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z; of odd degree d; and chromatic height n;, we define

Eg[z1,...,zm] = R/\/\(S\/S,‘,il.").
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We introduce variables xi, for 0 < i < n height i and degree 1 — 2(n — ).

The CSC says that there are maps xin: Si 2"~ — a,(S) inducing

Es, ,[Xons - Xn—1.0] = an(S).
For example:
a3(S) = LalkzS =~ S A (SV S P) A(SV ST A(SV ST
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Charts

target 1 2 3 4 5 6 7 8 9

-1
-3
-5
-7
-9
—11
—13
—15
—17

dim

an(S) = E5n—1[X0"7 . 7X,,_1’,7]
%0,1 51,2 V50,3 V53,4 Vas )56 ) %61 Va8 58,0 Xin has height i, target n

and dimension 1 — 2(n — i)

0 1 2 3 4 5 6 7 8
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Charts

target 1

dim

[e]

2 3 4 5

Put cuag0 = s 0 aig 0 g

= LsLk(a)Lk()Lk(9)

044(5)

l
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Charts

target 1 2 3 4 5 6 7 8
. a1..9 = Li)Lk() - Lk(9)

—1 (e Ve )V e Ve Vo Vo 0 Vo Ve a1...9(S) is exterior over Sp on
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Charts

target 1 2 3 4 5 6 7 8 9
Put ¢469 = LK(4) O (g © (Y9

-1 o . . = Lk L)Lk
73 N
5 a69(S) = ¢aso(S) + Sa

- o

—7 o ~
a60(S) is exterior over S; on

-9 © 5 generators marked in black.

_11 V5 Circles are shadowed generators:
present but equal to zero.

—13

—15 ) All summands in this exterior

_17 algebra are just Sf.

dm o 1 2 3 4 5 6 7 8
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The following cube of functors is homotopy cartesian
(where P02 = LK(O) LK(2) etc.):

L ————— o

N N

N N

¢12 —————— Po12

Homotopy cartesian means:
» [, maps by an equivalence to the holim of the rest of the diagram; or
> The total fibre of the cube is zero.
Rules for total fibres:
> tfib(cube) = fib(tfib(face) — tfib(opposite face))
> tfib(square) = fib(fib(edge) — fib(opposite edge))
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The chromatic fracture cube gives a spectral sequence
Epg = [ ma(ea(X)) =0,
|[Al=p

where A runs over subsets of {0,1,2} and ¢y = Lo.
L2(X) = ¢a(X) —— ¢o(X)

NN

$1(X) ————— da(X)

|

$2(X) ——|— d02(X)

NN

P12(X) —————— do12(X)
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The chromatic fracture cube gives a spectral sequence

E;q = H mq(pa(X)) = 0,
[Al=p

where A runs over subsets of {0,1,2} and ¢y = Lo.

For a formally similar situation, take a space X = Uy U U1 U U>, and put
Uo2 = Up N Uz etc. There is a Mayer-Vietoris spectral sequence

Ep' = [] €*(Ua), E"= ] H'(Ua) = 0.
|Al=p |Al=p

Consider the exterior algebra E = E[ey, e1, e] with basis {ea | A C {0,1,2}}.
We can identify E5™ with @, C*(Ua).ea, which is a quotient of C*(X) ® E.
This is a bicomplex, using the ordinary cosimplicial differential and
multiplication by the element u = ey + €1 + e.

The combined differential does not satisfy the Leibniz rule, but behaves like an
operator f s f' + uf.

Spectral sequence of this type deserve further study.



Chromatic splitting and chromatic fracture

asz(S) ¢03(S)

#13(S) $013(S5)

$23(S) B023(S)

$123(S) ¢0123(S)

Apply the fracture cube to §3 to get a homotopy cartesian cube as above.
Is this consistent with the Chromatic Splitting Conjecture?



Chromatic splitting and chromatic fracture

® 23 03 03.23 ® 23 03 03.23
13 13.23 03.1303.13.23 13 13.23 03.1303.13.23
S So=50
0 23 @ 01 23 01.23
13 13.93 13 01.13 135,230143,23
5 0
0 23 0 02 23 02.23
5 12 02.12 12.2302.12.23
2 So
5 So
9 23 ¢ o1 23 01.23
12 12.23 12 01.12 12.2301.12.23

Notation: e.g. 01.13 = xp1xi3; also ) = 1.
This diagram should be homotopy cartesian.
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Chromatic splitting and chromatic fracture

03.13)03.13.23 03.13)03.13.23
S? 50:§0
= S
5 0
So So
5 So

This subdiagram consists of four copies of the fracture interval for Sy and so is
homotopy cartesian.



Chromatic splitting and chromatic fracture

S, So :§0

So

After removing that subdiagram we see that the original diagram was
homotopy cartesian, as required.



