Recent progress in chromatic homotopy

Neil Strickland

January 16, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called *Morava K-theory*. These play a central rôle in all the conjectures.
- ldea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number *n* is called *height*.
- ▶ There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called *Morava K-theory*. These play a central rôle in all the conjectures.
- ldea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number *n* is called *height*.
- ▶ There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called *Morava K-theory*. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number n is called *height*.
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- There are invariants K(p, n)_∗(X) of spectra X (for p prime and n ≥ 0) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number n is called *height*.
- ▶ There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- There are invariants K(p, n)_{*}(X) of spectra X (for p prime and n ≥ 0) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number n is called *height*.
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- There are invariants K(p, n)_{*}(X) of spectra X (for p prime and n ≥ 0) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number n is called *height*.
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number n is called *height*.
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- ldea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number *n* is called *height*.
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if $K(p, \leq n)_*(X) = 0$, then X is a filtered colimit of *finite* spectra X_{α} with $K(p, \leq n)_*(X_{\alpha}) = 0$.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- ldea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number *n* is called *height*.
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- ldea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number *n* is called *height*.
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

- Theorem: (Burklund, Hahn, Levy, Schlank 2023): Ravenel's Telescope Conjecture is false.
- ▶ History: in 1984 Ravenel made a series of conjectures about spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was published by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- ldea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n). The number *n* is called *height*.
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, ≤ n)_{*}(X) = 0, then X is a filtered colimit of *finite* spectra X_α with K(p, ≤ n)_{*}(X_α) = 0.

・ロト・日本・日本・日本・日本・日本

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: K(-) increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: K(-) increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: K(-) increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: K(-) increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: K(-) increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: K(-) increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: K(-) increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: K(-) increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: $\mathcal{K}(-)$ increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: $\mathcal{K}(-)$ increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: $\mathcal{K}(-)$ increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: $\mathcal{K}(-)$ increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: $\mathcal{K}(-)$ increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction. イロ・イラ・イミ・・ミー・ショー ショークへで

- The disproof of the Telescope Conjecture rests on a great deal of recent progress in chromatic homotopy theory.
- The aim of this talk is to survey some of those ideas.
- Blueshift: the Tate construction decreases chromatic height.
- Special case: the Tate construction sends K(p, n) and similar things to zero, making other things canonically self-dual (*ambidexterity*).
- Categorification: if R is a commutative ring (spectrum), then Mod_R is a commutative semiring in the category of categories.
- \blacktriangleright New ∞ -categorical foundations make this work smoothly.
- Roughly K(R) is a ring spectrum obtained by adjoining negatives to Mod_R .
- Redshift: $\mathcal{K}(-)$ increases height. Several versions and extensive history.
- Problem: extend ideas from ordinary rings to commutative ring spectra.
- Example: Galois theory. In chromatic homotopy we have analogues of the algebraic closure of Q and the maximal cyclotomic extension.
- Example: Nullstellensatz: many ring maps to algebraically closed fields.
- Example: groups of units, Picard groups, Brauer groups. These are tied together by categorification e.g. pic(R) → K(R)[×].
- Categorical shift is essential for correct interpretation of cyclotomic extensions. Ambidexterity is needed for construction.

- Trace methods: understand K(R) by comparing with THH(R) and TC(R).
- Newer approach to TC(R) due to Nikolaus and Scholze: the Tate construction plays a central role.
- One particular example of great importance for TC: $THH(F(S_{+}^{1}, S^{0}))$.
- The key counterexample: $K(BP\langle n \rangle^{h\mathbb{Z}})$.

- Trace methods: understand K(R) by comparing with THH(R) and TC(R).
- Newer approach to TC(R) due to Nikolaus and Scholze: the Tate construction plays a central role.
- One particular example of great importance for TC: $THH(F(S^1_+, S^0))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Trace methods: understand K(R) by comparing with THH(R) and TC(R).
- Newer approach to TC(R) due to Nikolaus and Scholze: the Tate construction plays a central role.
- One particular example of great importance for TC: $THH(F(S^1_+, S^0))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Trace methods: understand K(R) by comparing with THH(R) and TC(R).
- Newer approach to TC(R) due to Nikolaus and Scholze: the Tate construction plays a central role.
- One particular example of great importance for TC: $THH(F(S_{+}^{1}, S^{0}))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Trace methods: understand K(R) by comparing with THH(R) and TC(R).
- Newer approach to TC(R) due to Nikolaus and Scholze: the Tate construction plays a central role.
- One particular example of great importance for TC: $THH(F(S^1_+, S^0))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex *K*-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $\overline{K(i)}^*U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^*(v)$ is multiplication by u^k . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).

- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex *K*-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $\overline{K(i)}^{T}U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^{*}(v)$ is multiplication by u^{k} . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex *K*-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $\overline{K(i)}^*U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^*(v)$ is multiplication by u^k . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{nk}} = K(n)^*\{x^i \mid i < p^{nk}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex *K*-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $\overline{K(i)}^*U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^*(v)$ is multiplication by u^k . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex K-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $K(i)^{T}U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^{*}(v)$ is multiplication by u^{k} . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex K-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $K(i)^{T}U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^{*}(v)$ is multiplication by u^{k} . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.

