Double subdivision of relative categories

Neil Strickland

February 9, 2024

Introduction

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For $n \in \mathbb{N}$ we have a poset $[n]=\{0, \ldots, n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category \mathcal{C}, we have a simplicial set $N \mathcal{C}$ with $(N \mathcal{C})_{n}=\operatorname{Cat}([n], \mathcal{C})$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category $\mathrm{Ho}(X)$ with $\mathrm{obj}(\mathrm{Ho}(X))=X_{0}$, morphisms generated by X_{1}, one relation $d_{1}(u)=d_{0}(u) \circ d_{2}(u)$ for each $u \in X_{2}$.

- This satisfies $\operatorname{Cat}(\mathrm{Ho}(X), \mathcal{C})=\operatorname{sSet}(X, N \mathcal{C})$ for all categories \mathcal{C}, i.e. Ho: sSet \rightarrow Cat is left adjoint to $N:$ Cat \rightarrow sSet. Also $\mathrm{Ho}(N \mathcal{C}) \simeq \mathcal{C}$.
\Rightarrow The category $\mathrm{Ho}(X)$ is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

Introduction

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For $n \in \mathbb{N}$ we have a poset $[n]=\{0, \ldots, n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category \mathcal{C}, we have a simplicial set $N \mathcal{C}$ with $(N \mathcal{C})_{n}=\operatorname{Cat}([n], \mathcal{C})$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category $\mathrm{Ho}(X)$ with $\operatorname{obj}(\mathrm{Ho}(X))=X_{0}$, morphisms generated by X_{1}, one relation $d_{1}(u)=d_{0}(u) \circ d_{2}(u)$ for each $u \in X_{2}$.

- This satisfies $\operatorname{Cat}(\mathrm{Ho}(X), \mathcal{C})=\operatorname{sSet}(X, N \mathcal{C})$ for all categories \mathcal{C}, i.e. Ho: sSet \rightarrow Cat is left adjoint to $N:$ Cat \rightarrow sSet. Also $\mathrm{Ho}(N \mathcal{C}) \simeq \mathcal{C}$
\Rightarrow The category $\mathrm{Ho}(X)$ is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

Introduction

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For $n \in \mathbb{N}$ we have a poset $[n]=\{0, \ldots, n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
\Rightarrow For any category \mathcal{C}, we have a simplicial set $N \mathcal{C}$ with $(N C)_{n}=$ Cat $([n], \mathcal{C})$
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category $\mathrm{Ho}(X)$ with $\mathrm{obj}(\mathrm{Ho}(X))=X_{0}$, morphisms generated by X_{1}, one relation $d_{1}(u)=d_{0}(u) \circ d_{2}(u)$ for each $u \in X_{2}$.

- This satisfies $\operatorname{Cat}(\mathrm{Ho}(X), \mathcal{C})=\operatorname{sSet}(X, N \mathcal{C})$ for all categories \mathcal{C}, i.e. Ho: sSet \rightarrow Cat is left adjoint to $N:$ Cat \rightarrow sSet. Also $\mathrm{Ho}(N \mathcal{C}) \simeq \mathcal{C}$.
\Rightarrow The category $\mathrm{Ho}(X)$ is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

Introduction

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For $n \in \mathbb{N}$ we have a poset $[n]=\{0, \ldots, n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category \mathcal{C}, we have a simplicial set $N \mathcal{C}$ with $(N \mathcal{C})_{n}=\operatorname{Cat}([n], \mathcal{C})$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
\rightarrow For any simplicial set X, we have a homotopy category $\mathrm{Ho}(X)$ with $\operatorname{obj}(\operatorname{Ho}(X))=X_{0}$, morphisms generated by X_{1}, one relation $d_{1}(u)=d_{0}(u) \circ d_{2}(u)$ for each $u \in X_{2}$.

- This satisfies $\operatorname{Cat}(\operatorname{Ho}(X), \mathcal{C})=\operatorname{set}(X, N \mathcal{C})$ for all categories \mathcal{C}, i.e. Ho: sSet \rightarrow Cat is left adjoint to $N:$ Cat \rightarrow sSet. Also $\mathrm{Ho}(N \mathcal{C}) \simeq \mathcal{C}$.
\Rightarrow The category $\mathrm{Ho}(X)$ is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

Introduction

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For $n \in \mathbb{N}$ we have a poset $[n]=\{0, \ldots, n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category \mathcal{C}, we have a simplicial set $N \mathcal{C}$ with $(N \mathcal{C})_{n}=\operatorname{Cat}([n], \mathcal{C})$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.

```
For any simplicial set }X\mathrm{ , we have a homotopy category Ho(X) with \(\operatorname{obj}(\operatorname{Ho}(X))=X_{0}\), morphisms generated by \(X_{1}\), one relation \(d_{1}(u)=d_{0}(u) \circ d_{2}(u)\) for each \(u \in X_{2}\).
```


This satisfies $\operatorname{Cat}(\mathrm{Ho}(X), \mathcal{C})=\operatorname{sSet}(X, N \mathcal{C})$ for all categories \mathcal{C}, i.e.
$\quad \mathrm{Ho}:$ sSet $\rightarrow \mathrm{Cat}$ is left adjoint to $N: \operatorname{Cat} \rightarrow \mathrm{sSet}$. Also $\operatorname{Ho}(N \mathcal{C}) \simeq \mathcal{C}$.