Chromatic splitting and chromatic fracture

S, So :§0

So

Similarly, CSC implies that the chromatic fracture hypercube for
aa(S) = La—1(¢a(S)) is a sum of the hypercubes for various Sg.
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» According to CSC we should have a homotopy cartesian cube as above.
» Dotted arrows are defined using CSC. Solid arrows exist unconditionally.

» Everything but S> has a decreasing filtration by powers of the ideal
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0
0 h § ng\/S

- o
57 —>sO LoV L

/@

» According to CSC we should have a homotopy cartesian cube as above.
» Dotted arrows are defined using CSC. Solid arrows exist unconditionally.

» Everything but S> has a decreasing filtration by powers of the ideal
generated by all x;,. There is a compatible filtration of Ss.
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c—a
— Sy -X02X12

N

-2
— Sy “xo1x12

» According to CSC we should have a homotopy cartesian cube as above.
» Dotted arrows are defined using CSC. Solid arrows exist unconditionally.

» Everything but S> has a decreasing filtration by powers of the ideal
generated by all x;,. There is a compatible filtration of S,.

> gro($2) = 52 g (S) = S VS gny(S) =5 v S



Chromatic splitting and chromatic fracture

S ——— &

™~ |

~

S, —————— Eg [xu]

|

el Ego [x02, x12]

N

Eg [xi2] —— Eg [xo01, x12]

~

S

» According to CSC we should have a homotopy cartesian cube as above.

v

Dotted arrows are defined using CSC. Solid arrows exist unconditionally.

» Everything but S> has a decreasing filtration by powers of the ideal
generated by all x;,. There is a compatible filtration of S,.

> gro(S2) = 2 gni(S) = S VST gn(S2) = S0 v Syt

» In general, the CSC implies that S, has a finite decreasing filtration where

the associated graded is a wedge of K(m)-local spheres which can be

described combinatorially.
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S ——— &

™~ |

~

S, —————— Eg [xu]

|

_— | — Ego [on, X12]

N

Eg [xi2] —— Eg [xo01, x12]

~

S

» According to CSC we should have a homotopy cartesian cube as above.

v

Dotted arrows are defined using CSC. Solid arrows exist unconditionally.

» Everything but S> has a decreasing filtration by powers of the ideal
generated by all x;,. There is a compatible filtration of S,.

> gro(S2) = 2 gni(S) = S VST gn(S2) = S0 v Syt

» In general, the CSC implies that S, has a finite decreasing filtration where

the associated graded is a wedge of K(m)-local spheres which can be
described combinatorially. Multiplicative properties are unclear.
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Associated graded of the filtration of S,

The associated graded object gr,(S,) is conjecturally as follows:
» For any sequence u = (up < u1 < -+ < ur = n) we have
2,2 S27 5 gr (S,).
> There is a fibration S, — Sp_1V 5, = an(S) LNy
Put
Zj =TI (S Ty 0,(5) 2y ghy: §P s SV,

Then z, is related to the composite

’ ’ ’
2 z 2 z z 2 2,
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The associated graded object gr,(S,) is conjecturally as follows:
» For any sequence u = (up < u1 < -+ < ur = n) we have
2,2 S27 5 gr (S,).

> There is a fibration S, — Sp_1V 5, = an(S) LNy
Put s
2 =775 ) T ay(S) L 8)): P Y.
Then z, is related to the composite

/

’ ’
2 z 2 z z 2 2
SUS’O i Sulul Sy Su:‘r = Sn".

» The element z, can be multiplied by variables Xi,u; of filtration 1 and
degree 1 — 2(uj — i) for uj—1 < i < u;.
» The resulting products form a “basis” for gr,(S).

» From this we can obtain spectral sequences converging to invariants of S,,
or adjusted spectral sequences converging to 0.

» All this needs further study.
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Euler characteristics

>

v

Put xn(X) = dimi(n), (K(n)even(X)) — dimk(n). (K(n)oda(X))
(assuming that the dimensions are finite).

For the X that we have considered: x,(X) is probably 0, occasionally 1.
Sometimes this is known unconditionally, sometimes it relies on the CSC.

Some aspects of the previous story can be checked for consistency using
these invariants. Often we just get 0 = O which is not very impressive, but
in a few cases there are interesting patterns of cancellation.
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Further questions

> For U C P{0,..., N} closed upwards, put 8y(X) = holim  ¢a(X).
— Aeu

» In work with Bellumat we showed that this class of functors contains L,
and Lk, and is closed under composition and certain homotopy limits.

> We believe that CSC implies a splitting of all 8y(S), but have not
completed this analysis.

» Ravenel has defined ring spectra
S=T0)=T(1)=>T2)—... > T(x)=BP
which are important for many reasons in chromatic homotopy theory.

» The CSC is about ¢a(T(0)) and aa(T(0)).

> We can compute everything about ¢a(T(c0)) and aa(T(c0)). The CSC
generators Xj, map to zero here.

> It would be useful to understand T(n) for intermediate n, especially
ax(T(n)) for k€ {n—1,n,n+1}.

» This is also relevant for the Telescope Conjecture.