- Complex K-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $\overline{K(i)}^{T}U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^{*}(v)$ is multiplication by u^{k} . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex K-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $\overline{K(i)}^*U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^*(v)$ is multiplication by u^k . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex K-theory has height one.
- Elliptic cohomology has height two.
- ► There exists a finite complex U(n) with $K(i)^{+}U(n) = 0$ iff i < nand a map $v: \Sigma^{2k}U(n) \to U(n)$ for some k > 0 such that $\widetilde{K(n)}^{*}(v)$ is multiplication by u^{k} . (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex K-theory has height one.
- Elliptic cohomology has height two.
- There exists a finite complex U(n) with K(i)^{*}U(n) = 0 iff i < n and a map v: Σ^{2k}U(n) → U(n) for some k > 0 such that K(n)^{*}(v) is multiplication by u^k. (This uses big theorems.)
- ln spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- T(i)_{*}X = 0 for all i ≤ n iff X is a filtered colimit of finite spectra with K(n)_{*}X = 0; so the Telescope Conjecture relates to T(n).

(日) (日) (日) (日) (日) (日) (日) (日)

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex K-theory has height one.
- Elliptic cohomology has height two.
- There exists a finite complex U(n) with K(i)^{*}U(n) = 0 iff i < n and a map v: Σ^{2k}U(n) → U(n) for some k > 0 such that K(n)^{*}(v) is multiplication by u^k. (This uses big theorems.)
- ▶ In spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- ▶ $T(i)_*X = 0$ for all $i \le n$ iff X is a filtered colimit of finite spectra with $K(n)_*X = 0$; so the Telescope Conjecture relates to T(n).

(日) (日) (日) (日) (日) (日) (日) (日)

- Fix a prime p > 2 and write K(n) for Morava K-theory K(p, n).
- For any space X we have a graded ring K(n)*(X); in particular K(n)* = K(n)*(1) = 𝔽_p[u, u⁻¹] with |u| = 2.
- For any group G there is a classifying space BG with $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.
- $K(n)^*(BC_{p^k}) = K(n)^*[x]/x^{p^{n^k}} = K(n)^*\{x^i \mid i < p^{n^k}\}.$
- For many other theories E^{*}: ring structure of E^{*}(BC_{p^k}) is complicated, but it is still free of rank p^{nk} over E^{*}. The integer n is the height.
- $H^*(BC_{p^k}; \mathbb{Q}) = \mathbb{Q}$; height zero is the same as rational.
- Complex K-theory has height one.
- Elliptic cohomology has height two.
- There exists a finite complex U(n) with K(i)^{*}U(n) = 0 iff i < n and a map v: Σ^{2k}U(n) → U(n) for some k > 0 such that K(n)^{*}(v) is multiplication by u^k. (This uses big theorems.)
- ▶ In spectra we can form the telescope $T(n) = \text{End}(U(n))[v^{-1}]$.
- ► $T(i)_*X = 0$ for all $i \le n$ iff X is a filtered colimit of finite spectra with $K(n)_*X = 0$; so the Telescope Conjecture relates to T(n).

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- ▶ Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \operatorname{ker}(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- ► $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG} . If $\pi_i(X) = 0$ for $i \neq 0$ then $\pi_i(X^{tG}) = \widehat{H}^{-i}(G; \pi_0(X))$.
- For E of height n: E^{*}(BC_p) = E^{*}[[x]]/g(x) with g monic of degree pⁿ. Then π_{*}(E^{tC_p}) = (E^{*}[[a]]/g(a))[a⁻¹] which is zero or has height n − 1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$

• Define
$$\tau: M_G \to M^G$$
 by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \operatorname{ker}(\tau)$.

▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- ► $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- ▶ For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG} . If $\pi_i(X) = 0$ for $i \neq 0$ then $\pi_i(X^{tG}) = \widehat{H}^{-i}(G; \pi_0(X))$.
- For E of height n: E^{*}(BC_p) = E^{*}[[x]]/g(x) with g monic of degree pⁿ. Then π_{*}(E^{tC_p}) = (E^{*}[[a]]/g(a))[a⁻¹] which is zero or has height n − 1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \operatorname{ker}(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- ► $H^*(C_\rho; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_\rho; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG} . If $\pi_i(X) = 0$ for $i \neq 0$ then $\pi_i(X^{tG}) = \widehat{H}^{-i}(G; \pi_0(X))$.
- For E of height n: E^{*}(BC_p) = E^{*}[[x]]/g(x) with g monic of degree pⁿ. Then π_{*}(E^{tC_p}) = (E^{*}[[a]]/g(a))[a⁻¹] which is zero or has height n − 1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \operatorname{ker}(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- ► $H^*(C_\rho; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_\rho; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- ▶ For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG} . If $\pi_i(X) = 0$ for $i \neq 0$ then $\pi_i(X^{tG}) = \widehat{H}^{-i}(G; \pi_0(X))$.
- For E of height n: E^{*}(BC_p) = E^{*}[[x]]/g(x) with g monic of degree pⁿ. Then π_{*}(E^{tC_p}) = (E^{*}[[a]]/g(a))[a⁻¹] which is zero or has height n − 1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \operatorname{ker}(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- ► $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- ▶ For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG} . If $\pi_i(X) = 0$ for $i \neq 0$ then $\pi_i(X^{tG}) = \widehat{H}^{-i}(G; \pi_0(X))$.
- For E of height n: E^{*}(BC_p) = E^{*}[[x]]/g(x) with g monic of degree pⁿ. Then π_{*}(E^{tC_p}) = (E^{*}[[a]]/g(a))[a⁻¹] which is zero or has height n − 1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \operatorname{ker}(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- ▶ $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG} . If $\pi_i(X) = 0$ for $i \neq 0$ then $\pi_i(X^{tG}) = \widehat{H}^{-i}(G; \pi_0(X))$.
- For E of height n: E^{*}(BC_p) = E^{*}[[x]]/g(x) with g monic of degree pⁿ. Then π_{*}(E^{tC_p}) = (E^{*}[[a]]/g(a))[a⁻¹] which is zero or has height n − 1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \operatorname{ker}(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- ► $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG}. If π_i(X) = 0 for i ≠ 0 then π_i(X^{tG}) = Ĥ⁻ⁱ(G; π₀(X)).
- For E of height n: E^{*}(BC_p) = E^{*}[[x]]/g(x) with g monic of degree pⁿ. Then π_{*}(E^{tC_p}) = (E^{*}[[a]]/g(a))[a⁻¹] which is zero or has height n − 1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \operatorname{ker}(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG} . If $\pi_i(X) = 0$ for $i \neq 0$ then $\pi_i(X^{tG}) = \widehat{H}^{-i}(G; \pi_0(X))$.
- For E of height n: E^{*}(BC_p) = E^{*}[[x]]/g(x) with g monic of degree pⁿ. Then π_{*}(E^{tC_p}) = (E^{*}[[a]]/g(a))[a⁻¹] which is zero or has height n − 1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \ker(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG} . If $\pi_i(X) = 0$ for $i \neq 0$ then $\pi_i(X^{tG}) = \widehat{H}^{-i}(G; \pi_0(X))$.
- For *E* of height *n*: $E^*(BC_p) = E^*[[x]]/g(x)$ with *g* monic of degree p^n . Then $\pi_*(E^{tC_p}) = (E^*[[a]]/g(a))[a^{-1}]$ which is zero or has height n-1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.

By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.

There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau: M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \ker(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- ► $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG}. If π_i(X) = 0 for i ≠ 0 then π_i(X^{tG}) = Ĥ⁻ⁱ(G; π₀(X)).
- For *E* of height *n*: $E^*(BC_p) = E^*[[x]]/g(x)$ with *g* monic of degree p^n . Then $\pi_*(E^{tC_p}) = (E^*[[a]]/g(a))[a^{-1}]$ which is zero or has height n-1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- ▶ Let G be a finite group acting on M. Put $M^G = H^0(G; M) = \{m \in M \mid gm = m \text{ for all } g \in G\}$ $M_G = H_0(G; M) = M / \sum_g \{gm - m \mid m \in M\}.$
- Define $\tau \colon M_G \to M^G$ by $\tau([m]) = \sum_g gm$ and $\widehat{H}^0(G; M) = \operatorname{cok}(\tau)$ and $\widehat{H}^{-1}(G; M) = \ker(\tau)$.
- ▶ These fit into a \mathbb{Z} -graded group; a short exact sequence $L \rightarrow M \rightarrow N$ gives a long exact sequence $\widehat{H}^{i}(G; L) \rightarrow \widehat{H}^{i}(G; M) \rightarrow \widehat{H}^{i}(G; N) \rightarrow \widehat{H}^{i+1}(G; L)$.

$$\blacktriangleright \widehat{H}^*(G;\mathbb{Z}[G]\otimes M)=0.$$

- $H^*(C_p; \mathbb{Z}) = \mathbb{Z}[x]/px$ and $\widehat{H}^*(C_p; \mathbb{Z}) = (\mathbb{Z}/p)[x, x^{-1}]$ (with |x| = 2)
- For a spectrum X with action of G, there is a parallel construction of a spectrum X^{tG}. If π_i(X) = 0 for i ≠ 0 then π_i(X^{tG}) = Ĥ⁻ⁱ(G; π₀(X)).
- For *E* of height *n*: $E^*(BC_p) = E^*[[x]]/g(x)$ with *g* monic of degree p^n . Then $\pi_*(E^{tC_p}) = (E^*[[a]]/g(a))[a^{-1}]$ which is zero or has height n-1.
- For E = K(n) we have g(x) = x^{pⁿ} and K(n)^{tCp} = 0. Various other statements X^{tG} = 0 or K(n)_∗(X^{tG}) = 0 can be deduced.
- By a more complicated argument: Kuhn proved $T(n)^{tG} = 0$.
- There are various related statements about how the Tate construction lowers height.

- We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.
- ▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.
- ► Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- ▶ In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- ▶ For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- ▶ In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.
- ln particular $|B^n C_p| = 1$ is invertible.

