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Context: rational equivariance for a single group

> For finite G, let Q Sp. be the category of rational genuine G-spectra.
> Put AG = [Orb{, Vect] ~ H(H) Modgw, H}; a semisimple category
(product over conjugacy classes of subgroups; WeH = (NgH)/H)

> Using the geometric fixed point functors ¢": QSp. — QSpy,y we obtain
an equivalence QSp; — D(AG) ~ Gr(AG)

» In this triangulated category, an object is compact iff strongly dualisable iff
it has finite total dimension.

> Every prime thick ideal in the compact subcategory Q Spg; is the kernel of
#" for some H (unique up to conjugacy).

» The Balmer spectrum Spc(QSpg) is the (finite, discrete) set of conjugacy
classes of subgroups.



Global equivariance

>

>

Let G be the category of finite groups and conjugacy classes of surjective
homomorphisms.

A G-globally equivariant spectrum X is a compatible system of G-spectra
Xc € Spg for all G € G; category of such objects is Spg (Schwede)

Examples: S, KU, KO, MU, MO, H

The category Spg is not rigid: the only dualisable objects are in the
essential image of Sp® — Spg, but there are many more compact objects.

Put A(G) = [G°®, Vect]. This is a symmetric monoidal abelian category
with some unusual properties. It is not semisimple.

Schwede proved Q Spg ~ D(.AG) as homotopy categories.
This can be improved to an equivalence of co-categories.

Again, Q Spg is not rigid, so most techniques for studying Balmer spectra
(e.g. nilpotence) are not applicable.
Much remain true for suitable full subcategories U/ C G, such as:

> E[p] = {elementary abelian p-groups}

> G(r) ={G € G| G can be generated by a set of size < r}

> Z[p] = {abelian p-groups}

> Z[pl(r) = Z[p N G{r).
Let I/ be the category of finitely generated profinite groups for which a
cofinal sequence of finite quotients lie in U.



The bounded rank theorem

> Theorem A: The Balmer spectrum Spc(Q Spg,,y) = Spc(D(AG(r))) is
the profinite space moG(r).
» More generally, for Y C G(r) satisfying mild conditions we have
Spc(Q Spg,) = mold.
» In particular: put D[r]={d €N, |1 >--->d,}
and for d € D[r] put Gg =[], Z,/p% (where p> means 0).
» For U = Z[p](r): every object is isomorphic to Gy for a unique d, so
Spc(QSpy;) = D[r]. (Also: AU is locally noetherian in this case.)
> In these cases:
> Finitely generated thick ideals in Spf; biject with clopen subsets of mold
> Arbitrary thick ideals in Spg, biject with open subsets of 71'02:{\
> Prime thick ideals in Spy, biject with complements of points
» Thomason subsets (= unions of complements of compact open sets)
are the same as open sets; so the topology is Hochster self-dual.
> For X € AU and G € U let X(G) € Vect be the colimit of X(G/N) for N
open normal in G with G/N € U.

» The prime ideal ps € Spc(D(AU)°) corresponding to [G] € mold is
pe = {X € D(AU)° | H.(X)(G) = 0}.



The elementary abelian theorem

>
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Recall: £[p] = { elementary abelian p-groups} = {C; | r € N}.
For r € N put p, = {X € D(AE[p])° | H.(X)(Cp) = 0}.

This is clearly a prime thick ideal.

Put poc = {0} = ﬂreN pr.

It is true but not obvious that this is also prime.

Theorem B: Spc(Spg,) = {pr | r € Noo} >~ Noo

Consider a subset U C N:

U is open iff (U C N or U= Ng)

U is compact open iff (U C N and |U] < o0) or U = Ny)

U is Thomason iff (U = N \ F for some finite F C N) or U =10
Thick ideals biject with Thomason subsets,

and they are all finitely generated.
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The methods for Theorem B are orthogonal to those for Theorem A. Some
are special to the elementary abelian case but many are more general.

Future goal: combine methods for Theorems A and B to prove a general
result without bounds on the number of generators.

In this direction:
Theorem C: if U is closed under products, subgroups and quotients then
the zero ideal in Spg; is prime.



