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Introduction

▶ Recall: a quasicategory is simplicial set with fillers for all inner horns.

▶ For n ∈ N we have a poset [n] = {0, . . . , n}. Posets can be regarded as
categories, with one morphism from x to y if x ≤ y , and none otherwise.

▶ For any category C, we have a simplicial set NC with (NC)n = Cat([n], C).
▶ Simplicial sets arising this way are precisely those with unique fillers for

inner horns; so quasicategories are a generalisation of categories.

▶ For any simplicial set X , we have a homotopy category Ho(X ) with
obj(Ho(X )) = X0, morphisms generated by X1, one relation
d1(u) = d0(u) ◦ d2(u) for each u ∈ X2.

u

d2(u)

d1(u) d0(u)

▶ This satisfies Cat(Ho(X ), C) = sSet(X ,NC) for all categories C, i.e.
Ho: sSet→ Cat is left adjoint to N : Cat→ sSet. Also Ho(NC) ≃ C.

▶ The category Ho(X ) is more closely related to X in the case where X is a
quasicategory. In particular, each morphism can be represented by an edge.
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The problem

▶ Problem: construct examples of quasicategories from natural input data.

▶ One construction is the coherent nerve of a
simplicial/topological/differential graded category. But that is only
appropriate when all objects of C are homotopically well-behaved.

▶ Often we start with a relative category, i.e. a category C with a class
we ⊆ mor(C) of weak equivalences
(containing all identities and closed under composition).

▶ We want to construct a relative nerve NC which should be a quasicategory
with Ho(NC) = C[we−1].

▶ Work of Lennart Meier (with many precursors) shows how to do this, but
the proof of correctness is indirect and relies on a lot of literature.
We seek a more direct argument.
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The relative posets Ξn

▶ Ξn is the set of sets of the form θ = {σ0, σ1, . . . , σr}, where

∅ ̸= σ0 ⊂ σ1 ⊂ · · · ⊂ σr ⊆ [n].

▶ Order this by θ ≤ θ′ iff θ ⊆ θ′, and so regard Ξn as a category.

▶ Define nondecreasing π : Ξn → [n] by π(θ) = min(σ0) = min(
⋂

θ).

▶ For θ ≤ θ′, declare that θ → θ′ is a weak equivalence iff π(θ) = π(θ′).
This makes Ξn a relative category.

▶ For u ∈ ∆(n,m) and ∅ ̸= σ ⊆ [n] define u∗(σ) = {u(i) | i ∈ σ}.
▶ Then for θ ∈ Ξn put u#(θ) = {u∗(σ) | σ ∈ θ}.

This is a relative functor Ξn → Ξm (with π(u#(θ)) = u(π(θ))).

▶ This makes Ξ∗ into a cosimplicial object in relative categories.

▶ Thus, for a relative category C we can define a simplicial set NC by
(NC)n = RelCat(Ξn, C): this is the relative nerve.

▶ Suppose that C is discrete, i.e. we = {1c | c ∈ obj(C)}.
Then any relative functor Ξn → C factors uniquely through π : Ξn → [n],
so NC is just the ordinary nerve.
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The poset Ξ1

a0={{0}} a1={{0},{0,1}} a2={{0,1}} a3={{1},{0,1}} a4={{1}}

π(a0)=π(a1)=π(a2)=0 π(a3)=π(a4)=1

▶ Given u : c → d in C, we define α2(u) ∈ (NC)1 (i.e. α2(u) : Ξ1 → C) by
a0, a1, a2 7→ c and a3, a4 7→ d and (a2 → a3) 7→ u.

▶ This in turn gives a morphism in Ho(NC)(c, d), which we also call α2(u).

▶ If u is a weak equivalence, we can also define α0(u) ∈ Ho(NC)(c, d) and
α1(u), α3(u) ∈ Ho(C)(d , c) in a similar way.

