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The path category of a space

▶ Let X be a topological space.

▶ For a, b ∈ X put PX (a, b) = {paths u : [0, 1]→ X from a to b} and
ΠX (a, b) = π0(PX (a, b)) = { pinned homotopy classes of paths }.

▶ Try to make PX into a category with composition given by joining paths.

▶ This does not work because path join is only associative up to pinned
homotopy. However, ΠX becomes a category. (In fact, a groupoid.)

▶ Problem: generalise so that (something like) PX counts as an ∞-category.

▶ This can be done, and we get: Spaces ≃ ∞-groupoids ≃ Kan complexes.

▶ This is one reason why ∞-categories are an excellent framework for
homotopy theory.

▶ Recall: functors ΠX → Set correspond to covering spaces E → X , or
families of sets continuously parametrised by X .

▶ Fact: ∞-functors PX → Top correspond to fibrations E → X , or families
of spaces continuously parametrised by X .

▶ Similarly: ∞-functors PX → Sp correspond to X -parametrised spectra.
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Rings and bimodules

▶ Given rings A and B, an (A,B)-bimodule is an abelian group M with amb
defined for (a,m, b) ∈ A×M × B, subject to obvious axioms.

▶ Notation A BM .

▶ Given A B CM N we put

M ◦ N = M ⊗B N = (M ⊗Z N)/(mb ⊗ n = m ⊗ bn) : A C

▶ This almost gives a category Bimod of rings and bimodules except that
M ◦ N is really only defined by a universal property, and L ◦ (M ◦ N) is
only isomorphic (not equal) to (L ◦M) ◦ N.

▶ Problem: generalise so that Bimod counts as an ∞-category.

▶ If we want to keep track of general homomorphisms of bimodules, that
creates many extra difficulties. If we only keep track of isomorphisms of
bimodules, we get an ∞-category.
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Cobordism

▶ Given compact closed topological n-manifolds M and N, a cobordism from
N to M is an (n + 1)-manifold W equipped with a specified
homeomorphism ∂W ≃ M ⨿ N.

▶ Notation M NW .

▶ Given L M NV W we put

V ◦W = V ∪M W = pushout(V ←− M −→W ) : L N

▶ This almost gives a category Cobn of n-manifolds and cobordisms except
that V ◦W is really only defined by a universal property, and U ◦ (V ◦W )
is only homeomorphic (not equal) to (U ◦ V ) ◦W .

▶ Problem: generalise so that Cobn counts as an ∞-category.

▶ If we want to keep track of general maps between cobordisms, that creates
many extra difficulties. If we only keep track of homeomorphisms between
cobordisms, we get an ∞-category.



Cobordism

▶ Given compact closed topological n-manifolds M and N, a cobordism from
N to M is an (n + 1)-manifold W equipped with a specified
homeomorphism ∂W ≃ M ⨿ N.

▶ Notation M NW .

▶ Given L M NV W we put

V ◦W = V ∪M W = pushout(V ←− M −→W ) : L N

▶ This almost gives a category Cobn of n-manifolds and cobordisms except
that V ◦W is really only defined by a universal property, and U ◦ (V ◦W )
is only homeomorphic (not equal) to (U ◦ V ) ◦W .

▶ Problem: generalise so that Cobn counts as an ∞-category.

▶ If we want to keep track of general maps between cobordisms, that creates
many extra difficulties. If we only keep track of homeomorphisms between
cobordisms, we get an ∞-category.



Cobordism

▶ Given compact closed topological n-manifolds M and N, a cobordism from
N to M is an (n + 1)-manifold W equipped with a specified
homeomorphism ∂W ≃ M ⨿ N.

▶ Notation M NW .

▶ Given L M NV W we put

V ◦W = V ∪M W = pushout(V ←− M −→W ) : L N

▶ This almost gives a category Cobn of n-manifolds and cobordisms except
that V ◦W is really only defined by a universal property, and U ◦ (V ◦W )
is only homeomorphic (not equal) to (U ◦ V ) ◦W .

▶ Problem: generalise so that Cobn counts as an ∞-category.

▶ If we want to keep track of general maps between cobordisms, that creates
many extra difficulties. If we only keep track of homeomorphisms between
cobordisms, we get an ∞-category.



Cobordism

▶ Given compact closed topological n-manifolds M and N, a cobordism from
N to M is an (n + 1)-manifold W equipped with a specified
homeomorphism ∂W ≃ M ⨿ N.

▶ Notation M NW .

▶ Given L M NV W we put

V ◦W = V ∪M W = pushout(V ←− M −→W ) : L N

▶ This almost gives a category Cobn of n-manifolds and cobordisms except
that V ◦W is really only defined by a universal property, and U ◦ (V ◦W )
is only homeomorphic (not equal) to (U ◦ V ) ◦W .

▶ Problem: generalise so that Cobn counts as an ∞-category.