• We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.

▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.

- ▶ Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- ▶ In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- ▶ In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.

ln particular $|B^n C_p| = 1$ is invertible.

- We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.
- ▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.
- ▶ Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- ▶ In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- ▶ For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- ▶ In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.
- ln particular $|B^n C_p| = 1$ is invertible.

- We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.
- ▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.
- ▶ Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- ▶ In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- ▶ For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.
- ln particular $|B^n C_p| = 1$ is invertible.

- We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.
- ▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.
- ► Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- ▶ For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- ▶ In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.
- ln particular $|B^n C_p| = 1$ is invertible.

- We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.
- ▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.
- ► Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- ▶ In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- ▶ In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.
- ln particular $|B^n C_p| = 1$ is invertible.

- We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.
- ▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.
- ► Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- ▶ In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- ► For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- ▶ In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.

ln particular $|B^n C_p| = 1$ is invertible.

- We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.
- ▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.
- ► Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- ▶ In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- ► For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- ▶ In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.
- ln particular $|B^n C_p| = 1$ is invertible.

- We introduced $\widehat{H}^*(G; M)$ in terms of $\tau: M_G \to M^G$ for a *G*-module *M*.
- ▶ The Tate spectrum X^{tG} is the cofibre of an analogous map $X_{hG} \to X^{hG}$. Here $X_{hG} = (EG_+ \land X)/G$ and $X^{hG} = F(EG_+, X)^G$, where EG is a contractible space with free G-action.
- ► Take X = K(n) with trivial *G*-action. Then $\pi_*(K(n)_{hG}) = K(n)_*(BG)$ and $\pi_*(K(n)^{hG}) = K(n)^{-*}(BG) = \operatorname{Hom}_{K(n)_*}(K(n)_*(BG), K(n)_*)$ and $K(n)^{tG} = 0$ so $K(n)_*(BG)$ is naturally self-dual.
- By related methods we have self-duality (or isomorphism between left and right adjoints) in many related contexts, using T(n) or K(n).
- ▶ In particular: for $d \ge 0$ and finite abelian A we have an Eilenberg-MacLane space $B^d A$ with $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \ne d$. Again $K(n)_*(B^d A)$ is naturally self-dual.
- ► For a finite set X and an abelian group M we have a map $M \xrightarrow{\Delta} \prod_{x \in X} M \xrightarrow{\simeq} \bigoplus_{x \in X} M \xrightarrow{\nabla} M$, which is just multiplication by |X|. The middle map is an isomorphism between left and right adjoints.
- ▶ In an ambidextrous context, we can define |X| for certain spaces X. In particular, at height *n* we have $|B^d C_p| = p^{\binom{n-1}{d}}$.
- ln particular $|B^n C_p| = 1$ is invertible.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞ -groupoid or space. This is a commutative monoid under \oplus .
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- ▶ **Theorem** (Quillen): if *F* is a field of order $q < \infty$ then $\pi_0(K(F)) = \mathbb{Z}$, and $\pi_{2i}(K(F)) = 0$ and $\pi_{2i-1}(K(F)) = \mathbb{Z}/(q^i 1)$ for i > 0.
- ▶ Theorem (Suslin): if *F* is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(\mathcal{K}(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(\mathcal{K}(F)/m) = 0$.
- There are maps K(R) → TC(R) → THH(R), where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ **Theorem** (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞ -groupoid or space. This is a commutative monoid under \oplus .
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- ▶ **Theorem** (Quillen): if *F* is a field of order $q < \infty$ then $\pi_0(K(F)) = \mathbb{Z}$, and $\pi_{2i}(K(F)) = 0$ and $\pi_{2i-1}(K(F)) = \mathbb{Z}/(q^i 1)$ for i > 0.
- ▶ Theorem (Suslin): if *F* is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(\mathcal{K}(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(\mathcal{K}(F)/m) = 0$.
- There are maps K(R) → TC(R) → THH(R), where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ **Theorem** (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞ -groupoid or space. This is a commutative monoid under \oplus .
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- ▶ **Theorem** (Quillen): if *F* is a field of order $q < \infty$ then $\pi_0(K(F)) = \mathbb{Z}$, and $\pi_{2i}(K(F)) = 0$ and $\pi_{2i-1}(K(F)) = \mathbb{Z}/(q^i 1)$ for i > 0.
- ▶ Theorem (Suslin): if *F* is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(\mathcal{K}(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(\mathcal{K}(F)/m) = 0$.
- There are maps K(R) → TC(R) → THH(R), where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ **Theorem** (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞-groupoid or space. This is a commutative monoid under ⊕.
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- ▶ **Theorem** (Quillen): if *F* is a field of order $q < \infty$ then $\pi_0(K(F)) = \mathbb{Z}$, and $\pi_{2i}(K(F)) = 0$ and $\pi_{2i-1}(K(F)) = \mathbb{Z}/(q^i 1)$ for i > 0.
- ▶ Theorem (Suslin): if *F* is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(\mathcal{K}(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(\mathcal{K}(F)/m) = 0$.
- There are maps K(R) → TC(R) → THH(R), where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ **Theorem** (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞-groupoid or space. This is a commutative monoid under ⊕.
