Rational global Balmer spectra

Neil Strickland with Barrero, Barthel, Pol and Williamson thanks to the Hausdorff Institute and the Isaac Newton Institute

July 1, 2025

Context: rational equivariance for a single group

- ▶ For finite G, let $\mathbb{Q}\operatorname{Sp}_G$ be the category of rational genuine G-spectra.
- ▶ Put $\mathcal{AG} = [\operatorname{Orb}_G^{\times}, \operatorname{Vect}] \simeq \prod_{(H)} \operatorname{Mod}_{\mathbb{Q}[W_G H]}$; a semisimple category (product over conjugacy classes of subgroups; $W_G H = (N_G H)/H$)
- ▶ Using the geometric fixed point functors ϕ^H : $\mathbb{Q}\operatorname{Sp}_G \to \mathbb{Q}\operatorname{Sp}_{W_GH}$ we obtain an equivalence $\mathbb{Q}\operatorname{Sp}_G \to D(\mathcal{A}G) \simeq \operatorname{Gr}(\mathcal{A}G)$
- In this triangulated category, an object is compact iff strongly dualisable iff it has finite total dimension.
- Every prime thick ideal in the compact subcategory $\mathbb{Q}\operatorname{Sp}_G^c$ is the kernel of ϕ^H for some H (unique up to conjugacy).
- ▶ The Balmer spectrum $Spc(\mathbb{Q} Sp_G^c)$ is the (finite, discrete) set of conjugacy classes of subgroups.

Global equivariance

- Let $\mathcal G$ be the category of finite groups and conjugacy classes of surjective homomorphisms.
- ▶ A \mathcal{G} -globally equivariant spectrum X is a compatible system of G-spectra $X_G \in \operatorname{Sp}_G$ for all $G \in \mathcal{G}$; category of such objects is Sp_G (Schwede)
- Examples: S, KU, KO, MU, MO, H
- ▶ The category $\mathsf{Sp}_{\mathcal{G}}^c$ is not rigid: the only dualisable objects are in the essential image of $\mathsf{Sp}^c \to \mathsf{Sp}_{\mathcal{G}}^c$, but there are many more compact objects.
- Put $\mathcal{A}(\mathcal{G}) = [\mathcal{G}^{op}, \text{Vect}]$. This is a symmetric monoidal abelian category with some unusual properties. It is not semisimple.
- ▶ Schwede proved $\mathbb{Q}\operatorname{Sp}_{\mathcal{G}} \simeq D(\mathcal{AG})$ as homotopy categories. This can be improved to an equivalence of ∞ -categories.
- Again, $\mathbb{Q}\operatorname{Sp}_{\mathcal{G}}^c$ is not rigid, so most techniques for studying Balmer spectra (e.g. nilpotence) are not applicable.
- ▶ Much remain true for suitable full subcategories $\mathcal{U} \subseteq \mathcal{G}$, such as:
 - $\triangleright \mathcal{E}[p] = \{\text{elementary abelian } p\text{-groups}\}$
 - $\mathcal{G}(r) = \{G \in \mathcal{G} \mid G \text{ can be generated by a set of size } \leq r\}$
 - $\mathcal{Z}[p] = \{ \text{abelian } p \text{-groups} \}$ $\mathcal{Z}[p]\langle r \rangle = \mathcal{Z}[p] \cap \mathcal{G}\langle r \rangle.$
- Let $\widehat{\mathcal{U}}$ be the category of finitely generated profinite groups for which a cofinal sequence of finite quotients lie in \mathcal{U} .