▶ If we want to keep track of general maps between cobordisms, that creates
many extra difficulties. If we only keep track of homeomorphisms between
cobordisms, we get an ∞-category.



Cobordism

▶ Given compact closed topological n-manifolds M and N, a cobordism from
N to M is an (n + 1)-manifold W equipped with a specified
homeomorphism ∂W ≃ M ⨿ N.

▶ Notation M NW .

▶ Given L M NV W we put

V ◦W = V ∪M W = pushout(V ←− M −→W ) : L N

▶ This almost gives a category Cobn of n-manifolds and cobordisms except
that V ◦W is really only defined by a universal property, and U ◦ (V ◦W )
is only homeomorphic (not equal) to (U ◦ V ) ◦W .

▶ Problem: generalise so that Cobn counts as an ∞-category.

▶ If we want to keep track of general maps between cobordisms, that creates
many extra difficulties. If we only keep track of homeomorphisms between
cobordisms, we get an ∞-category.



Cobordism

▶ Given compact closed topological n-manifolds M and N, a cobordism from
N to M is an (n + 1)-manifold W equipped with a specified
homeomorphism ∂W ≃ M ⨿ N.

▶ Notation M NW .

▶ Given L M NV W we put

V ◦W = V ∪M W = pushout(V ←− M −→W ) : L N

▶ This almost gives a category Cobn of n-manifolds and cobordisms except
that V ◦W is really only defined by a universal property, and U ◦ (V ◦W )
is only homeomorphic (not equal) to (U ◦ V ) ◦W .

▶ Problem: generalise so that Cobn counts as an ∞-category.

▶ If we want to keep track of general maps between cobordisms, that creates
many extra difficulties. If we only keep track of homeomorphisms between
cobordisms, we get an ∞-category.



Cobordism

▶ Given compact closed topological n-manifolds M and N, a cobordism from
N to M is an (n + 1)-manifold W equipped with a specified
homeomorphism ∂W ≃ M ⨿ N.

▶ Notation M NW .

▶ Given L M NV W we put

V ◦W = V ∪M W = pushout(V ←− M −→W ) : L N

▶ This almost gives a category Cobn of n-manifolds and cobordisms except
that V ◦W is really only defined by a universal property, and U ◦ (V ◦W )
is only homeomorphic (not equal) to (U ◦ V ) ◦W .

▶ Problem: generalise so that Cobn counts as an ∞-category.

▶ If we want to keep track of general maps between cobordisms, that creates
many extra difficulties. If we only keep track of homeomorphisms between
cobordisms, we get an ∞-category.



The category of categories

▶ There will be an ∞-category Cat∞ of ∞-categories (and functors and
natural isomorphisms).

▶ This works like other ∞-categories, so we can consider (co)limits of
diagrams of categories, systems of categories parametrised by a space, and
so on. All of these things are much more difficult in traditional category
theory.

▶ We can also consider the ∞-category Cat⨿∞ of ∞-categories that have
finite colimits, and functors that preserve them. This is like an additive
category.
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finite colimits, and functors that preserve them. This is like an additive
category.



Coherent diagrams and homotopy (co)limits

▶ In the category of spaces it is natural to coherent diagrams like

W X

Y Z

p

q r

s

h
h is a homotopy from rp to sq
(and this is part of the data).

▶ There is a more complicated story about coherent diagrams of more
general shape.

▶ In the category of spaces it is natural to consider homotopy limits.
▶ Given f , g : X → Y we have

eq(f , g) = {x ∈ X | f (x) = g(x)}
heq(f , q) = {(x , u) | u is a path in Y from f (x) to g(x)}.

▶ There is a more complicated story about homotopy (co)limits for
(coherent) diagrams of more general shape.

▶ All this applies to any topological category, not just Top.
▶ Problem: build a framework in which coherent diagrams behave like

ordinary commutative diagrams, and homotopy (co)limits behave like
ordinary (co)limits. All differences should be handled magically by
background machinery.
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Other contexts

▶ There is a well-known analogy between homotopy theory of spaces and
chain homotopy theory of chain complexes. There is a good ∞-categorical
treatment of this.

▶ Part of the above story is the Dold-Kan Theorem: the category of
nonnegative chain complexes is equivalent to the category of simplicial
abelian groups. We can therefore develop homological algebra using
simplicial objects instead of chain complexes.

▶ Simplicial objects also make sense without any group structure, so we can
do nonlinear homological algebra a.k.a. homotopical algebra.

▶ Motivic homotopy theory is a kind of homotopical algebra for algebraic
varieties, now much used in algebraic geometry. This also has a good
∞-categorical formulation.
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Nerves of categories

▶ ∆ is the simplicial category: objects are the sets [n] = {0, . . . , n}, and
morphisms are nondecreasing functions.

▶ A simplicial set is a functor X : ∆op → Set.

