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Context: rational equivariance for a single group

▶ For finite G , let QSpG be the category of rational genuine G -spectra.

▶ Put AG = [Orb×G ,Vect] ≃
∏

(H) ModQ[WGH]; a semisimple category

(product over conjugacy classes of subgroups; WGH = (NGH)/H)

▶ Using the geometric fixed point functors ϕH : QSpG → QSpWGH we obtain
an equivalence QSpG → D(AG) ≃ Gr(AG)

▶ In this triangulated category, an object is compact iff strongly dualisable iff
it has finite total dimension.

▶ Every prime thick ideal in the compact subcategory QSpcG is the kernel of
ϕH for some H (unique up to conjugacy).

▶ The Balmer spectrum Spc(QSpcG ) is the (finite, discrete) set of conjugacy
classes of subgroups.



Global equivariance

▶ Let G be the category of finite groups and conjugacy classes of surjective
homomorphisms.

▶ A G-globally equivariant spectrum X is a compatible system of G -spectra
XG ∈ SpG for all G ∈ G; category of such objects is SpG (Schwede)

▶ Examples: S , KU, KO, MU, MO, H

▶ The category SpcG is not rigid: the only dualisable objects are in the
essential image of Spc → SpcG , but there are many more compact objects.

▶ Put A(G) = [Gop,Vect]. This is a symmetric monoidal abelian category
with some unusual properties. It is not semisimple.

▶ Schwede proved QSpG ≃ D(AG) as homotopy categories.
This can be improved to an equivalence of ∞-categories.

▶ Again, QSpcG is not rigid, so most techniques for studying Balmer spectra
(e.g. nilpotence) are not applicable.

▶ Much remain true for suitable full subcategories U ⊆ G, such as:
▶ E[p] = {elementary abelian p-groups}
▶ G⟨r⟩ = {G ∈ G | G can be generated by a set of size ≤ r}
▶ Z[p] = {abelian p-groups}
▶ Z[p]⟨r⟩ = Z[p] ∩ G⟨r⟩.

▶ Let Û be the category of finitely generated profinite groups for which a
cofinal sequence of finite quotients lie in U .



The bounded rank theorem

▶ Theorem A: The Balmer spectrum Spc(QSpcG⟨r⟩) = Spc(D(AG⟨r⟩)) is
the profinite space π0Ĝ⟨r⟩.

▶ More generally, for U ⊆ G⟨r⟩ satisfying mild conditions we have

Spc(QSpcU ) = π0Û .
▶ In particular: put D[r ] = {d ∈ Nr

∞ | d1 ≥ · · · ≥ dr}
and for d ∈ D[r ] put Gd =

∏
i Zp/p

di (where p∞ means 0).

▶ For U = Z[p]⟨r⟩: every object is isomorphic to Gd for a unique d , so
Spc(QSpcU ) = D[r ]. (Also: AU is locally noetherian in this case.)

▶ In these cases:
▶ Finitely generated thick ideals in SpcU biject with clopen subsets of π0Û
▶ Arbitrary thick ideals in SpcU biject with open subsets of π0Û
▶ Prime thick ideals in SpcU biject with complements of points
▶ Thomason subsets (= unions of complements of compact open sets)

are the same as open sets; so the topology is Hochster self-dual.

▶ For X ∈ AU and G ∈ Û let X (G) ∈ Vect be the colimit of X (G/N) for N
open normal in G with G/N ∈ U .

▶ The prime ideal pG ∈ Spc(D(AU)c) corresponding to [G ] ∈ π0Û is
pG = {X ∈ D(AU)c | H∗(X )(G) = 0}.



The elementary abelian theorem

▶ Recall: E[p] = { elementary abelian p-groups} = {C r
p | r ∈ N}.

▶ For r ∈ N put pr = {X ∈ D(AE[p])c | H∗(X )(C r
p ) = 0}.

This is clearly a prime thick ideal.

▶ Put p∞ = {0} =
⋂

r∈N pr .
It is true but not obvious that this is also prime.

▶ Theorem B: Spc(SpcE[p]) = {pr | r ∈ N∞} ≃ N∞

▶ Consider a subset U ⊆ N∞:
▶ U is open iff (U ⊆ N or U = N∞)
▶ U is compact open iff ((U ⊆ N and |U| < ∞) or U = N∞)
▶ U is Thomason iff (U = N∞ \ F for some finite F ⊂ N) or U = ∅
▶ Thick ideals biject with Thomason subsets,

and they are all finitely generated.

▶ The methods for Theorem B are orthogonal to those for Theorem A. Some
are special to the elementary abelian case but many are more general.

▶ Future goal: combine methods for Theorems A and B to prove a general
result without bounds on the number of generators.

▶ In this direction:
Theorem C: if U is closed under products, subgroups and quotients then
the zero ideal in SpcU is prime.



