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History: in 1984 Ravenel made a series of conjectures about spectra.
With the exception of the Telescope Conjecture (TC), all the conjectures

were proved by Devinatz, Hopkins and Smith.
This led to a huge body of results in chromatic homotopy theory.

It soon became the consensus that TC was probably false, and there was a
programme by Mahowald, Ravenel and Schick to disprove it, but they
could not complete the argument.

A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.

There are invariants K(p, n).(X) of spectra X (for p prime and n > 0)
called Morava K-theory. These play a central rdle in all the conjectures.

Idea: focus on aspects of the category of spectra that are detected by
K(p, n) for a fixed (p, n). The number n is called height.

There are two subtly different versions of this: TC says they are the same.
This is easy for n = 0, true for n =1 and false for n > 1.

Alternative formulation: TC says that if K(p, < n).(X) =0, then X is a
filtered colimit of finite spectra X, with K(p, < n).(Xa) = 0.



This talk



This talk

» The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.



This talk

» The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

» The aim of this talk is to survey some of those ideas.



This talk

» The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

» The aim of this talk is to survey some of those ideas.

» Blueshift: the Tate construction decreases chromatic height.



This talk

>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

Special case: the Tate construction sends K(p, n) and similar things to
zero, making other things canonically self-dual (ambidexterity).



This talk

>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.

Blueshift: the Tate construction decreases chromatic height.

Special case: the Tate construction sends K(p, n) and similar things to
zero, making other things canonically self-dual (ambidexterity).
Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.



This talk

>

>
>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

Special case: the Tate construction sends K(p, n) and similar things to
zero, making other things canonically self-dual (ambidexterity).

Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.

New oco-categorical foundations make this work smoothly.



This talk

>

>
>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

Special case: the Tate construction sends K(p, n) and similar things to
zero, making other things canonically self-dual (ambidexterity).

Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.

New oco-categorical foundations make this work smoothly.
Roughly K(R) is a ring spectrum obtained by adjoining negatives to Modg.



This talk

>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

Special case: the Tate construction sends K(p, n) and similar things to
zero, making other things canonically self-dual (ambidexterity).

Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.

New oco-categorical foundations make this work smoothly.
Roughly K(R) is a ring spectrum obtained by adjoining negatives to Modg.
Redshift: K(—) increases height. Several versions and extensive history.



This talk

>

>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

> Special case: the Tate construction sends K(p, n) and similar things to

v

vvyyvyy

zero, making other things canonically self-dual (ambidexterity).

Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.

New oco-categorical foundations make this work smoothly.

Roughly K(R) is a ring spectrum obtained by adjoining negatives to Modg.
Redshift: K(—) increases height. Several versions and extensive history.
Problem: extend ideas from ordinary rings to commutative ring spectra.



This talk

>

>
>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

> Special case: the Tate construction sends K(p, n) and similar things to

v

vvyVvyVvyy

zero, making other things canonically self-dual (ambidexterity).

Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.

New oco-categorical foundations make this work smoothly.

Roughly K(R) is a ring spectrum obtained by adjoining negatives to Modg.
Redshift: K(—) increases height. Several versions and extensive history.
Problem: extend ideas from ordinary rings to commutative ring spectra.

Example: Galois theory. In chromatic homotopy we have analogues of the
algebraic closure of Q and the maximal cyclotomic extension.



This talk

>

>
>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

> Special case: the Tate construction sends K(p, n) and similar things to

vvyVvyVvyy v

v

zero, making other things canonically self-dual (ambidexterity).

Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.

New oco-categorical foundations make this work smoothly.

Roughly K(R) is a ring spectrum obtained by adjoining negatives to Modg.
Redshift: K(—) increases height. Several versions and extensive history.
Problem: extend ideas from ordinary rings to commutative ring spectra.

Example: Galois theory. In chromatic homotopy we have analogues of the
algebraic closure of Q and the maximal cyclotomic extension.

Example: Nullstellensatz: many ring maps to algebraically closed fields.



This talk

>

>
>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

> Special case: the Tate construction sends K(p, n) and similar things to

vvyVvyVvyy v

v

zero, making other things canonically self-dual (ambidexterity).

Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.

New oco-categorical foundations make this work smoothly.

Roughly K(R) is a ring spectrum obtained by adjoining negatives to Modg.
Redshift: K(—) increases height. Several versions and extensive history.
Problem: extend ideas from ordinary rings to commutative ring spectra.

Example: Galois theory. In chromatic homotopy we have analogues of the
algebraic closure of Q and the maximal cyclotomic extension.

Example: Nullstellensatz: many ring maps to algebraically closed fields.

Example: groups of units, Picard groups, Brauer groups. These are tied
together by categorification e.g. pic(R) — K(R)*.



This talk

>

>
>

The disproof of the Telescope Conjecture rests on a great deal of recent
progress in chromatic homotopy theory.

The aim of this talk is to survey some of those ideas.
Blueshift: the Tate construction decreases chromatic height.

> Special case: the Tate construction sends K(p, n) and similar things to

vvyVvyVvyy v

v

zero, making other things canonically self-dual (ambidexterity).

Categorification: if R is a commutative ring (spectrum), then Modg is a
commutative semiring in the category of categories.

New oco-categorical foundations make this work smoothly.
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Example: Nullstellensatz: many ring maps to algebraically closed fields.
Example: groups of units, Picard groups, Brauer groups. These are tied
together by categorification e.g. pic(R) — K(R)*.