▶ Functoriality yields maps di : Xn → Xn−1 and sj : Xn → Xn+1.

▶ We regard [n] as a category, with one morphism i → j if i ≤ j and none
otherwise; then nondecreasing maps are the same as functors.

▶ For a category C we define the nerve NC by

(NC)k = Fun([k], C) = { diagrams like c0 → c1 → · · · → cn}.

▶ NC0 is the set of objects, NC1 is the set of morphisms, NC2 is the set of
commuting triangles (which determines the composition rule).

▶ Thus: simplicial structure of NC determines the category C.
▶ Let X be a simplicial set.

▶ X is the nerve of a groupoid iff it has unique fillers for all horns.
▶ X is the nerve of a category iff it has unique fillers for all inner horns.
▶ We say that X is an ∞-groupoid if it has fillers for all horns.
▶ We say that X is an ∞-category if it has fillers for all inner horns.
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Horns and fillers

▶ In NC, the (2, i)-horns are diagrams as follows:

c0

c1

c2
w

u

(2, 0)-horn (outer)

c0

c1

c2

u v

(2, 1)-horn (inner)

c0

c1

c2
w

v

(2, 2)-horn (outer)

▶ We can always fill a (2, 1)-horn using w = vu. If C is a groupoid we can
fill a (2, 0)-horn with v = wu−1, and fill a (2, 2)-horn with u = v−1w .

▶ For general X : a (2, 1)-horn is a pair (u, v) ∈ X 2
1 with d0(u) = d1(v), and

a filler is an element x ∈ X2 with d0(x) = v and d2(x) = u.
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The singular complex of a space

▶ Put ∆n = {(x0, . . . , xn) ∈ [0, 1]n |
∑

i xi = 1} (the geometric n-simplex).

▶ These are point, interval, triangle, tetrahedron, . . .

▶ For a space X we put SnX = Top(∆n,X ).

▶ For a map α : [n]→ [m] in ∆ we have ∆α : ∆n → ∆m and so
α∗ : SmX → SnX given by α∗(u) = u ◦∆α.
This makes SX into a simplicial set.

▶ A (2, i)-horn in SX is a continuous map from the space Λ2i ⊂ ∆2 to X .

Λ20 Λ21 Λ22

▶ The dashed lines give a retraction r2i : ∆2 → Λ2i that is the identity on Λ2i .

▶ For a horn u : Λ2i → X we have u ◦ r2i : ∆2 → X i.e. u ◦ r2i ∈ S2X filling u.

▶ A filler for a (2, 1)-horn is a justified path-composition.

▶ Every horn can be filled, so SX is an ∞-groupoid.

▶ This gives rise to an equivalence between spaces and ∞-groupoids.
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Coherent nerves

▶ Let C be a topological category, so every morphism set C(X ,Y ) has a
topology and composition is continuous.

▶ As before: N0C = obj(C) and N1C = mor(C).
▶ An element of NnC consists of objects X0, . . . ,Xn ∈ C, and morphisms

fij : Xi → Xj for i ≤ j , and continuous maps hij : [0, 1]
j−i−1 → C(Xi ,Xj) for

i < j subject to some conditions.

▶ To formulate these conditions efficiently, we need a detour into
combinatorics.

▶ For i < j < k we can extract from hik a homotopy between fjk ◦ fij and fik .

▶ When k − i = 2 that is the whole story.

▶ If each C(X ,Y ) is discrete then each hij must be constant and we recover
the nerve as defined previously.

▶ This coherent nerve construction converts topological categories to
∞-categories.

▶ For an ∞-category D we can make an ordinary category Ho(D): objects
are 0-cells, morphisms are equivalence classes of 1-cells.

▶ This can be souped up to define a space or ∞-groupoid D(X ,Y ) with
Ho(D)(X ,Y ) = π0(D(X ,Y )). However, there are some subtleties here.
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Contractibility

▶ Say that a simplicial set X is an acyclic Kan complex if every u : ∂∆n → X
can be extended to give a morphism ∆n → X .

▶ (Here ∆n is the combinatorial simplex, i.e. the simplicial set with
(∆n)k = ∆([k], [n]), and (∂∆n)k is the subset of non-surjective maps.)

▶ A standard fact: X is an acyclic Kan complex iff it is an ∞-groupoid and
the corresponding space is contractible.

▶ In an ordinary category C: we say that an object T is terminal iff C(X ,T )
is a single point for all X .

▶ In an ∞-category C: we say that T is terminal iff C(X ,T ) is a contractible
∞-groupoid for all X .

▶ More generally: any definition in category theory involving a unique choice
is replaced by a condition involving a contractible space of choices.

▶ After understanding this principle, we can formulate appropriate definitions
of limits, colimits and so on.

▶ If C arises as the coherent nerve of a topological category, then these
∞-categorical (co)limits are essentially the same as older notions of
homotopy (co)limits.
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