Reflective filtrations

▶ For G ∈ Z = { finite abelian groups } put Nn(G) = {gn! | g ∈ G} and
qn(G) = G/Nn(G). This is left adjoint to the inclusion
Z[n] = {G ∈ Z | Nn(G) = 1} → Z.

▶ For G ∈ P = {finite p-groups} let ΦG be generated by pth powers and
commutators. Put Nn(G) = Φn(G) and qn(G) = G/Nn(G). This is left
adjoint to the inclusion P[n] = {G ∈ P | Nn(G) = 1} → Z.

▶ For G ∈ G let Nn(G) be the intersection of all subgroups of index at most
n and put qn(G) = G/Nn(G). This is again a left adjoint.

▶ This kind of structure is called a reflective filtration; it exists automatically
in many cases.

▶ There are some wrinkles in the story about adjoints, because morphisms in
G are conjugacy classes of surjective homomorphisms, and (co)limits do
not generally exist.

▶ In the first two examples, any morphism α : G → H has
α(Nn(G)) = Nn(H), but this does not hold in the third example.

▶ Usually qn extends to give qn : Û → U [n].
▶ The lattice of thick ideals in QSpcU = D(AU)c is the colimit of the

corresponding lattices for U [n], so the Balmer spectrum is the inverse limit.



Reduction to the finite case

▶ If π0U is finite, we can prove that the natural map π0U → Spc(D(AU)c)
is bijective and that the topology is discrete.

▶ For G ∈ G recall that Nn(G) is the intersection of all subgroups of index at
most n, or the common kernel of all homomorphisms to Σn. Also
G[n] = {G | Nn(G) = 1}.

▶ If G can be generated by a set of size at most r then |Hom(G ,Σn)| ≤ n!r .
This gives an upper bound on the index of Nn(G).

▶ Using this we see that π0(G[n] ∩ G⟨r⟩) is finite so
Spc(D(A(G[n] ∩ G⟨r⟩))) = π0(G[n] ∩ G⟨r⟩).

▶ By passing to the limit we see that Spc(D(AG⟨r⟩)) is the inverse limit of
the finite discrete sets π0(G[n] ∩ G⟨r⟩).

▶ The functors qn : Ĝ⟨r⟩ → G[n] ∩ G⟨r⟩ can be used to identify π0Ĝ⟨r⟩ with
the same inverse limit.

▶ The same line of argument works for many other subcategories U with
U ⊆ G⟨r⟩.



Hypotheses on U

▶ For the rest of this talk, assume that U is closed under products,
subgroups and quotients, and consists of abelian groups.

▶ The nonabelian case is similar but requires fiddly bookkeeping of
conjugacies.

▶ Closure under products means that we can have no bound on the number
of generators. This makes an important qualitative difference in some
places.



Tensor structure

▶ Projective generator eG ∈ AU = [Uop,Vect] given by eG (T ) = QU(T ,G).

▶ Say W ≤ G × H is wide if projections to G and H are both surjective
iff there exists N ≤ G , M ≤ H, α : G/N

≃−→ H/M with
W = {(g , h) | α(gN) = hM}.

▶ Example: G × H is wide in G × H, diagonal ∆ ≤ G × G is also wide.

▶ There is an easy isomorphism eG ⊗ eH =
⊕

W eW .

▶ Put DX = Hom(X ,1) so X is strongly dualisable iff
DX ⊗ X → Hom(X ,X ) is iso.

▶ Suppose that X ̸= 0 but X (1) = 0. Then (DX ⊗ X )(1) = 0 but
Hom(X ,X )(1) = AU(X ,X ) ̸= 0 so X is not strongly dualisable.

▶ Thus eG is not strongly dualisable unless G = 1.
In fact X is only strongly dualisable if it is constant and finite-dimensional.

▶ If |C | = p then Hom(eC , eC ) = eC2 ⊕ (2p − 1)eC ⊕ (p − 1)1 but
D(eC )⊗ eC = eC2 ⊕ peC .



More about duals and internal homs

▶ We can write down an isomorphism
⊕

N≤G eG/N
≃−→ D(eG ).

▶ We will show later that 1 is injective.
Also any X is flat, and it follows that DX is injective.
As eG is a retract of D(eG ), it is also injective.
It follows that all projectives are injective.

▶ However, tG (K) = Map(U(G ,K),Q) is injective but not projective.

▶ A virtual homomorphism from G to H is a pair (A,A′) where
A′ ≤ A ≤ G × H and A is wide and A′ ∩ (1× H) = 1 and A/A′ ∈ U .

▶ Hom(eG , eH) has a natural filtration with associated graded
⊕

(A,A′) eA/A′ .

As eA/A′ is projective, the filtration splits and Hom(eG , eH) is projective.
We do not know whether the filtration splits naturally.



Asymptotic freedom

▶ Let Fnm ∈ U be the quotient of the free group on n generators by the
intersection of all normal subgroups N with quotient in U≤m.