Reflective filtrations

> For G € Z = { finite abelian groups } put N.(G) = {g"' | g € G} and
gn(G) = G/N,(G). This is left adjoint to the inclusion
Zln={G e Z|Ny(G)=1} — Z.

» For G € P = {finite p-groups} let ®G be generated by pth powers and
commutators. Put N,(G) = ®"(G) and gn.(G) = G/N,(G). This is left
adjoint to the inclusion P[n] = {G € P | N,(G) =1} — Z.

» For G € G let N,(G) be the intersection of all subgroups of index at most
n and put gn(G) = G/N,(G). This is again a left adjoint.

» This kind of structure is called a reflective filtration; it exists automatically
in many cases.

» There are some wrinkles in the story about adjoints, because morphisms in
G are conjugacy classes of surjective homomorphisms, and (co)limits do
not generally exist.

» In the first two examples, any morphism a: G — H has
a(Nn(G)) = N,(H), but this does not hold in the third example.
» Usually g, extends to give g,: U — Ul[n].

> The lattice of thick ideals in QSp;, = D(AU) is the colimit of the
corresponding lattices for U[n], so the Balmer spectrum is the inverse limit.



Reduction to the finite case
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If wold is finite, we can prove that the natural map mold — Spc(D(AU)°)
is bijective and that the topology is discrete.

For G € G recall that N,(G) is the intersection of all subgroups of index at
most n, or the common kernel of all homomorphisms to X,. Also

Gln] = {G | No(G) = 1}.

If G can be generated by a set of size at most r then | Hom(G,X,)| < n!".
This gives an upper bound on the index of N,(G).

Using this we see that mo(G[n] N G(r)) is finite so

Spc(D(A(G[n] N G(r)))) = mo(G[n] N G(r)).

By passing to the limit we see that Spc(D(AG(r))) is the inverse limit of
the finite discrete sets mo(G[n] N G(r)).

The functors g»: G(r) — G[n] N G{r) can be used to identify moG(r) with
the same inverse limit.

The same line of argument works for many other subcategories U/ with

U C Gg(r).



Hypotheses on U

» For the rest of this talk, assume that U/ is closed under products,
subgroups and quotients, and consists of abelian groups.

» The nonabelian case is similar but requires fiddly bookkeeping of
conjugacies.

» Closure under products means that we can have no bound on the number
of generators. This makes an important qualitative difference in some
places.



Tensor structure

> Projective generator eg € AU = [UP, Vect] given by ec(T) = QU(T, G).
» Say W < G x H is wide if projections to G and H are both surjective
iff there exists N < G, M < H, a: G/N = H/M with
W ={(g, h) | a(gN) = hM}.
» Example: G x H is wide in G x H, diagonal A < G x G is also wide.
» There is an easy isomorphism ec ® ey = P, ew.
» Put DX = Hom(X, 1) so X is strongly dualisable iff
DX ® X — Hom(X, X) is iso.
» Suppose that X # 0 but X(1) = 0. Then (DX ® X)(1) =0 but
Hom(X, X)(1) = AU(X, X) # 0 so X is not strongly dualisable.
» Thus e is not strongly dualisable unless G = 1.
In fact X is only strongly dualisable if it is constant and finite-dimensional.
» If |C| = p then Hom(ec, ec) = ec2 ® (2p — 1)ec & (p — 1)1 but
D(ec) ® ec = ec2 @ pec.



More about duals and internal homs

> We can write down an isomorphism @, .. ec/v — D(ec).
» We will show later that 1 is injective.
Also any X is flat, and it follows that DX is injective.
As eg is a retract of D(eg), it is also injective.
It follows that all projectives are injective.
> However, tg(K) = Map(U(G, K),Q) is injective but not projective.
> A virtual homomorphism from G to H is a pair (A, A’) where
A <A< GxHandAiswide and AN (1x H)=1and A/A" € U{.
> Hom(eg, en) has a natural filtration with associated graded €D 4 4y €a/a'-
As e4, 4 is projective, the filtration splits and Hom(ec, ey) is projective.
We do not know whether the filtration splits naturally.



Asymptotic freedom
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Let Fom € U be the quotient of the free group on n generators by the
intersection of all normal subgroups N with quotient in U<p.