Categorical shift is essential for correct interpretation of cyclotomic
extensions. Ambidexterity is needed for construction.
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» Trace methods: understand K(R) by comparing with THH(R) and
TC(R).
» Newer approach to TC(R) due to Nikolaus and Scholze:
the Tate construction plays a central role.
> One particular example of great importance for TC: THH(F(S},S%)).
> The key counterexample: K(BP(n)"").
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and a map v: X%*U(n) — U(n) for some k > 0 such that }?E;)*(v) is
multiplication by u*. (This uses big theorems.)

In spectra we can form the telescope T(n) = End(U(n))[v].

T(i)«X =0 for all i < niff X is a filtered colimit of finite spectra with
K(n)«X = 0; so the Telescope Conjecture relates to T(n).
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» Define 7: Mg — M® by 7([m]) = 3_, gm and
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» These fit into a Z- graded group; a short exact sequence L — M — N gives
a long exact sequence H (G; L) — H (G; M) — H "(G;N) = H’+1(G L).
> H* (G;Z[]G] @ M) =0.
> H*(GoiZ) = ZIx)/px and H*(Coi Z) = (Z/p)[x, x~] (with x| = 2)
> For a spectrum X with action of G, there is a parallel construction of a
spectrum X*¢. If m;(X) = 0 for i # 0 then m;(X*®) = H~(G; m(X)).

» For E of height n: E*(BC,) = E*[x]/g(x) with g monic of degree p".
Then 7.(E*?) = (E*[a]/g(a))[a~"] which is zero or has height n — 1.
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» There are various related statements about how the Tate construction
lowers height.
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> We introduced ﬁ*(G; M) in terms of 7: Mg — MC for a G-module M.

> The Tate spectrum X*C is the cofibre of an analogous map X, — X"°.
Here Xie = (EG A X)/G and X"® = F(EGy, X)°,
where EG is a contractible space with free G-action.

» Take X = K(n) with trivial G-action. Then 7.(K(n)sc) = K(n)«(BG)
and 7.(K(n)"®) = K(n)™*(BG) = Homk(,). (K(n).(BG), K(n).) and
K(n)*® =0 so K(n).(BG) is naturally self-dual.

> By related methods we have self-duality (or isomorphism between left and
right adjoints) in many related contexts, using T(n) or K(n).

» In particular: for d > 0 and finite abelian A we have an
Eilenberg-MacLane space BYA with m4(B?A) = A and m;(B?A) = 0 for
i # d. Again K(n).(B9A) is naturally self-dual.

» For a finite set X and an abelian group M we have a map
M E [Lex M E @B cx M s M, which is just multiplication by |X|.
The middle map is an isomorphism between left and right adjoints.

» In an ambidextrous context, we can define |X| for certain spaces X. In

n—1
particular, at height n we have |BYC,| = p( a).
» In particular |[B"C,| = 1 is invertible.
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>

If R is an ordinary ring then Perf(R) is the oo-category of finite chain
complexes of finitely generated projective R-modules.

There is a straightforward generalisation for ring spectra.

If we discard non-invertible morphisms we get an oo-groupoid or space.
This is a commutative monoid under ®.
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spaces, corresponding to a spectrum K(R).
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Theorem (Suslin): if F is an algebraically closed field and m > 0 and
i > 0 then mi(K(F)/m) =Z/m and mit1(K(F)/m) = 0.

There are maps K(R) — TC(R) — THH(R),

where TC(R) and THH(R) are easier than K(R).

Redshift: K(—) and TC(—) tend to increase height.

Basic example: Q (or HQ) has height 0

but K(Q) is closely related to KU which has height 1.

Theorem (Yuan): if T(n) A E # 0 then T(n) A K(E*%) #0

i.e. K(—) cancels Tate blueshift.
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» In the commutative case, Burklund, Schlank and Yuan proved
ht(K(R)) > ht(R) + 1; the reverse inequality was proved earlier by
Clausen, Mathew, Naumann and Noel.

» If R is a noncommutative ring spectrum then K(R) need not have a ring
structure and we need a different definition of height.

» Say a spectrum X has fp-height < n if there is a finite spectrum Y with
K(n)+Y =0# K(n+1).Y and [], |m(X A Y)| < 0.

» For commutative ring spectra, this is the same as height.

» Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1
(perhaps under conditions on R).

> AR proved this by calculation for some examples where fp-ht(R) = 1.

» There is a well-known spectrum BP(n) of fp-height n with
7 (BP(n)) = Z(p)[w, . . ., va] where |v| = 2(p* — 1).
» Theorem (Hahn, Wilson): the AR conjecture holds for BP(n).

» (To prove this we need a sufficiently good product structure on BP(n)
which is already a big result in the same paper.)
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» Suppose we have a map A — B of commutative ring spectra and a finite
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We say this is a Galois extension if B =0 and B®s B — ngG B is iso.

We say that the extension is faithful if A — B"® is iso.
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Example: there is an algebraically closed Morava theory E corresponding

to [Fp, whose automorphism group G is profinite and well-understood.

The spectrum Sk(, = E® is the K(n)-local sphere:

the map S — Sk(n) is terminal among K(n)-equivalences out of S.

> There is a canonical surjection G — Z, with kernel Gi. We put W = Eha
which is a faithful Galois extension of S, with Galois group Z, .
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> Classical cyclotomic extension: Qe = Q(pp) = Q(e2™*/P" | k,r € N),
so there is a map ppoe — GL1(Qcye).

» Theorem (Westerland): W is a higher cyclotomic extension of Sk(n), with
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ST(,,)[NE,'Z,)Q]. This is again Galois with group Z, but is not faithful.
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