- The category $\mathrm{Ho}(X)$ is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge

Introduction

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For $n \in \mathbb{N}$ we have a poset $[n]=\{0, \ldots, n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category \mathcal{C}, we have a simplicial set $N \mathcal{C}$ with $(N \mathcal{C})_{n}=\operatorname{Cat}([n], \mathcal{C})$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category $\mathrm{Ho}(X)$ with $\operatorname{obj}(\operatorname{Ho}(X))=X_{0}$, morphisms generated by X_{1}, one relation $d_{1}(u)=d_{0}(u) \circ d_{2}(u)$ for each $u \in X_{2}$.

$\begin{aligned} & \text { This satisfies } \operatorname{Cat}(\mathrm{Ho}(X), \mathcal{C})=s \operatorname{Set}(X, N C) \text { for all categories } \mathcal{C} \text {, i.e. } \\ & H o: \text { sSet } \rightarrow \text { Cat is left adjoint to } N: \operatorname{Cat} \rightarrow s \operatorname{Set} \text {. Also } \operatorname{Ho}(N \mathcal{C}) \simeq \mathcal{C} .\end{aligned}$
- The category $\mathrm{Ho}(X)$ is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

Introduction

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For $n \in \mathbb{N}$ we have a poset $[n]=\{0, \ldots, n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category \mathcal{C}, we have a simplicial set $N \mathcal{C}$ with $(N \mathcal{C})_{n}=\operatorname{Cat}([n], \mathcal{C})$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category $\mathrm{Ho}(X)$ with $\operatorname{obj}(\operatorname{Ho}(X))=X_{0}$, morphisms generated by X_{1}, one relation $d_{1}(u)=d_{0}(u) \circ d_{2}(u)$ for each $u \in X_{2}$.

- This satisfies $\operatorname{Cat}(\operatorname{Ho}(X), \mathcal{C})=\operatorname{sSet}(X, N \mathcal{C})$ for all categories \mathcal{C}, i.e. Ho: sSet \rightarrow Cat is left adjoint to $N:$ Cat \rightarrow sSet. Also $\mathrm{Ho}(N \mathcal{C}) \simeq \mathcal{C}$.

Introduction

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For $n \in \mathbb{N}$ we have a poset $[n]=\{0, \ldots, n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category \mathcal{C}, we have a simplicial set $N \mathcal{C}$ with $(N \mathcal{C})_{n}=\operatorname{Cat}([n], \mathcal{C})$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category $\mathrm{Ho}(X)$ with $\operatorname{obj}(\operatorname{Ho}(X))=X_{0}$, morphisms generated by X_{1}, one relation $d_{1}(u)=d_{0}(u) \circ d_{2}(u)$ for each $u \in X_{2}$.

- This satisfies $\operatorname{Cat}(\operatorname{Ho}(X), \mathcal{C})=\operatorname{sSet}(X, N \mathcal{C})$ for all categories \mathcal{C}, i.e. Ho: sSet \rightarrow Cat is left adjoint to $N:$ Cat \rightarrow sSet. Also $\operatorname{Ho}(N \mathcal{C}) \simeq \mathcal{C}$.
- The category $\mathrm{Ho}(X)$ is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

The problem

- Problem: construct examples of quasicategories from natural input data.
- One construction is the coherent nerve of a simplicial/topological/differential graded category. But that is only appropriate when all objects of \mathcal{C} are homotopically well-behaved.
- Often we start with a relative category, i.e. a category \mathcal{C} with a class we $\subseteq \operatorname{mor}(C)$ of weak equivalences (containing all identities and closed under composition).
- We want to construct a relative nerve $N \mathcal{C}$ which should be a quasicategory with $\mathrm{Ho}(N C)=\mathcal{C}\left[\mathrm{we}^{-1}\right]$.
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

The problem

- Problem: construct examples of quasicategories from natural input data.
- One construction is the coherent nerve of a simplicial/topological/differential graded category. But that is only appropriate when all objects of \mathcal{C} are homotopically well-behaved.
- Often we start with a relative category, i.e. a category \mathcal{C} with a class we $\subseteq \operatorname{mor}(\mathcal{C})$ of weak equivalences (containing all identities and closed under composition).
- We want to construct a relative nerve NC which should be a quasicategory with $\mathrm{Ho}(N C)=\mathcal{C}\left[\mathrm{we}^{-1}\right]$.
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