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- ▶ **Theorem** (Quillen): if *F* is a field of order $q < \infty$ then $\pi_0(K(F)) = \mathbb{Z}$, and $\pi_{2i}(K(F)) = 0$ and $\pi_{2i-1}(K(F)) = \mathbb{Z}/(q^i 1)$ for i > 0.
- ▶ Theorem (Suslin): if *F* is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(\mathcal{K}(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(\mathcal{K}(F)/m) = 0$.
- ▶ There are maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$, where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ **Theorem** (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞-groupoid or space. This is a commutative monoid under ⊕.
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- It is hard to study K(R) directly.
- Theorem (Quillen): if F is a field of order q < ∞ then π₀(K(F)) = Z, and π_{2i}(K(F)) = 0 and π_{2i-1}(K(F)) = Z/(qⁱ − 1) for i > 0.
- ▶ Theorem (Suslin): if *F* is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(\mathcal{K}(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(\mathcal{K}(F)/m) = 0$.
- ▶ There are maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$, where TC(R) and THH(R) are easier than K(R).
- ▶ Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ **Theorem** (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞-groupoid or space. This is a commutative monoid under ⊕.
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- Theorem (Quillen): if F is a field of order q < ∞ then π₀(K(F)) = Z, and π_{2i}(K(F)) = 0 and π_{2i-1}(K(F)) = Z/(qⁱ − 1) for i > 0.
- ▶ Theorem (Suslin): if *F* is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(\mathcal{K}(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(\mathcal{K}(F)/m) = 0$.
- ▶ There are maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$, where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ Theorem (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞ -groupoid or space. This is a commutative monoid under \oplus .
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- Theorem (Quillen): if F is a field of order q < ∞ then π₀(K(F)) = Z, and π_{2i}(K(F)) = 0 and π_{2i-1}(K(F)) = Z/(qⁱ − 1) for i > 0.
- ▶ **Theorem** (Suslin): if *F* is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(\mathcal{K}(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(\mathcal{K}(F)/m) = 0$.
- There are maps K(R) → TC(R) → THH(R), where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ Theorem (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞-groupoid or space. This is a commutative monoid under ⊕.
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- Theorem (Quillen): if F is a field of order q < ∞ then π₀(K(F)) = Z, and π_{2i}(K(F)) = 0 and π_{2i-1}(K(F)) = Z/(qⁱ − 1) for i > 0.
- ▶ Theorem (Suslin): if F is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(K(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(K(F)/m) = 0$.
- ▶ There are maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$, where TC(R) and THH(R) are easier than K(R).
- ▶ Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ Theorem (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.
- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞-groupoid or space. This is a commutative monoid under ⊕.
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- Theorem (Quillen): if F is a field of order q < ∞ then π₀(K(F)) = Z, and π_{2i}(K(F)) = 0 and π_{2i-1}(K(F)) = Z/(qⁱ − 1) for i > 0.
- ▶ Theorem (Suslin): if F is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(K(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(K(F)/m) = 0$.
- ▶ There are maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$, where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ Theorem (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞ -groupoid or space. This is a commutative monoid under \oplus .
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- It is hard to study K(R) directly.
- Theorem (Quillen): if F is a field of order q < ∞ then π₀(K(F)) = Z, and π_{2i}(K(F)) = 0 and π_{2i-1}(K(F)) = Z/(qⁱ − 1) for i > 0.
- ▶ Theorem (Suslin): if F is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(K(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(K(F)/m) = 0$.
- There are maps K(R) → TC(R) → THH(R), where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ Theorem (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- If R is an ordinary ring then Perf(R) is the ∞-category of finite chain complexes of finitely generated projective R-modules.
- There is a straightforward generalisation for ring spectra.
- If we discard non-invertible morphisms we get an ∞-groupoid or space. This is a commutative monoid under ⊕.
- By adjoining negatives we get a commutative group in the ∞-category of spaces, corresponding to a spectrum K(R).
- lt is hard to study K(R) directly.
- Theorem (Quillen): if F is a field of order q < ∞ then π₀(K(F)) = Z, and π_{2i}(K(F)) = 0 and π_{2i-1}(K(F)) = Z/(qⁱ − 1) for i > 0.
- ▶ Theorem (Suslin): if F is an algebraically closed field and m > 0 and $i \ge 0$ then $\pi_{2i}(K(F)/m) = \mathbb{Z}/m$ and $\pi_{2i+1}(K(F)/m) = 0$.
- There are maps K(R) → TC(R) → THH(R), where TC(R) and THH(R) are easier than K(R).
- Redshift: K(-) and TC(-) tend to increase height.
- Basic example: Q (or HQ) has height 0 but K(Q) is closely related to KU which has height 1.
- ▶ **Theorem** (Yuan): if $T(n) \land E \neq 0$ then $T(n) \land K(E^{tC_p}) \neq 0$ i.e. K(-) cancels Tate blueshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- ▶ Hilbert's Nullstellensatz: *R* is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- Theorem (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- ▶ Hilbert's Nullstellensatz: *R* is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- Theorem (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff $R \neq 0$, and every finitely-presented R-algebra $A = R[x_1, \ldots, x_n]/(r_1, \ldots, r_m)$ has an R-algebra map to R.
- ▶ Hilbert's Nullstellensatz: *R* is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- Theorem (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \wedge R = 0$ iff $T(i) \wedge R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff $R \neq 0$, and every finitely-presented R-algebra $A = R[x_1, \ldots, x_n]/(r_1, \ldots, r_m)$ has an R-algebra map to R.
- ▶ Hilbert's Nullstellensatz: *R* is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- Theorem (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- Theorem (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.

Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.

- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- Theorem (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- Theorem (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- Theorem (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- ▶ Hilbert's Nullstellensatz: *R* is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- **Theorem** (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \wedge R = 0$ iff $T(i) \wedge R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- **Theorem** (BSY): These are just the algebraically closed Morava theories.

▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[x]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.

▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- **Theorem** (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ **Theorem** (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \wedge R = 0$ iff $T(i) \wedge R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- **Theorem** (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ **Theorem** (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \land R = 0$ iff $T(i) \land R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- **Theorem** (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.

▶ BSY prove that there are many maps to such E, and deduce redshift.

- ▶ Theorem (Hahn): if $R \neq 0$ is commutative then there exists $n \in [0, \infty]$ such that $K(i) \land R = 0$ iff i > n. We call *n* the *height* of *R*.
- (For a ring spectrum R, we have $K(i) \wedge R = 0$ iff $T(i) \wedge R = 0$.)
- **Theorem** (Burklund, Schlank, Yuan): ht(K(R)) = ht(R) + 1.
- Say that an ordinary ring R is 0-satzian iff R ≠ 0, and every finitely-presented R-algebra A = R[x₁,...,x_n]/(r₁,...,r_m) has an R-algebra map to R.
- Hilbert's Nullstellensatz: R is 0-satzian iff it is an algebraically closed field.
- Thus: any nontrivial ring has many maps to 0-satzian rings.
- There is a similar definition of 0-satzian objects in the category of height n commutative ring spectra.
- **Theorem** (BSY): These are just the algebraically closed Morava theories.
- ▶ In more detail: suppose $\pi_1(E) = 0$ and $\pi_2(E)$ contains a unit. Then $E^*BS^1 = E^*[\![x]\!]$ and $z \mapsto z^p$ on S^1 induces $x \mapsto \sum_k a_k x^k$. Put $u_k = a_{p^k}$ so $u_0 = p$. Suppose (u_0, \ldots, u_{n-1}) is a regular sequence, $\pi_0(E)$ is complete with respect to the corresponding ideal I_n , and $\pi_0(E)/I_n$ is an algebraically closed field in which $u_n \neq 0$. Then E is an algebraically closed Morava theory of height n.
- ▶ BSY prove that there are many maps to such *E*, and deduce redshift.

- In the commutative case, Burklund, Schlank and Yuan proved $ht(\mathcal{K}(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- (To prove this we need a sufficiently good product structure on BP(n) which is already a big result in the same paper.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- (To prove this we need a sufficiently good product structure on BP(n) which is already a big result in the same paper.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_* Y = 0 \neq K(n+1)_* Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- (To prove this we need a sufficiently good product structure on BP(n) which is already a big result in the same paper.)

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- ► (To prove this we need a sufficiently good product structure on BP⟨n⟩ which is already a big result in the same paper.)

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- ► (To prove this we need a sufficiently good product structure on BP⟨n⟩ which is already a big result in the same paper.)

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- ► (To prove this we need a sufficiently good product structure on BP⟨n⟩ which is already a big result in the same paper.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).

AR proved this by calculation for some examples where fp-ht(R) = 1.

- There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- ► (To prove this we need a sufficiently good product structure on BP⟨n⟩ which is already a big result in the same paper.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- ▶ There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- (To prove this we need a sufficiently good product structure on $BP\langle n \rangle$ which is already a big result in the same paper.)

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- ► There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- (To prove this we need a sufficiently good product structure on $BP\langle n \rangle$ which is already a big result in the same paper.)

- ▶ In the commutative case, Burklund, Schlank and Yuan proved $ht(K(R)) \ge ht(R) + 1$; the reverse inequality was proved earlier by Clausen, Mathew, Naumann and Noel.
- If R is a noncommutative ring spectrum then K(R) need not have a ring structure and we need a different definition of height.
- Say a spectrum X has fp-height $\leq n$ if there is a finite spectrum Y with $K(n)_*Y = 0 \neq K(n+1)_*Y$ and $\prod_k |\pi_k(X \wedge Y)| < \infty$.
- For commutative ring spectra, this is the same as height.
- Conjecture (Ausoni, Rognes): fp-ht(K(R)) = fp-ht(R) + 1 (perhaps under conditions on R).
- AR proved this by calculation for some examples where fp-ht(R) = 1.
- ▶ There is a well-known spectrum $BP\langle n \rangle$ of fp-height n with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2(p^k 1)$.
- **Theorem** (Hahn, Wilson): the AR conjecture holds for $BP\langle n \rangle$.
- (To prove this we need a sufficiently good product structure on BP(n) which is already a big result in the same paper.)

