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Let X be a topological space.

For a, b € X put Px(a, b) = {paths u: [0,1] — X from a to b} and
Mx(a, b) = mo(Px(a, b)) = { pinned homotopy classes of paths }.

Try to make Px into a category with composition given by joining paths.

This does not work because path join is only associative up to pinned
homotopy. However, Mx becomes a category. (In fact, a groupoid.)

Problem: generalise so that (something like) Px counts as an co-category.
This can be done, and we get: Spaces ~ oco-groupoids ~ Kan complexes.

This is one reason why oco-categories are an excellent framework for
homotopy theory.

Recall: functors Nx — Set correspond to covering spaces E — X, or
families of sets continuously parametrised by X.

Fact: oo-functors Px — Top correspond to fibrations E — X, or families
of spaces continuously parametrised by X.

Similarly: oco-functors Px — Sp correspond to X-parametrised spectra.
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Given rings A and B, an (A, B)-bimodule is an abelian group M with amb
defined for (a,m, b) € A x M x B, subject to obvious axioms.

Notation A <L B.

Given A< B C we put

MoN=MesgN=(M®ezN)/(mbn=m® bn): A« C

This almost gives a category Bimod of rings and bimodules except that
M o N is really only defined by a universal property, and Lo (Mo N) is
only isomorphic (not equal) to (Lo M) o N.

Problem: generalise so that Bimod counts as an co-category.

If we want to keep track of general homomorphisms of bimodules, that
creates many extra difficulties. If we only keep track of isomorphisms of
bimodules, we get an co-category.
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N to M is an (n + 1)-manifold W equipped with a specified
homeomorphism oW ~ M II N.

> Notation M &~ N.

> Given L < M & N we put

VoW =VUy W = pushout(V+ M — W): L~ N

» This almost gives a category Cob, of n-manifolds and cobordisms except
that V o W is really only defined by a universal property, and Uo (V o W)
is only homeomorphic (not equal) to (Uo V)o W.

» Problem: generalise so that Cob, counts as an oco-category.

» If we want to keep track of general maps between cobordisms, that creates
many extra difficulties. If we only keep track of homeomorphisms between
cobordisms, we get an co-category.
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There will be an co-category Cato, of co-categories (and functors and
natural isomorphisms).

This works like other co-categories, so we can consider (co)limits of
diagrams of categories, systems of categories parametrised by a space, and
so on. All of these things are much more difficult in traditional category
theory.

We can also consider the co-category Catll of co-categories that have
finite colimits, and functors that preserve them. This is like an additive
category.
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» In the category of spaces it is natural to coherent diagrams like

W—E—x

Jd . h is a homotopy from rp to sq
(and this is part of the data).

Y——

» There is a more complicated story about coherent diagrams of more
general shape.

» In the category of spaces it is natural to consider homotopy limits.

» Given f,g: X — Y we have

eq(f, g) = {x € X | f(x) = g(x)}
heq(f, q) = {(x,u) | uis a path in Y from f(x) to g(x)}.

» There is a more complicated story about homotopy (co)limits for
(coherent) diagrams of more general shape.

» All this applies to any topological category, not just Top.

» Problem: build a framework in which coherent diagrams behave like
ordinary commutative diagrams, and homotopy (co)limits behave like
ordinary (co)limits. All differences should be handled magically by
background machinery.
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Other contexts

» There is a well-known analogy between homotopy theory of spaces and
chain homotopy theory of chain complexes. There is a good oco-categorical
treatment of this.

» Part of the above story is the Dold-Kan Theorem: the category of
nonnegative chain complexes is equivalent to the category of simplicial
abelian groups. We can therefore develop homological algebra using
simplicial objects instead of chain complexes.

» Simplicial objects also make sense without any group structure, so we can
do nonlinear homological algebra a.k.a. homotopical algebra.

» Motivic homotopy theory is a kind of homotopical algebra for algebraic
varieties, now much used in algebraic geometry. This also has a good
oo-categorical formulation.
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(2,0)-horn (outer) (2,1)-horn (inner) (2,2)-horn (outer)
» We can always fill a (2,1)-horn using w = vu. If C is a groupoid we can
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fill a (2,0)-horn with v = wu™!, and fill a (2,2)-horn with u = v~ w.

> For general X: a (2,1)-horn is a pair (u, v) € X? with do(u) = di(v), and
a filler is an element x € Xz with do(x) = v and da(x) = u.

» The general definition of (n, k)-horns and fillers is combinatorially more
complicated but in the same spirit.

» The (n,0) and (n, n)-horns are outer;
the (n, i)-horns are inner for 0 < i < n.
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> A (2,i)-horn in SX is a continuous map from the space Ay C Az to X.

/\20 /\21 /\22

The dashed lines give a retraction rj: As — NAo; that is the identity on Ay;.
For a horn u: Ayj — X we have uonj: Ay — X i.e. uon; € $X filling u.
A filler for a (2,1)-horn is a justified path-composition.

Every horn can be filled, so SX is an co-groupoid.

vVvyVYyVvyy

This gives rise to an equivalence between spaces and oo-groupoids.
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Let C be a topological category, so every morphism set C(X, Y) has a
topology and composition is continuous.

As before: NoC = obj(C) and N1C = mor(C).

An element of N,C consists of objects Xo, ..., X, € C, and morphisms
fi: Xi — X; for i < j, and continuous maps h;: [0, 1} ~"~1 — C(X;, X;) for
i < j subject to some conditions.

To formulate these conditions efficiently, we need a detour into
combinatorics.

For i < j < k we can extract from hj a homotopy between fy o f;j and fj.
When k — i = 2 that is the whole story.

If each C(X, Y) is discrete then each h; must be constant and we recover
the nerve as defined previously.

This coherent nerve construction converts topological categories to
oo-categories.

For an oo-category D we can make an ordinary category Ho(D): objects
are O-cells, morphisms are equivalence classes of 1-cells.

This can be souped up to define a space or co-groupoid D(X, Y) with
Ho(D)(X, Y) = m(D(X, Y)). However, there are some subtleties here.
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can be extended to give a morphism A, — X.

(Here A, is the combinatorial simplex, i.e. the simplicial set with

(An)k = A([K], [n]), and (OA,)« is the subset of non-surjective maps.)

A standard fact: X is an acyclic Kan complex iff it is an co-groupoid and
the corresponding space is contractible.

In an ordinary category C: we say that an object T is terminal iff C(X, T)
is a single point for all X.

In an co-category C: we say that T is terminal iff C(X, T) is a contractible
oo-groupoid for all X.

More generally: any definition in category theory involving a unique choice
is replaced by a condition involving a contractible space of choices.

After understanding this principle, we can formulate appropriate definitions
of limits, colimits and so on.

If C arises as the coherent nerve of a topological category, then these
oo-categorical (co)limits are essentially the same as older notions of
homotopy (co)limits.