▶ Theorem:
▶ α2 is a functor C → Ho(NC).
▶ When u is a weak equivalence, α0(u) = α2(u) and α1(u) = α3(u) and these
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The poset Ξ2

{{0}} {{0,1}} {{1}}

{{2}}

{{0,2}} {{1,2}}

{{0,1,2}}



Relations in Ho(NC)

The universal example of a relative category with a weak equivalence is i [1].
Any morphism Ξ2 → i [1] gives a relation in Ho(N(i [1])).

α0(u)=α2(u) α1(u)=α3(u)

α1(u)α2(u)=1 α2(u)α1(u)=1



The gluing relation

▶ Any edge u ∈ (NC)1 gives morphisms • u0−→ • u1←− • u2−→ • u3←− • in C.
▶ Claim: in Ho(NC) we have

u = α(u3)
−1α(u2)α(u1)

−1α(u0) = α3(u3)α2(u2)α1(u1)α0(u0).

▶ To prove a claim like this about the composite of 4 edges, we need a
4-simplex incorporating those edges.

▶ Define g : Ξ4 → Ξ1 as follows.
Consider an element θ ∈ Ξ4, and let σ0 be the smallest set in θ.
▶ If θ = {{0}}, we put g(θ) = a0
▶ If max(σ0) ≤ 1 but θ ̸= {{0}}, we put g(θ) = a1
▶ If θ = {{4}}, we put g(θ) = a4
▶ If min(σ0) ≥ 3 but θ ̸= {{4}}, we put g(θ) = a3
▶ In all other cases we put g(θ) = a2.

▶ One can check that this is a morphism of relative posets.

▶ The composite Ξ4
g−→ Ξ1

u−→ C is the required 4-simplex in NC.
▶ (The poset Ξ4 has 1081 elements.

The map g was found by computer-aided search.)
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▶ (The poset Ξ4 has 1081 elements.

The map g was found by computer-aided search.)



The gluing relation

▶ Any edge u ∈ (NC)1 gives morphisms • u0−→ • u1←− • u2−→ • u3←− • in C.
▶ Claim: in Ho(NC) we have

u = α(u3)
−1α(u2)α(u1)

−1α(u0) = α3(u3)α2(u2)α1(u1)α0(u0).

▶ To prove a claim like this about the composite of 4 edges, we need a
4-simplex incorporating those edges.

▶ Define g : Ξ4 → Ξ1 as follows.
Consider an element θ ∈ Ξ4, and let σ0 be the smallest set in θ.
▶ If θ = {{0}}, we put g(θ) = a0
▶ If max(σ0) ≤ 1 but θ ̸= {{0}}, we put g(θ) = a1
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Ho(Ξn) ≃ [n]

▶ The functor π : Ξn → [n] induces Ho(Ξn)→ [n].
It is easy to guess that this is an equivalence, but not trivial to prove.

▶ Define ω : [n]→ Ξn by ω(k) = {[j , n] | 0 ≤ j ≤ k}, so for n = 3:

ω(0) = {{0, 1, 2, 3}} ω(1) = {{1, 2, 3}, {0, 1, 2, 3}}
ω(2) = {{2, 3}, {1, 2, 3}, {0, 1, 2, 3}} ω(3) = {{3}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}}

▶ This is a poset map with π ◦ω = 1. The map π is cosimplicial but ω is not.
▶ For ∅ ̸= σ ⊆ [n] put ρ(σ) = [min(σ), n].
▶ For θ ∈ Ξn define pk(θ), qk(θ) ∈ Ξn by

pk(θ) = {σ | σ ∈ θ, |σ| ≤ k} ∪ {ρ(σ) | σ ∈ θ, |σ| > k}
qk(θ) = {σ | σ ∈ θ, |σ| ≤ k} ∪ {ρ(σ) | σ ∈ θ, |σ| ≥ k}.