The bounded rank theorem

- ▶ **Theorem A:** The Balmer spectrum $\operatorname{Spc}(\mathbb{Q}\operatorname{Sp}_{\mathcal{G}\langle r\rangle}^c) = \operatorname{Spc}(D(\mathcal{AG}\langle r\rangle))$ is the profinite space $\pi_0\widehat{\mathcal{G}}\langle r\rangle$.
- More generally, for $\mathcal{U} \subseteq \mathcal{G}\langle r \rangle$ satisfying mild conditions we have $\operatorname{Spc}(\mathbb{Q}\operatorname{Sp}^c_{\mathcal{U}}) = \pi_0\widehat{\mathcal{U}}$.
- ▶ In particular: put $D[r] = \{d \in \mathbb{N}_{\infty}^r \mid d_1 \geq \cdots \geq d_r\}$ and for $d \in D[r]$ put $G_d = \prod_i \mathbb{Z}_p/p^{d_i}$ (where p^{∞} means 0).
- For $\mathcal{U} = \mathcal{Z}[p]\langle r \rangle$: every object is isomorphic to G_d for a unique d, so $\operatorname{Spc}(\mathbb{Q}\operatorname{Sp}_{\mathcal{U}}^c) = D[r]$. (Also: $\mathcal{A}\mathcal{U}$ is locally noetherian in this case.)
- ► In these cases:
 - lacktriangle Finitely generated thick ideals in $\mathsf{Sp}^c_\mathcal{U}$ biject with clopen subsets of $\pi_0\widehat{\mathcal{U}}$
 - lacktriangle Arbitrary thick ideals in $\operatorname{Sp}_{\mathcal{U}}^c$ biject with open subsets of $\pi_0\widehat{\mathcal{U}}$
 - Prime thick ideals in $\operatorname{Sp}_{\mathcal{U}}^{c}$ biject with complements of points
 - Thomason subsets (= unions of complements of compact open sets) are the same as open sets; so the topology is Hochster self-dual.
- ▶ For $X \in \mathcal{AU}$ and $G \in \widehat{\mathcal{U}}$ let $X(G) \in V$ ect be the colimit of X(G/N) for N open normal in G with $G/N \in \mathcal{U}$.
- ► The prime ideal $\mathfrak{p}_G \in \operatorname{Spc}(D(\mathcal{AU})^c)$ corresponding to $[G] \in \pi_0 \widehat{\mathcal{U}}$ is $\mathfrak{p}_G = \{X \in D(\mathcal{AU})^c \mid H_*(X)(G) = 0\}.$

The elementary abelian theorem

- ▶ Recall: $\mathcal{E}[p] = \{ \text{ elementary abelian } p\text{-groups} \} = \{ C_p^r \mid r \in \mathbb{N} \}.$
- ▶ For $r \in \mathbb{N}$ put $\mathfrak{p}_r = \{X \in D(\mathcal{AE}[p])^c \mid H_*(X)(C_p^r) = 0\}$. This is clearly a prime thick ideal.
- Put $\mathfrak{p}_{\infty} = \{0\} = \bigcap_{r \in \mathbb{N}} \mathfrak{p}_r$. It is true but not obvious that this is also prime.
- ▶ Theorem B: $Spc(Sp^c_{\mathcal{E}[p]}) = \{\mathfrak{p}_r \mid r \in \mathbb{N}_{\infty}\} \simeq \mathbb{N}_{\infty}$
- ▶ Consider a subset $U \subseteq \mathbb{N}_{\infty}$:
 - ightharpoonup U is open iff $(U \subseteq \mathbb{N} \text{ or } U = \mathbb{N}_{\infty})$
 - ▶ U is compact open iff $((U \subseteq \mathbb{N} \text{ and } |U| < \infty) \text{ or } U = \mathbb{N}_{\infty})$
 - ▶ *U* is Thomason iff $(U = \mathbb{N}_{\infty} \setminus F \text{ for some finite } F \subset \mathbb{N})$ or $U = \emptyset$
 - Thick ideals biject with Thomason subsets, and they are all finitely generated.
- ▶ The methods for Theorem B are orthogonal to those for Theorem A. Some are special to the elementary abelian case but many are more general.
- Future goal: combine methods for Theorems A and B to prove a general result without bounds on the number of generators.
- In this direction:

 Theorem C: if \mathcal{U} is closed under products, subgroups and quotients then the zero ideal in $\operatorname{Sp}_{\mathcal{U}}^c$ is prime.