▶ Given morphisms Fnm
ϕ−→ H

α←− G in U with |G | ≤ min(n,m), we can
choose ψ : Fnm → G in U with αψ = ϕ.
(Some care is needed to ensure that ψ is surjective.)

▶ We can choose a tower G0 ←− G1 ←− G2 ←− · · · in U such that Gn gets
rapidly larger and freer as n→∞.

▶ We then find that

lim
−→

G∈Uop

X (G) = lim
−→
n

X (Gn)Out(Gn),

and this is an exact functor of X (because we work over Q).

▶ AU(X ,1) is hom from the above colimit to Q; so 1 is injective.

▶ As mentioned previously: it follows that D(eG ) is injective, then that eG is
injective, then that all projectives are injective.

▶ Using this: any object of finite projective dimension is projective.



Rates of growth

▶ If n is large, the proportion of n-tuples in G n that generate G is close to 1
(theorem of Lynne Butler, 1994).

▶ Using this plus nearly free groups as on the previous slide:
if X is a nontrivial summand of eG , then an appropriate lim sup of
dim(X (T ))/|G |δ(T ) is nonzero and finite, where δ(T ) is the minimal size
of a generating set.

▶ We can define Serre subcategories and then quotient categories using rates
of growth. We have not yet exploited this fully.

▶ This approach show that monomorphisms between projective objects split,
even for some U where projectives are not injective.



The order filtration

▶ For a Q[Out(G)]-module V , put

eG ,V (K) = V ⊗Q[Out(G)] eG (K)

This is projective. Every indecomposable projective has the form eG ,S for
some indecomposable Q[Out(G)]-module S . We define the order of eG ,S

to be the order of G .

▶ We say that X is pure of order k if it is isomorphic to a sum of
indecomposable projectives of order k.

▶ The subcategory of such objects is equivalent to the semisimple category
AUk = [Uop

k ,Vect].

▶ If X is pure of order k, and Y is pure of order m > k, then AU(X ,Y ) = 0.

▶ Let (L≤mX )(G) be the sum of all α∗(X (H)) ≤ X (G) for H ∈ U≤m and
α ∈ U(G ,H).

▶ Put LmX = L≤mX/L<mX .

▶ If P is projective, then P ≃
⊕

k Pk ≃
∏

k Pk , where Pk is pure of order k.
It follows that L≤mX =

⊕
k≤m Pk and LmX ≃ Pm so the filtration splits.



The derived category

▶ Let PU be the subcategory of projectives in AU .
▶ There is an additive functor P0 = l!l

∗ : AU → PU with a surjective natural
transformation ϵ : P0(X )→ X , where l is the inclusion U× → U .

▶ If X (G) = 0 for |G | < n then ker(ϵ)(G) = 0 for |G | ≤ n. This also works
when |U| <∞ and is a key step in the proof that Spc(D(AU)c) = π0U .

▶ Using P0 we can define an additive functor P : Ch(AU)→ Ch(PU) with a
natural surjective quasiisomorphism P(X )→ X .

▶ From this and other results:

Ch(AU)[we−1] = hCh(PU) := Ch(PU)/(chain homotopy).

(For general abelian categories, the story is more subtle.)

▶ If X ,Y ∈ Ch(PU) then X ⊗ Y , Hom(X ,Y ) ∈ PU .
▶ Say X ∈ Ch(PU) is thin if for every m > 0, the differential on LmX is 0,

i.e. the differential on X involves only maps eG ,S → eH,T with |H| < |G |.
▶ Every homotopy type has an essentially unique thin representative.

(But thin⊗ thin and Hom(thin, thin) need not be thin.)

▶ A thin complex X is compact iff
⊕

n Xn is finitely generated.



Supports and thick ideals

▶ For compact X (represented as a thin complex), several notions of support:

▶ hsupp(X ) = {G | H∗(X )(G) ̸= 0}
▶ esupp(X ) = {G | X (G) ̸= 0}
▶ eqsupp(X ) = {G | some eG ,S is a retract of some Xd}.
▶ It is easy to see that esupp(X ) is the upwards closure of eqsupp(X ).

▶ True but less obvious: esupp(X ) is the upwards closure of hsupp(X ).

▶ Conjecture: thickid⟨X ⟩ ⊆ thickid⟨Y ⟩ iff hsupp(X ) ⊆ hsupp(Y ).

▶ This holds in all the cases that we understand.

▶ The obvious prime ideals are pG = {X | H∗(X )(G) = 0}.
▶ If X is thin and n is largest with LnX ̸= 0, then X = H∗(X ) = LnX mod

terms of slower growth.

▶ Using this: we prove Theorem C: the zero ideal is also prime.

▶ We have various partial results and examples, especially conditions under
which eG ∈ thickid⟨Y ⟩.

▶ Given X ,Y with hsupp(X ) ⊆ hsupp(Y ), and a large integer N > 0, we
can show that thickid⟨X ⟩ ⊆ thickid⟨{Y } ∪ {eG | |G | > N}⟩.

▶ This work is ongoing.