The problem

- Problem: construct examples of quasicategories from natural input data.
- One construction is the coherent nerve of a simplicial/topological/differential graded category. But that is only appropriate when all objects of \mathcal{C} are homotopically well-behaved.
\Rightarrow Often we start with a relative category, i.e. a category \mathcal{C} with a class we $\subseteq \operatorname{mor}(\mathcal{C})$ of weak equivalences (containing all identities and closed under composition).
\rightarrow We want to construct a relative nerve NC which should be a quasicategory with $\mathrm{Ho}(N \mathcal{C})=\mathcal{C}\left[\mathrm{we}^{-1}\right]$
- Mork of Iennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

The problem

- Problem: construct examples of quasicategories from natural input data.
- One construction is the coherent nerve of a simplicial/topological/differential graded category. But that is only appropriate when all objects of \mathcal{C} are homotopically well-behaved.
- Often we start with a relative category, i.e. a category \mathcal{C} with a class we $\subseteq \operatorname{mor}(\mathcal{C})$ of weak equivalences (containing all identities and closed under composition).
- We want to construct a relative nerve NC which should be a quasicategory with $\mathrm{Ho}(N C)=\mathcal{C}\left[\mathrm{we}^{-1}\right]$
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

The problem

- Problem: construct examples of quasicategories from natural input data.
- One construction is the coherent nerve of a simplicial/topological/differential graded category. But that is only appropriate when all objects of \mathcal{C} are homotopically well-behaved.
- Often we start with a relative category, i.e. a category \mathcal{C} with a class we $\subseteq \operatorname{mor}(\mathcal{C})$ of weak equivalences (containing all identities and closed under composition).
- We want to construct a relative nerve $N \mathcal{C}$ which should be a quasicategory with $\mathrm{Ho}(N \mathcal{C})=\mathcal{C}\left[\mathrm{we}^{-1}\right]$.
\rightarrow Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

The problem

- Problem: construct examples of quasicategories from natural input data.
- One construction is the coherent nerve of a simplicial/topological/differential graded category. But that is only appropriate when all objects of \mathcal{C} are homotopically well-behaved.
- Often we start with a relative category, i.e. a category \mathcal{C} with a class we $\subseteq \operatorname{mor}(\mathcal{C})$ of weak equivalences (containing all identities and closed under composition).
- We want to construct a relative nerve $N \mathcal{C}$ which should be a quasicategory with $\mathrm{Ho}(N C)=\mathcal{C}\left[\mathrm{we}^{-1}\right]$.
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

The relative posets Ξ_{n}

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\left.\infty \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq r_{n}\right]
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing $\pi: \Xi_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\cap \theta)$
\rightarrow For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$.
This makes $\bar{\Xi}_{n}$ a relative category.
- For $u \in \boldsymbol{\Delta}(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$.
\Rightarrow Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$. This is a relative functor $\bar{\Xi}_{n} \rightarrow \bar{\Xi}_{m}$ (with $\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))$).
- This makes $\bar{\Xi}_{*}$ into a cosimplicial object in relative categories.
- Thus, for a relative category \mathcal{C} we can define a simplicial set NC by $(N C)_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right):$ this is the relative nerve.
- Suppose that \mathcal{C} is discrete, i.e. $w e=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$.

Then any relative functor $\bar{\Xi}_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \bar{\Xi}_{n} \rightarrow[n]$, so $N C$ is just the ordinary nerve.

The relative posets Ξ_{n}

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing $\pi: \Xi_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\cap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$ This makes Ξ_{n} a relative category.
- For $u \in \boldsymbol{\Delta}(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$
- Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$ This is a relative functor $\bar{\Xi}_{n} \rightarrow \bar{\Xi}_{m}\left(\right.$ with $\left.\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))\right)$
- This makes Ξ_{*} into a cosimplicial object in relative categories.
- Thus, for a relative category \mathcal{C} we can define a simplicial set NC by $(N C)_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right)$: this is the relative nerve.
- Suppose that \mathcal{C} is discrete, i.e. we $=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$

Then any relative functor $\bar{\Xi}_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \bar{\Xi}_{n} \rightarrow[n]$, so NC is just the ordinary nerve.

The relative posets Ξ_{n}

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing $\pi: \bar{\Xi}_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\bigcap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$. This makes Ξ_{n} a relative category.
- For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$
- Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$. This is a relative functor $\bar{\Xi}_{n} \rightarrow \bar{\Xi}_{m}$ (with $\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))$)
- This makes Ξ_{*} into a cosimplicial object in relative categories.
- Thus, for a relative category \mathcal{C} we can define a simplicial set $N \mathcal{C}$ by $(N C)_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right)$: this is the relative nerve.
- Suppose that \mathcal{C} is discrete, i.e. we $=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$

Then any relative functor $\bar{\Xi}_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \bar{\Xi}_{n} \rightarrow[n]$, so $N C$ is just the ordinary nerve.

The relative posets $\bar{\Xi}_{n}$

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing $\pi: \bar{\Xi}_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\bigcap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$.

This makes $\bar{\Xi}_{n}$ a relative category.

- For $u \in \boldsymbol{\Delta}(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$
- Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$.

This is a relative functor $\bar{E}_{n} \rightarrow \bar{\Xi}_{m}$ (with $\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))$).

