W replaced by P or Q. Using the cofibration we see that E1E

′ = 0,
and there is a short exact sequence

E0P � E0Q � E0E
′.

Now consider the diagram

0 [E′, E] [Q,E] [P,E]

0 Hom(E0E
′, E0) Hom(E0Q,E0) Hom(E0P,E0).

w

u

αE′

w

u

αQ

w

u

αP

w w w

The short exact sequence above implies that the bottom row is exact. The top row is exact because of our
cofibration and the fact that [ΣP,E] = 0. We have seen that αP and αQ are isomorphisms, and it follows that
αE′ is an isomorphism. Thus, [E′, E] is the set of maps of E0-modules from E0E

′ to E0. One can check that
the ring maps E′ −→ E biject with the maps of E0-algebras from E0E

′ to E0 (using [13, Proposition 2.19]). We
see from Proposition 8.39 that these maps biject with sections of SE∧E′ = Iso(GE , GE′) over SE , and these are
easily seen to be the same as fibrewise isomorphisms from GE to GE′ . Thus EPR(E′, E) = OFG(GE , GE′),
as claimed. This implies that the functor LEPRop −→ LOFG is full and faithful, so we need only check
that it is essentially surjective. Suppose that G is a Landweber exact ordinary formal group over an affine
scheme S. Define a graded ring E∗ by putting E2k+1 = 0 and E2k = ω⊗kG/S for all k ∈ Z, so in particular
E0 = OS . A choice of coordinate on G gives a formal group law F over OS = E0 and thus a map S −→ FGL
or equivalently a map u : MP0 = OFGL −→ E0. If G0 = GMP is the evident formal group over FGL then one
sees from the construction that S ×FGL G0 = G. Given this, we see that our map u extends to give a map
MP∗ −→ E∗. We define a functor from spectra to graded Abelian groups by

E∗Z = E∗ ⊗MP∗ MP∗Z = E∗ ⊗MU∗ MU∗Z,

where we have used the map MU −→ MP of ring spectra to regard E∗ as a module over MU∗. One can
also check that E0Z = E0 ⊗MP0 MP0Z. The classical Landweber exact functor theorem implies that this
is a homology theory, represented by a spectrum E. The refinements given in [13, Section 2.1] show that E
is unique up to canonical isomorphism, and that it admits a canonical commutative ring structure, making
it an even periodic ring spectrum. It is easy to check that E0CP∞ = E0⊗̂MP0MP 0CP∞ and thus that
GE = S ×FGL G0 = G, as required. �
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