Reflective filtrations

- ▶ For $G \in \mathcal{Z} = \{$ finite abelian groups $\}$ put $N_n(G) = \{g^{n!} \mid g \in G\}$ and $q_n(G) = G/N_n(G)$. This is left adjoint to the inclusion $\mathcal{Z}[n] = \{G \in \mathcal{Z} \mid N_n(G) = 1\} \rightarrow \mathcal{Z}$.
- ► For $G \in \mathcal{P} = \{\text{finite } p\text{-groups}\} \text{ let } \Phi G \text{ be generated by } p\text{th powers and commutators. Put } N_n(G) = \Phi^n(G) \text{ and } q_n(G) = G/N_n(G). \text{ This is left adjoint to the inclusion } \mathcal{P}[n] = \{G \in \mathcal{P} \mid N_n(G) = 1\} \to \mathcal{Z}.$
- ▶ For $G \in \mathcal{G}$ let $N_n(G)$ be the intersection of all subgroups of index at most n and put $q_n(G) = G/N_n(G)$. This is again a left adjoint.
- This kind of structure is called a reflective filtration; it exists automatically in many cases.
- There are some wrinkles in the story about adjoints, because morphisms in G are conjugacy classes of surjective homomorphisms, and (co)limits do not generally exist.
- In the first two examples, any morphism $\alpha \colon G \to H$ has $\alpha(N_n(G)) = N_n(H)$, but this does not hold in the third example.
- ▶ Usually q_n extends to give $q_n : \widehat{\mathcal{U}} \to \mathcal{U}[n]$.
- ▶ The lattice of thick ideals in $\mathbb{Q} \operatorname{Sp}_{\mathcal{U}}^c = D(\mathcal{A}\mathcal{U})^c$ is the colimit of the corresponding lattices for $\mathcal{U}[n]$, so the Balmer spectrum is the inverse limit.

Reduction to the finite case

- If $\pi_0 \mathcal{U}$ is finite, we can prove that the natural map $\pi_0 \mathcal{U} \to \operatorname{Spc}(D(\mathcal{AU})^c)$ is bijective and that the topology is discrete.
- ▶ For $G \in \mathcal{G}$ recall that $N_n(G)$ is the intersection of all subgroups of index at most n, or the common kernel of all homomorphisms to Σ_n . Also $\mathcal{G}[n] = \{G \mid N_n(G) = 1\}$.
- ▶ If G can be generated by a set of size at most r then $|\operatorname{Hom}(G, \Sigma_n)| \le n!^r$. This gives an upper bound on the index of $N_n(G)$.
- ▶ Using this we see that $\pi_0(\mathcal{G}[n] \cap \mathcal{G}\langle r \rangle)$ is finite so $\operatorname{Spc}(D(\mathcal{A}(\mathcal{G}[n] \cap \mathcal{G}\langle r \rangle))) = \pi_0(\mathcal{G}[n] \cap \mathcal{G}\langle r \rangle).$
- ▶ By passing to the limit we see that $Spc(D(\mathcal{AG}\langle r \rangle))$ is the inverse limit of the finite discrete sets $\pi_0(\mathcal{G}[n] \cap \mathcal{G}\langle r \rangle)$.
- ▶ The functors $q_n : \widehat{\mathcal{G}}\langle r \rangle \to \mathcal{G}[n] \cap \mathcal{G}\langle r \rangle$ can be used to identify $\pi_0 \widehat{\mathcal{G}}\langle r \rangle$ with the same inverse limit.
- ▶ The same line of argument works for many other subcategories \mathcal{U} with $\mathcal{U} \subseteq \mathcal{G}\langle r \rangle$.

Hypotheses on ${\cal U}$

- For the rest of this talk, assume that $\mathcal U$ is closed under products, subgroups and quotients, and consists of abelian groups.
- The nonabelian case is similar but requires fiddly bookkeeping of conjugacies.
- Closure under products means that we can have no bound on the number of generators. This makes an important qualitative difference in some places.

Tensor structure

- ▶ Projective generator $e_G \in AU = [U^{op}, Vect]$ given by $e_G(T) = \mathbb{Q}U(T, G)$.
- ▶ Say $W \le G \times H$ is wide if projections to G and H are both surjective iff there exists $N \le G$, $M \le H$, $\alpha \colon G/N \xrightarrow{\simeq} H/M$ with $W = \{(g,h) \mid \alpha(gN) = hM\}$.
- **Example:** $G \times H$ is wide in $G \times H$, diagonal $\Delta \leq G \times G$ is also wide.
- ▶ There is an easy isomorphism $e_G \otimes e_H = \bigoplus_W e_W$.
- Put $DX = \underline{\text{Hom}}(X, \mathbb{1})$ so X is strongly dualisable iff $DX \otimes X \to \underline{\text{Hom}}(X, X)$ is iso.
- Suppose that $X \neq 0$ but X(1) = 0. Then $(DX \otimes X)(1) = 0$ but $\underline{\operatorname{Hom}}(X,X)(1) = \mathcal{A}\mathcal{U}(X,X) \neq 0$ so X is not strongly dualisable.
- Thus e_G is not strongly dualisable unless G = 1.
 In fact X is only strongly dualisable if it is constant and finite-dimensional.
- ▶ If |C| = p then $\underline{\mathsf{Hom}}(e_C, e_C) = e_{C^2} \oplus (2p-1)e_C \oplus (p-1)\mathbb{1}$ but $D(e_C) \otimes e_C = e_{C^2} \oplus pe_C$.