- This makes Ξ_{*} into a cosimplicial object in relative categories.
- Thus, for a relative category \mathcal{C} we can define a simplicial set $N C$ by $(N C)_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right)$: this is the relative nerve.
- Suppose that \mathcal{C} is discrete, i.e. $w e=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$

Then any relative functor $\Xi_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \bar{\Xi}_{n} \rightarrow[n]$, so NC is just the ordinary nerve.

The relative posets $\bar{\Xi}_{n}$

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing π : $\equiv_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\bigcap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$. This makes $\bar{\Xi}_{n}$ a relative category.
- Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$. This is a relative functor $\bar{\Xi}_{n} \rightarrow \bar{\Xi}_{m}$ (with $\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))$).
${ }^{\text {P }}$ This makes \bar{E}_{*} into a cosimplicial object in relative categories.
- Thus, for a relative category \mathcal{C} we can define a simplicial set $N \mathcal{C}$ by $(N C)_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right):$ this is the relative nerve.
\Rightarrow Suppose that \mathcal{C} is discrete, i.e. $w e=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$ Then any relative functor $\Xi_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \Xi_{n} \rightarrow[n]$, so $N \mathcal{C}$ is just the ordinary nerve.

The relative posets $\bar{\Xi}_{n}$

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing $\pi: \Xi_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\bigcap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$. This makes Ξ_{n} a relative category.
- For $u \in \boldsymbol{\Delta}(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$.
- This makes Ξ_{*} into a cosimplicial object in relative categories.
- Thus, for a relative category \mathcal{C} we can define a simplicial set NC by $(N C)_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right)$: this is the relative nerve.
- Suppose that \mathcal{C} is discrete, i.e. $w e=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$

Then any relative functor $\bar{\Xi}_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \bar{\Xi}_{n} \rightarrow[n]$. so NC is just the ordinary nerve.

The relative posets $\bar{\Xi}_{n}$

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing π : $\equiv_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\bigcap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$. This makes Ξ_{n} a relative category.
- For $u \in \boldsymbol{\Delta}(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$.
- Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$.

This is a relative functor $\bar{\Xi}_{n} \rightarrow \bar{\Xi}_{m}$ (with $\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))$).
\rightarrow This makes Ξ_{*} into a cosimplicial object in relative categories.

- Thus, for a relative category \mathcal{C} we can define a simplicial set $N C$ by $(N \mathcal{C})_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right):$ this is the relative nerve.
\Rightarrow Suppose that \mathcal{C} is discrete, i.e. we $=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$
Then any relative functor $\bar{\Xi}_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \Xi_{n} \rightarrow[n]$ so $N \mathcal{C}$ is just the ordinary nerve.

The relative posets Ξ_{n}

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing π : $\equiv_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\bigcap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$. This makes Ξ_{n} a relative category.
- For $u \in \boldsymbol{\Delta}(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$.
- Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$. This is a relative functor $\bar{\Xi}_{n} \rightarrow \bar{\Xi}_{m}$ (with $\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))$).
- This makes Ξ_{*} into a cosimplicial object in relative categories.
$(N C)_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right)$: this is the relative nerve.
- Suppose that \mathcal{C} is discrete, i.e. we $=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$

Then any relative functor $\overline{\bar{Z}}_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \bar{\Xi}_{n} \rightarrow[n]$ so $N \mathcal{C}$ is just the ordinary nerve.

The relative posets Ξ_{n}

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing π : $\Xi_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\bigcap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$. This makes Ξ_{n} a relative category.
- For $u \in \boldsymbol{\Delta}(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$.
- Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$. This is a relative functor $\bar{\Xi}_{n} \rightarrow \bar{\Xi}_{m}$ (with $\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))$).
- This makes Ξ_{*} into a cosimplicial object in relative categories.
- Thus, for a relative category \mathcal{C} we can define a simplicial set $N \mathcal{C}$ by $(N \mathcal{C})_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right):$ this is the relative nerve.

Then any relative functor $\Xi_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \Xi_{n} \rightarrow[n]$, so $N C$ is just the ordinary nerve.

The relative posets Ξ_{n}

- Ξ_{n} is the set of sets of the form $\theta=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right\}$, where

$$
\emptyset \neq \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{r} \subseteq[n] .
$$