Given morphisms Fnm 2y H < G in U with |G| < min(n, m), we can
choose ¥: Fpm — G in U with atp = ¢.
(Some care is needed to ensure that 1 is surjective.)

We can choose a tower Gy < Gi < G, < --- in U such that G, gets
rapidly larger and freer as n — oc.

We then find that
”_)m X(G) = |_|T X(Gn)Out(G,,)v
Geuor n
and this is an exact functor of X (because we work over Q).
AU(X, 1) is hom from the above colimit to @Q; so 1 is injective.

As mentioned previously: it follows that D(eg) is injective, then that eg is
injective, then that all projectives are injective.

Using this: any object of finite projective dimension is projective.



Rates of growth
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If nis large, the proportion of n-tuples in G" that generate G is close to 1
(theorem of Lynne Butler, 1994).

Using this plus nearly free groups as on the previous slide:

if X is a nontrivial summand of e, then an appropriate lim sup of
dim(X(T))/IG°™ is nonzero and finite, where §(T) is the minimal size
of a generating set.

We can define Serre subcategories and then quotient categories using rates
of growth. We have not yet exploited this fully.

This approach show that monomorphisms between projective objects split,
even for some U where projectives are not injective.



The order filtration

» For a Q[Out(G)]-module V, put
ec,v(K) = V ®qjou(c) ec(K)

This is projective. Every indecomposable projective has the form eg s for
some indecomposable Q[Out(G)]-module S. We define the order of ec s
to be the order of G.

» We say that X is pure of order k if it is isomorphic to a sum of
indecomposable projectives of order k.

» The subcategory of such objects is equivalent to the semisimple category
Al = [UP, Vect].
> If X is pure of order k, and Y is pure of order m > k, then AU(X,Y) =0.

> Let (L<mX)(G) be the sum of all a*(X(H)) < X(G) for H € U<m and
a € U(G, H).
> Put LnX = LemX/LamX.

» If P is projective, then P ~ @, Px = [, P, where Py is pure of order k.
It follows that L<mX = B, Px and LmX =~ P, so the filtration splits.



The derived category

» Let PU be the subcategory of projectives in AU.

» There is an additive functor Py = hI*: AU — PU with a surjective natural
transformation €: Po(X) — X, where / is the inclusion U™ — U.

> If X(G) =0 for |G| < n then ker(e)(G) = 0 for |G| < n. This also works
when || < co and is a key step in the proof that Spc(D(AU)) = mold.

» Using Py we can define an additive functor P: Ch(AU) — Ch(PU) with a
natural surjective quasiisomorphism P(X) — X.

» From this and other results:
Ch(AU)[we™ '] = hCh(PU) := Ch(PU)/(chain homotopy).
(For general abelian categories, the story is more subtle.)

> If X,Y € Ch(PU) then X ® Y, Hom(X,Y) € PU.

> Say X € Ch(PU) is thin if for every m > 0, the differential on L, X is 0,
i.e. the differential on X involves only maps eg s — ey, 7 with |H| < |G

» Every homotopy type has an essentially unique thin representative.
(But thin ® thin and Hom(thin, thin) need not be thin.)

> A thin complex X is compact iff @, X, is finitely generated.



Supports and thick ideals

VV VvV VYV VVYVYVYY

vy

For compact X (represented as a thin complex), several notions of support:
hsupp(X) = {G | H.(X)(G) # 0}

esupp(X) = {G | X(G) # 0}

eqsupp(X) = {G | some ec s is a retract of some Xy}.

It is easy to see that esupp(X) is the upwards closure of eqsupp(X).

True but less obvious: esupp(X) is the upwards closure of hsupp(X).
Conjecture: thickid(X) C thickid(Y) iff hsupp(X) C hsupp(Y).

This holds in all the cases that we understand.

The obvious prime ideals are pc = {X | H.(X)(G) = 0}.

If X is thin and n is largest with L,X # 0, then X = H.(X) = L,X mod
terms of slower growth.

Using this: we prove Theorem C: the zero ideal is also prime.

We have various partial results and examples, especially conditions under
which eg € thickid(Y).

Given X, Y with hsupp(X) C hsupp(Y), and a large integer N > 0, we
can show that thickid(X) C thickid({Y} U {ec | |G| > N}).

This work is ongoing.