More about duals and internal homs

- ▶ We can write down an isomorphism $\bigoplus_{N \leq G} e_{G/N} \xrightarrow{\simeq} D(e_G)$.
- We will show later that 1 is injective.
 Also any X is flat, and it follows that DX is injective.
 As e_G is a retract of D(e_G), it is also injective.
 It follows that all projectives are injective.
- ▶ However, $t_G(K) = \text{Map}(\mathcal{U}(G, K), \mathbb{Q})$ is injective but not projective.
- ▶ A virtual homomorphism from G to H is a pair (A, A') where $A' \leq A \leq G \times H$ and A is wide and $A' \cap (1 \times H) = 1$ and $A/A' \in \mathcal{U}$.
- ▶ $\underline{\operatorname{Hom}}(e_G, e_H)$ has a natural filtration with associated graded $\bigoplus_{(A,A')} e_{A/A'}$. As $e_{A/A'}$ is projective, the filtration splits and $\underline{\operatorname{Hom}}(e_G, e_H)$ is projective. We do not know whether the filtration splits naturally.

Asymptotic freedom

- Let $F_{nm} \in \mathcal{U}$ be the quotient of the free group on n generators by the intersection of all normal subgroups N with quotient in $\mathcal{U}_{\leq m}$.
- ▶ Given morphisms $F_{nm} \xrightarrow{\phi} H \xleftarrow{\alpha} G$ in \mathcal{U} with $|G| \leq \min(n, m)$, we can choose $\psi \colon F_{nm} \to G$ in \mathcal{U} with $\alpha \psi = \phi$. (Some care is needed to ensure that ψ is surjective.)
- ▶ We can choose a tower $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \cdots$ in \mathcal{U} such that G_n gets rapidly larger and freer as $n \rightarrow \infty$.
- We then find that

$$\lim_{\substack{\longrightarrow\\G\in\mathcal{U}^{\mathrm{op}}}}X(G)=\lim_{\substack{\longrightarrow\\n}}X(G_n)_{\mathrm{Out}(G_n)},$$

and this is an exact functor of X (because we work over \mathbb{Q}).

- $ightharpoonup \mathcal{A}\mathcal{U}(X,\mathbb{1})$ is hom from the above colimit to \mathbb{Q} ; so $\mathbb{1}$ is injective.
- ▶ As mentioned previously: it follows that $D(e_G)$ is injective, then that e_G is injective, then that all projectives are injective.
- Using this: any object of finite projective dimension is projective.

Rates of growth

- If n is large, the proportion of n-tuples in G^n that generate G is close to 1 (theorem of Lynne Butler, 1994).
- ▶ Using this plus nearly free groups as on the previous slide: if X is a nontrivial summand of e_G , then an appropriate lim sup of $\dim(X(T))/|G|^{\delta(T)}$ is nonzero and finite, where $\delta(T)$ is the minimal size of a generating set.
- We can define Serre subcategories and then quotient categories using rates of growth. We have not yet exploited this fully.
- ▶ This approach show that monomorphisms between projective objects split, even for some \mathcal{U} where projectives are not injective.

The order filtration

For a $\mathbb{Q}[\operatorname{Out}(G)]$ -module V, put

$$e_{G,V}(K) = V \otimes_{\mathbb{Q}[\mathsf{Out}(G)]} e_G(K)$$

This is projective. Every indecomposable projective has the form $e_{G,S}$ for some indecomposable $\mathbb{Q}[\operatorname{Out}(G)]$ -module S. We define the order of $e_{G,S}$ to be the order of G.