- Order this by $\theta \leq \theta^{\prime}$ iff $\theta \subseteq \theta^{\prime}$, and so regard Ξ_{n} as a category.
- Define nondecreasing π : $\equiv_{n} \rightarrow[n]$ by $\pi(\theta)=\min \left(\sigma_{0}\right)=\min (\bigcap \theta)$.
- For $\theta \leq \theta^{\prime}$, declare that $\theta \rightarrow \theta^{\prime}$ is a weak equivalence iff $\pi(\theta)=\pi\left(\theta^{\prime}\right)$. This makes Ξ_{n} a relative category.
- For $u \in \boldsymbol{\Delta}(n, m)$ and $\emptyset \neq \sigma \subseteq[n]$ define $u_{*}(\sigma)=\{u(i) \mid i \in \sigma\}$.
- Then for $\theta \in \Xi_{n}$ put $u_{\#}(\theta)=\left\{u_{*}(\sigma) \mid \sigma \in \theta\right\}$. This is a relative functor $\bar{\Xi}_{n} \rightarrow \bar{\Xi}_{m}$ (with $\pi\left(u_{\#}(\theta)\right)=u(\pi(\theta))$).
- This makes Ξ_{*} into a cosimplicial object in relative categories.
- Thus, for a relative category \mathcal{C} we can define a simplicial set $N \mathcal{C}$ by $(N \mathcal{C})_{n}=\operatorname{RelCat}\left(\Xi_{n}, \mathcal{C}\right):$ this is the relative nerve.
- Suppose that \mathcal{C} is discrete, i.e. we $=\left\{1_{c} \mid c \in \operatorname{obj}(\mathcal{C})\right\}$.

Then any relative functor $\bar{\Xi}_{n} \rightarrow \mathcal{C}$ factors uniquely through $\pi: \Xi_{n} \rightarrow[n]$, so $N \mathcal{C}$ is just the ordinary nerve.

The poset Ξ_{1}

$a_{0}=\{\{0\}\}$

$$
a_{1}=\{\{0\},\{0,1\}\}
$$

$$
a_{2}=\{\{0,1\}\}
$$

$$
a_{3}=\{\{1\},\{0,1\}\}
$$

$$
a_{4}=\{\{1\}\}
$$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

\rightarrow Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}\left(\right.$ i.e. $\left.\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}\right)$ by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
\rightarrow This in turn gives a morphism in $\operatorname{Ho}(N C)(c, d)$, which we also call $\alpha_{2}(u)$.
\rightarrow If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N C)(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.

- Theorem:

- α_{2} is a functor $\mathcal{C} \rightarrow \mathrm{Ho}(N \mathcal{C})$.
- When u is a weak equivalence, $\alpha_{0}(u)=\alpha_{2}(u)$ and $\alpha_{1}(u)=\alpha_{3}(u)$ and these are inverse to each other; so α_{2} extends to give $\alpha: \mathcal{C}\left[w^{-1}\right] \rightarrow \mathrm{Ho}(N C)$.
\rightarrow Any edge $u \in(N C)_{1}$ gives morphisms $\bullet \stackrel{u_{0}}{\longrightarrow} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \stackrel{u_{2}}{\longleftrightarrow} \bullet \stackrel{u_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}, and in $\operatorname{Ho}(N C)$ we have $u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)$.
\Rightarrow This extension α is an isomorphism of categories.
- Proofs by constructing some explicit maps between Ξ_{n} 's and $[m]^{\prime} s$, and analysing their properties.

The poset Ξ_{1}

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0 \quad \pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
\Rightarrow This in turn gives a morphism in $\operatorname{Ho}(N C)(c, d)$, which we also call $\alpha_{2}(u)$
- If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N C)(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.

\Rightarrow Theorem:

```
* < < is a functor }\mathcal{C}->\textrm{Ho(NC).
    - When }u\mathrm{ is a weak equivalence, }\mp@subsup{\alpha}{0}{}(u)=\mp@subsup{\alpha}{2}{}(u)\mathrm{ and }\mp@subsup{\alpha}{1}{}(u)=\mp@subsup{\alpha}{3}{}(u)\mathrm{ and these
        are inverse to each other; so 就 extends to give \alpha: \mathcal{C}[w\mp@subsup{w}{}{-1}]->\textrm{Ho(NC).}
```



```
        Ho(NC) we have }u=\alpha(\mp@subsup{u}{3}{}\mp@subsup{)}{}{-1}\alpha(\mp@subsup{u}{2}{})\alpha(\mp@subsup{u}{1}{}\mp@subsup{)}{}{-1}\alpha(\mp@subsup{u}{0}{})
    - This extension \alpha is an isomorphism of categories.
```

- Proofs by constructing some explicit maps between $\bar{\Xi}_{n}$'s and $[m]$'s, and
analysing their properties.

The poset Ξ_{1}

$a_{0}=\{\{0\}\}$

$$
a_{1}=\{\{0\},\{0,1\}\}
$$

$a_{2}=\{\{0,1\}\}$
$a_{3}=\{\{1\},\{0,1\}\}$
$a_{4}=\{\{1\}\}$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
- This in turn gives a morphism in $\operatorname{Ho}(N \mathcal{C})(c, d)$, which we also call $\alpha_{2}(u)$.

- Proofs by constructing some explicit maps between Ξ_{n} 's and $[m]$'s, and analysing their properties.

The poset Ξ_{1}

- ~nnnn
$a_{0}=\{\{0\}\}$

$$
a_{1}=\{\{0\},\{0,1\}\}
$$

$$
a_{2}=\{\{0,1\}\}
$$

$$
a_{3}=\{\{1\},\{0,1\}\}
$$

$$
a_{4}=\{\{1\}\}
$$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
- This in turn gives a morphism in $\operatorname{Ho}(N \mathcal{C})(c, d)$, which we also call $\alpha_{2}(u)$.
- If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N \mathcal{C})(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.