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{\sigma \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- There is a canonical surjection G → Z[×]_p with kernel G₁. We put W = E^{hG₁} which is a faithful Galois extension of S_{K(n)} with Galois group Z[×]_p.
- ▶ When n = 1: E, W and KU_{ρ}^{\wedge} are essentially the same. When n > 1: some analogies between KU_{ρ}^{\wedge} and E, other analogies between KU_{ρ}^{\wedge} and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{p∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \to GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

Suppose we have a map $A \rightarrow B$ of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.

▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{\sigma \in G} B$ is iso.

- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- There is a canonical surjection G → Z[×]_p with kernel G₁. We put W = E^{hG₁} which is a faithful Galois extension of S_{K(n)} with Galois group Z[×]_p.
- ▶ When n = 1: E, W and KU_{ρ}^{\wedge} are essentially the same. When n > 1: some analogies between KU_{ρ}^{\wedge} and E, other analogies between KU_{ρ}^{\wedge} and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{p∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \to GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- There is a canonical surjection G → Z[×]_p with kernel G₁. We put W = E^{hG₁} which is a faithful Galois extension of S_{K(n)} with Galois group Z[×]_p.
- ▶ When n = 1: E, W and KU_{ρ}^{\wedge} are essentially the same. When n > 1: some analogies between KU_{ρ}^{\wedge} and E, other analogies between KU_{ρ}^{\wedge} and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{p∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \rightarrow GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- There is a canonical surjection G → Z[×]_p with kernel G₁. We put W = E^{hG₁} which is a faithful Galois extension of S_{K(n)} with Galois group Z[×]_p.
- ▶ When n = 1: E, W and KU_{ρ}^{\wedge} are essentially the same. When n > 1: some analogies between KU_{ρ}^{\wedge} and E, other analogies between KU_{ρ}^{\wedge} and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{p∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \rightarrow GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- ▶ With some technicalities, we can extend to profinite *G*.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- There is a canonical surjection G → Z[×]_p with kernel G₁. We put W = E^{hG₁} which is a faithful Galois extension of S_{K(n)} with Galois group Z[×]_p.
- ▶ When n = 1: E, W and KU_{ρ}^{\wedge} are essentially the same. When n > 1: some analogies between KU_{ρ}^{\wedge} and E, other analogies between KU_{ρ}^{\wedge} and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{p∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ Theorem (Westerland): W is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \to GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory *E* corresponding to F_ρ, whose automorphism group *G* is profinite and well-understood. The spectrum S_{K(n)} = E^{hG} is the K(n)-local sphere: the map S → S_{K(n)} is terminal among K(n)-equivalences out of S.
- ▶ There is a canonical surjection $G \to \mathbb{Z}_p^{\times}$ with kernel G_1 . We put $W = E^{hG_1}$ which is a faithful Galois extension of $S_{K(n)}$ with Galois group \mathbb{Z}_p^{\times} .
- ▶ When n = 1: E, W and KU_{ρ}^{\wedge} are essentially the same. When n > 1: some analogies between KU_{ρ}^{\wedge} and E, other analogies between KU_{ρ}^{\wedge} and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{p∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \to GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- ▶ There is a canonical surjection $G \to \mathbb{Z}_p^{\times}$ with kernel G_1 . We put $W = E^{hG_1}$ which is a faithful Galois extension of $S_{K(n)}$ with Galois group \mathbb{Z}_p^{\times} .
- When n = 1: E, W and KU[∧]_p are essentially the same. When n > 1: some analogies between KU[∧]_p and E, other analogies between KU[∧]_p and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{ρ∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \to GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- ▶ There is a canonical surjection $G \to \mathbb{Z}_p^{\times}$ with kernel G_1 . We put $W = E^{hG_1}$ which is a faithful Galois extension of $S_{K(n)}$ with Galois group \mathbb{Z}_p^{\times} .
- ▶ When n = 1: *E*, *W* and KU_{ρ}^{\wedge} are essentially the same. When n > 1: some analogies between KU_{ρ}^{\wedge} and *E*, other analogies between KU_{ρ}^{\wedge} and *W*.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{p∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \to GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- ▶ There is a canonical surjection $G \to \mathbb{Z}_p^{\times}$ with kernel G_1 . We put $W = E^{hG_1}$ which is a faithful Galois extension of $S_{K(n)}$ with Galois group \mathbb{Z}_p^{\times} .
- When n = 1: E, W and KU[∧]_p are essentially the same. When n > 1: some analogies between KU[∧]_p and E, other analogies between KU[∧]_p and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{ρ∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \to GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.
Galois theory of ring spectra

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- There is a canonical surjection G → Z[×]_p with kernel G₁. We put W = E^{hG₁} which is a faithful Galois extension of S_{K(n)} with Galois group Z[×]_p.
- When n = 1: E, W and KU[∧]_p are essentially the same. When n > 1: some analogies between KU[∧]_p and E, other analogies between KU[∧]_p and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{ρ∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \rightarrow GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p\infty}^{(n)}]$. This is again Galois with group \mathbb{Z}_p^{\times} but is not faithful.