- We say that X is pure of order k if it is isomorphic to a sum of indecomposable projectives of order k.
- ▶ The subcategory of such objects is equivalent to the semisimple category $\mathcal{AU}_k = [\mathcal{U}_k^{\text{op}}, \text{Vect}].$
- ▶ If X is pure of order k, and Y is pure of order m > k, then $\mathcal{AU}(X, Y) = 0$.
- Let $(L_{\leq m}X)(G)$ be the sum of all $\alpha^*(X(H)) \leq X(G)$ for $H \in \mathcal{U}_{\leq m}$ and $\alpha \in \mathcal{U}(G,H)$.
- ▶ If P is projective, then $P \simeq \bigoplus_k P_k \simeq \prod_k P_k$, where P_k is pure of order k. It follows that $L_{\leq m}X = \bigoplus_{k \leq m} P_k$ and $L_mX \simeq P_m$ so the filtration splits.

The derived category

- Let PU be the subcategory of projectives in AU.
- ▶ There is an additive functor $P_0 = I_l I^* : \mathcal{AU} \to \mathcal{PU}$ with a surjective natural transformation $\epsilon : P_0(X) \to X$, where I is the inclusion $\mathcal{U}^{\times} \to \mathcal{U}$.
- ▶ If X(G) = 0 for |G| < n then $\ker(\epsilon)(G) = 0$ for $|G| \le n$. This also works when $|\mathcal{U}| < \infty$ and is a key step in the proof that $\operatorname{Spc}(D(\mathcal{AU})^c) = \pi_0 \mathcal{U}$.
- ▶ Using P_0 we can define an additive functor $P \colon \mathsf{Ch}(\mathcal{AU}) \to \mathsf{Ch}(\mathcal{PU})$ with a natural surjective quasiisomorphism $P(X) \to X$.
- From this and other results:

$$\mathsf{Ch}(\mathcal{A}\mathcal{U})[\mathsf{we}^{-1}] = \mathsf{hCh}(\mathcal{P}\mathcal{U}) := \mathsf{Ch}(\mathcal{P}\mathcal{U})/(\mathsf{chain\ homotopy}).$$

(For general abelian categories, the story is more subtle.)

- ▶ If $X, Y \in Ch(\mathcal{PU})$ then $X \otimes Y$, $\underline{Hom}(X, Y) \in \mathcal{PU}$.
- ▶ Say $X \in Ch(\mathcal{PU})$ is *thin* if for every m > 0, the differential on L_mX is 0, i.e. the differential on X involves only maps $e_{G,S} \rightarrow e_{H,T}$ with |H| < |G|.
- Every homotopy type has an essentially unique thin representative. (But thin \otimes thin and $\underline{\text{Hom}}(\text{thin}, \text{thin})$ need not be thin.)
- A thin complex X is compact iff $\bigoplus_n X_n$ is finitely generated.

Supports and thick ideals

- For compact X (represented as a thin complex), several notions of support:
- ▶ hsupp $(X) = \{G \mid H_*(X)(G) \neq 0\}$
- ▶ $esupp(X) = \{G \mid X(G) \neq 0\}$
- eqsupp(X) = {G | some $e_{G,S}$ is a retract of some X_d }.
- ▶ It is easy to see that esupp(X) is the upwards closure of eqsupp(X).
- ▶ True but less obvious: esupp(X) is the upwards closure of hsupp(X).
- ▶ Conjecture: thickid $\langle X \rangle$ ⊆ thickid $\langle Y \rangle$ iff hsupp(X) ⊆ hsupp(Y).
- ▶ This holds in all the cases that we understand.
- ▶ The obvious prime ideals are $\mathfrak{p}_G = \{X \mid H_*(X)(G) = 0\}.$
- ▶ If X is thin and n is largest with $L_nX \neq 0$, then $X = H_*(X) = L_nX$ mod terms of slower growth.
- Using this: we prove Theorem C: the zero ideal is also prime.
- ▶ We have various partial results and examples, especially conditions under which $e_G \in \text{thickid}(Y)$.
- ▶ Given X, Y with $\text{hsupp}(X) \subseteq \text{hsupp}(Y)$, and a large integer N > 0, we can show that $\text{thickid}\langle X \rangle \subseteq \text{thickid}\langle \{Y\} \cup \{e_G \mid |G| > N\} \rangle$.
- This work is ongoing.