- Theorem:

- Proofs by constructing some explicit maps between Ξ_{n} 's and $[m]^{\prime} s$, and analysing their properties.

The poset Ξ_{1}

$$
a_{0}=\{\{0\}\} \quad a_{1}=\{\{0\},\{0,1\}\} \quad a_{2}=\{\{0,1\}\} \quad a_{3}=\{\{1\},\{0,1\}\} \quad a_{4}=\{\{1\}\}
$$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
- This in turn gives a morphism in $\operatorname{Ho}(N \mathcal{C})(c, d)$, which we also call $\alpha_{2}(u)$.
- If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N \mathcal{C})(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.

- Theorem:

- Proofs by constructing some explicit maps between \equiv_{n} 's and $[m$'s, and analysing their properties.

The poset Ξ_{1}

$$
a_{0}=\{\{0\}\} \quad a_{1}=\{\{0\},\{0,1\}\} \quad a_{2}=\{\{0,1\}\} \quad a_{3}=\{\{1\},\{0,1\}\} \quad a_{4}=\{\{1\}\}
$$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
- This in turn gives a morphism in $\operatorname{Ho}(N \mathcal{C})(c, d)$, which we also call $\alpha_{2}(u)$.
- If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N \mathcal{C})(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.
- Theorem:
- α_{2} is a functor $\mathcal{C} \rightarrow \mathrm{Ho}(N \mathcal{C})$.
\rightarrow When u is a weak equivalence, $\alpha_{0}(u)=\alpha_{2}(u)$ and $\alpha_{1}(u)=\alpha_{3}(u)$ and these are inverse to each other; so α_{2} extends to give $\alpha: \mathcal{C}\left[w e^{-1}\right] \rightarrow \mathrm{Ho}(N \mathcal{C})$. \rightarrow Any edge $u \in(N C)_{1}$ gives morphisms $\bullet \stackrel{u_{0}}{\longrightarrow} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \stackrel{u_{2}}{\longleftrightarrow} \bullet \stackrel{u_{3}}{\leftarrow} \bullet$ in \mathcal{C}, and in Ho(NC) we have $u=\alpha\left(L_{3}\right)^{-1} \alpha\left(\omega_{2}\right) \alpha\left(\omega_{1}\right)^{-1} \alpha\left(\omega_{0}\right)$. - This extension α is an isomorphism of categories.
- Proofs by constructing some explicit mans between Ξ_{n} 's and $[m]^{\prime} s$, and analysing their properties.

The poset Ξ_{1}

$$
a_{0}=\{\{0\}\} \quad a_{1}=\{\{0\},\{0,1\}\} \quad a_{2}=\{\{0,1\}\} \quad a_{3}=\{\{1\},\{0,1\}\} \quad a_{4}=\{\{1\}\}
$$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
- This in turn gives a morphism in $\operatorname{Ho}(N \mathcal{C})(c, d)$, which we also call $\alpha_{2}(u)$.
- If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N \mathcal{C})(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.
- Theorem:
- α_{2} is a functor $\mathcal{C} \rightarrow \mathrm{Ho}(N \mathcal{C})$.
- When u is a weak equivalence, $\alpha_{0}(u)=\alpha_{2}(u)$ and $\alpha_{1}(u)=\alpha_{3}(u)$ and these are inverse to each other; so α_{2} extends to give $\alpha: \mathcal{C}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(N \mathcal{C})$.

- Proofs by constructing some explicit maps between \equiv_{n} 's and $[m$'s, and analysing their properties.

The poset Ξ_{1}

$a_{0}=\{\{0\}\} \quad a_{1}=\{\{0\},\{0,1\}\} \quad a_{2}=\{\{0,1\}\} \quad a_{3}=\{\{1\},\{0,1\}\} \quad a_{4}=\{\{1\}\}$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
- This in turn gives a morphism in $\operatorname{Ho}(N \mathcal{C})(c, d)$, which we also call $\alpha_{2}(u)$.
- If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N \mathcal{C})(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.
- Theorem:
- α_{2} is a functor $\mathcal{C} \rightarrow \mathrm{Ho}(N \mathcal{C})$.
- When u is a weak equivalence, $\alpha_{0}(u)=\alpha_{2}(u)$ and $\alpha_{1}(u)=\alpha_{3}(u)$ and these are inverse to each other; so α_{2} extends to give $\alpha: \mathcal{C}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(N C)$.
\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \stackrel{u_{2}}{\longrightarrow} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}, and in $\operatorname{Ho}(N C)$ we have $u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)$.
- Proofs by constructing some explicit maps between \equiv_{n} 's and $[m$'s, and analysing their properties.