▶ Then pk , qk ∈ RelPos(Ξn,Ξn) with π ◦ pk = π ◦ qk = π and

ω ◦ π ≥ p0 ≤ q1 ≥ p1 ≤ q2 ≥ · · · ≥ pn−1 ≤ qn ≥ pn = 1,

▶ Using this, we see that π : Ho(Ξn)→ [n] is an equivalence of categories.
▶ Now define ζ : [n]→ Ho(Ξn) by ζ(i) = {{i}}. There is a unique way to

make this a functor with π ◦ ζ = 1 and ζ ◦ π ≃ 1.
▶ This feeds into the proof that α : C[we−1]→ Ho(NC) is an isomorphism of

categories.
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The left adjoint K : sSet → RelCat

▶ Theorem: There is a functor K : sSet→ RelCat, left adjoint to
N : RelCat→ sSet, with K(X )[we−1] ≃ Ho(X ).
Moreover, K(X ) is actually a poset.

▶ Morally, K(X ) is defined as a certain colimit of Ξn’s;
but colimits of categories are generally hard to handle.

▶ In this case the final answer is not too bad, although it takes substantial
work to prove that.

▶

Put Ξ⊤
n = {θ ∈ Ξn | [n] ∈ θ} (the interior of Ξn).

Put ND(X )n = {nondegenerate n − simplices}.
Then K(X ) =

∐
n ND(X )n × Ξ⊤

n

(with appropriate structure as a relative poset).

▶ Maximally degenerate example: Xn is the set of partitions of [n] into
intervals. There is a unique nondegenerate simplex in every degree.
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Sketch of construction of K (X )

▶ Given a simplicial set X , we construct a relative category K̃(X )
with a class of “strong equivalences” contained in the weak equivalences.

▶ K(X ) is the quotient of K̃(X ) in which strong equivalences become
identities.

▶ An object a ∈ K̃(X ) is a pair (xa, θa) with xa ∈ Xna and θa ∈ Ξna .

▶ A morphism is u ∈ ∆(na, nb) with u∗xb = xa and u#(θa) ≤ θb.

▶ This is a weak equivalence if π(u#(θa)) = π(θb), and a strong equivalence
iff u#(θa) = θb.

▶ Any morphism factors uniquely as a surjective strong equivalence followed
by an injective morphism.
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The pullback lemma

Suppose we have morphisms [n]
u−→ [k]

v←− [m] in ∆, where u is injective and v
is surjective. Then there is a commutative square in ∆ as shown on the left
below, which is a pullback in ∆ or in the category of sets; and the resulting
diagram as shown on the right is also a pullback.

[l ] [m] Ξl Ξm

[n] [k] Ξn Ξk

ũ

ṽ v

ũ#

ṽ# v#

u u#



Extension properties

▶ ΛkΞn = union of faces of Ξn except k’th face = {θ ∈ Ξn | [n], {k}c ̸∈ θ}.
Λ+
k Ξn = {θ ∈ Ξn | {k}c ̸∈ θ}.

Λ1Ξ2 Λ+
1 Ξ2

▶ NC is a quasicategory iff every u : ΛkΞn → C (with 0 < k < n)
can be extended over Ξn.

▶ ΛkΞn is not a retract of Ξn, so NC is not always a quasicategory.

▶ However, Λ+
k Ξn is a retract of Ξn, so NC is a quasicategory iff every

u : ΛkΞn → C can be extended over Λ+
k Ξn.

▶ Λ+
k Ξn is [1]× ΛkΞn union a cone under {1} × ΛkΞn.

▶ If C has a model structure, we can make the required extension by
fibrantly replacing the diagram u : ΛkΞn → C and taking its inverse limit.

▶ As we have diagrams of a specific shape, we can assume less than a model
structure and be more explicit.
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Further topics

▶ Compare this construction with the coherent nerve.

▶ Compare this construction with the hammock localisation.

▶ Compare this construction with the Kan path groupoid.

▶ Investigate derived functors from this point of view.

▶ Investigate homotopy (co)limits from this point of view.
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