Galois theory of ring spectra

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- ▶ There is a canonical surjection $G \to \mathbb{Z}_p^{\times}$ with kernel G_1 . We put $W = E^{hG_1}$ which is a faithful Galois extension of $S_{K(n)}$ with Galois group \mathbb{Z}_p^{\times} .
- When n = 1: E, W and KU[∧]_p are essentially the same. When n > 1: some analogies between KU[∧]_p and E, other analogies between KU[∧]_p and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{p∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \rightarrow GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ Theorem (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p^{\infty}}^{(n)}]$. This is again Galois with group $\mathbb{Z}_{p^{\times}}^{\times}$ but is not faithful.

Galois theory of ring spectra

- Suppose we have a map A → B of commutative ring spectra and a finite group G acting by A-algebra automorphisms on B.
- ▶ We say this is a Galois extension if $B^{tG} = 0$ and $B \otimes_A B \to \prod_{g \in G} B$ is iso.
- We say that the extension is faithful if $A \rightarrow B^{hG}$ is iso.
- With some technicalities, we can extend to profinite G.
- Example: there is an algebraically closed Morava theory E corresponding to $\overline{\mathbb{F}}_p$, whose automorphism group G is profinite and well-understood. The spectrum $S_{K(n)} = E^{hG}$ is the K(n)-local sphere: the map $S \to S_{K(n)}$ is terminal among K(n)-equivalences out of S.
- ▶ There is a canonical surjection $G \to \mathbb{Z}_p^{\times}$ with kernel G_1 . We put $W = E^{hG_1}$ which is a faithful Galois extension of $S_{K(n)}$ with Galois group \mathbb{Z}_p^{\times} .
- When n = 1: E, W and KU[∧]_p are essentially the same. When n > 1: some analogies between KU[∧]_p and E, other analogies between KU[∧]_p and W.
- Classical cyclotomic extension: Q_{cyc} = Q(μ_{ρ∞}) = Q(e^{2πik/p^r} | k, r ∈ N), so there is a map μ_{p∞} → GL₁(Q_{cyc}).
- ▶ **Theorem** (Westerland): *W* is a higher cyclotomic extension of $S_{K(n)}$, with a map $B^n \mu_{p^{\infty}} \rightarrow GL_1(W)$. Notation: $W = S_{K(n)}[\mu_{p^{\infty}}^{(n)}]$.
- ▶ **Theorem** (Carmeli, Schlank, Yanovski): there is a similar extension $S_{T(n)}[\mu_{p^{\infty}}^{(n)}]$. This is again Galois with group \mathbb{Z}_{p}^{\times} but is not faithful.

Trace methods

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces $(W, LX) = Map(S^1, Spaces(W, X))$.
- ▶ This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n} THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.
- Detailed analysis of this example plays an important part.

• Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.

When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).

Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).

▶ This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.

Similarly: THH(R) is cyclotomic, with $\phi^{C_n} THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.

There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).

▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.

▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.

▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.

Detailed analysis of this example plays an important part.

Trace methods

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- ▶ This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n} THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.
- Detailed analysis of this example plays an important part.

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- ▶ This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n} THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.
- Detailed analysis of this example plays an important part.

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n} THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.
- Detailed analysis of this example plays an important part.

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n}THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.
- Detailed analysis of this example plays an important part.

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n}THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.

Detailed analysis of this example plays an important part.

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n}THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.
- Detailed analysis of this example plays an important part.

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n}THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.
- Detailed analysis of this example plays an important part.

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n}THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.

Detailed analysis of this example plays an important part.

- Most proofs about K-theory use the trace maps $K(R) \rightarrow TC(R) \rightarrow THH(R)$.
- When R is commutative: THH(R) is an R-algebra with action of S¹, and CommRing(R, Q) = Map(S¹, CommRing(R, Q)).
- Compare: for a space X we have a free loop space LX with Spaces(W, LX) = Map(S¹, Spaces(W, X)).
- This is cyclotomic: $LX^{C_n} = Map(S^1/C_n, X) \simeq Map(S^1, X) = LX$.
- Similarly: THH(R) is cyclotomic, with $\phi^{C_n}THH(R) \simeq THH(R)$, giving Frobenius maps $THH(R) \rightarrow THH(H)^{tC_p}$.
- There is a category CycSp of cyclotomic spectra with TC(R) = CycSp(S⁰, THH(R)).
- ▶ In the telescope disproof, we need to consider an action of \mathbb{Z} on $BP\langle n \rangle$ and the maps $K(BP\langle n \rangle^{h\mathbb{Z}}) \to THH(BP\langle n \rangle^{h\mathbb{Z}}) \to TC(BP\langle n \rangle^{h\mathbb{Z}})$.
- ▶ These can be compared with $K(S^{h\mathbb{Z}}) \to THH(S^{h\mathbb{Z}}) \to TC(S^{h\mathbb{Z}})$.
- ▶ Here $S^{h\mathbb{Z}} = F(B\mathbb{Z}_+, S) = F(S^1_+, S)$ and there is a natural S^1 -equivariant map $THH(F(S^1_+, S)) \rightarrow F(LS^1_+, S)$ with $LS^1 \simeq \mathbb{Z} \times S^1$.
- Detailed analysis of this example plays an important part.