The poset Ξ_{1}

$a_{0}=\{\{0\}\} \quad a_{1}=\{\{0\},\{0,1\}\} \quad a_{2}=\{\{0,1\}\} \quad a_{3}=\{\{1\},\{0,1\}\} \quad a_{4}=\{\{1\}\}$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
- This in turn gives a morphism in $\operatorname{Ho}(N \mathcal{C})(c, d)$, which we also call $\alpha_{2}(u)$.
- If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N \mathcal{C})(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.
- Theorem:
- α_{2} is a functor $\mathcal{C} \rightarrow \mathrm{Ho}(N \mathcal{C})$.
- When u is a weak equivalence, $\alpha_{0}(u)=\alpha_{2}(u)$ and $\alpha_{1}(u)=\alpha_{3}(u)$ and these are inverse to each other; so α_{2} extends to give $\alpha: \mathcal{C}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(N C)$.
\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \stackrel{u_{2}}{\longrightarrow} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}, and in $\operatorname{Ho}(N \mathcal{C})$ we have $u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)$.
- This extension α is an isomorphism of categories.
- Proofs by constructing some explicit maps between $\bar{\Xi}_{n}$'s and [m]'s, and analysing their properties.

The poset \bar{E}_{1}

$a_{0}=\{\{0\}\} \quad a_{1}=\{\{0\},\{0,1\}\} \quad a_{2}=\{\{0,1\}\} \quad a_{3}=\{\{1\},\{0,1\}\} \quad a_{4}=\{\{1\}\}$

$$
\pi\left(a_{0}\right)=\pi\left(a_{1}\right)=\pi\left(a_{2}\right)=0
$$

$$
\pi\left(a_{3}\right)=\pi\left(a_{4}\right)=1
$$

- Given $u: c \rightarrow d$ in \mathcal{C}, we define $\alpha_{2}(u) \in(N \mathcal{C})_{1}$ (i.e. $\alpha_{2}(u): \Xi_{1} \rightarrow \mathcal{C}$) by $a_{0}, a_{1}, a_{2} \mapsto c$ and $a_{3}, a_{4} \mapsto d$ and $\left(a_{2} \rightarrow a_{3}\right) \mapsto u$.
- This in turn gives a morphism in $\operatorname{Ho}(N \mathcal{C})(c, d)$, which we also call $\alpha_{2}(u)$.
- If u is a weak equivalence, we can also define $\alpha_{0}(u) \in \operatorname{Ho}(N \mathcal{C})(c, d)$ and $\alpha_{1}(u), \alpha_{3}(u) \in \operatorname{Ho}(\mathcal{C})(d, c)$ in a similar way.
- Theorem:
- α_{2} is a functor $\mathcal{C} \rightarrow \mathrm{Ho}(N \mathcal{C})$.
- When u is a weak equivalence, $\alpha_{0}(u)=\alpha_{2}(u)$ and $\alpha_{1}(u)=\alpha_{3}(u)$ and these are inverse to each other; so α_{2} extends to give $\alpha: \mathcal{C}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(N C)$.
\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \stackrel{u_{2}}{\longrightarrow} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}, and in $\operatorname{Ho}(N \mathcal{C})$ we have $u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)$.
- This extension α is an isomorphism of categories.
- Proofs by constructing some explicit maps between \bar{E}_{n} 's and [m]'s, and analysing their properties.

The poset Ξ_{2}

Relations in $\mathrm{Ho}(N C)$

The universal example of a relative category with a weak equivalence is $i[1]$. Any morphism $\bar{E}_{2} \rightarrow i[1]$ gives a relation in $\mathrm{Ho}(N(i[1]))$.

The gluing relation

\rightarrow Any edge $u \in(N C)_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right) .
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
\rightarrow Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.
Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ.
- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- In all other cases we put $g(\theta)=a_{2}$.
\Rightarrow One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N C$.
- (The poset Ξ_{4} has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N C)_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\leftarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{u_{3}}{\leftrightarrows} \bullet$ in \mathcal{C}.
\square $u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)$.

- To prove a claim like this about the composite of 4 edges, we need a 4 -simplex incorporating those edges.
\Rightarrow Define $g: \Xi_{4} \rightarrow \bar{\Xi}_{1}$ as follows.
Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ
- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=$ al
- If $\theta=\{\{4\}\}$, we put $g(\theta)=\partial_{4}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- In all other cases we put $g(\theta)=a_{2}$.
- One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{\mathrm{~g}} \Xi_{1} \xrightarrow{\text { U }} \mathcal{C}$ is the required 4 -simplex in $N C$
- (The poset $\bar{\Xi}_{4}$ has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N C)_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\leftarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{山_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N C)$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right) .
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
\Rightarrow Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.
Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ.
- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
\Rightarrow If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- In all other cases we put $g(\theta)=a_{2}$.
\Rightarrow One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N \mathcal{C}$.
- (The poset Ξ_{4} has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
\rightarrow Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows. Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ. - If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$ \Rightarrow If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$ - If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$ - If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$ - In all other cases we put $g(\theta)=a_{2}$.
\Rightarrow One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N C$.
- (The poset Ξ_{4} has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \Xi_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \bar{\Xi}_{4}$, and let σ_{0} be the smallest set in θ.

- One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N C$
- (The poset $\bar{\Xi}_{4}$ has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ.

- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$

- One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N C$
- (The poset $\bar{\Xi}_{4}$ has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ.

- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- In all other cases we put $g(\theta)=a_{2}$.
\Rightarrow One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N \mathcal{C}$.
- (The poset Ξ_{4} has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{u_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ.

- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$
- One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N C$
> (The poset $\bar{\Xi}_{4}$ has 1081 elements.
The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ.

- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N \mathcal{C}$.
- (The poset Ξ_{4} has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \bar{\Xi}_{4}$, and let σ_{0} be the smallest set in θ.

- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- In all other cases we put $g(\theta)=a_{2}$.
\Rightarrow One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in $N \mathcal{C}$.
- (The poset Ξ_{4} has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \bar{\Xi}_{4}$, and let σ_{0} be the smallest set in θ.

- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- In all other cases we put $g(\theta)=a_{2}$.
- One can check that this is a morphism of relative posets.
\triangleright The composite $\bar{\Xi}_{4} \xrightarrow{g} \bar{\Xi}_{1} \xrightarrow{u} \mathcal{C}$ is the required 4 -simplex in NC.
- (The poset Ξ_{4} has 1081 elements.

The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \bar{\Xi}_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ.

- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- In all other cases we put $g(\theta)=a_{2}$.
- One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4-simplex in $N \mathcal{C}$.
\Rightarrow (The poset $\bar{\Xi}_{4}$ has 1081 elements. The map g was found by computer-aided search.)

The gluing relation

\bullet Any edge $u \in(N \mathcal{C})_{1}$ gives morphisms $\bullet \xrightarrow{u_{0}} \bullet \stackrel{u_{1}}{\longleftrightarrow} \bullet \xrightarrow{u_{2}} \bullet \stackrel{\mu_{3}}{\longleftrightarrow} \bullet$ in \mathcal{C}.

- Claim: in $\mathrm{Ho}(N \mathcal{C})$ we have

$$
u=\alpha\left(u_{3}\right)^{-1} \alpha\left(u_{2}\right) \alpha\left(u_{1}\right)^{-1} \alpha\left(u_{0}\right)=\alpha_{3}\left(u_{3}\right) \alpha_{2}\left(u_{2}\right) \alpha_{1}\left(u_{1}\right) \alpha_{0}\left(u_{0}\right)
$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define $g: \Xi_{4} \rightarrow \bar{\Xi}_{1}$ as follows.

Consider an element $\theta \in \Xi_{4}$, and let σ_{0} be the smallest set in θ.

- If $\theta=\{\{0\}\}$, we put $g(\theta)=a_{0}$
- If $\max \left(\sigma_{0}\right) \leq 1$ but $\theta \neq\{\{0\}\}$, we put $g(\theta)=a_{1}$
- If $\theta=\{\{4\}\}$, we put $g(\theta)=a_{4}$
- If $\min \left(\sigma_{0}\right) \geq 3$ but $\theta \neq\{\{4\}\}$, we put $g(\theta)=a_{3}$
- In all other cases we put $g(\theta)=a_{2}$.
- One can check that this is a morphism of relative posets.
- The composite $\Xi_{4} \xrightarrow{g} \Xi_{1} \xrightarrow{u} \mathcal{C}$ is the required 4-simplex in $N \mathcal{C}$.
- (The poset Ξ_{4} has 1081 elements.

The map g was found by computer-aided search.)

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

\Rightarrow The functor $\pi: \Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$.
It is easy to guess that this is an equivalence, but not trivial to prove.
\Rightarrow Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:
$\omega(0)=\{\{0,1,2,3\}\}$
$\omega(1)=\{\{1,2,3\},\{0,1,2,3\}\}$
$\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} \quad \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}$
\Rightarrow This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.

- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- For $\theta \in \Xi_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \Xi_{n}$ by

$$
\begin{aligned}
& p_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma|>k\} \\
& q_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma| \geq k\} .
\end{aligned}
$$

- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and

$$
\omega \circ \pi \geq p_{0} \leq q_{1} \geq p_{1} \leq q_{2} \geq \cdots \geq p_{n-1} \leq q_{n} \geq p_{n}=1 .
$$

\Rightarrow Using this, we see that $\pi: H o\left(\bar{\Xi}_{n}\right) \rightarrow[n]$ is an equivalence of categories.

- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.
$>$ This feeds into the proof that $\alpha: C\left[w^{-1}\right] \rightarrow H o(N C)$ is an isomorphism of categories.

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor π : $\bar{\Xi}_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \rightarrow[n]$. It is easy to guess that this is an equivalence, but not trivial to prove.

$$
\begin{array}{ll}
\text { Define } \omega:[n] \rightarrow \Xi_{n} \text { by } \omega(k)=\{[j, n] \mid 0 \leq j \leq k\} \text {, so for } n=3 \text { : } \\
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- For $\theta \in \bar{\Xi}_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \bar{E}_{n}$ by

$$
\begin{aligned}
& p_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma|>k\} \\
& q_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma| \geq k\} .
\end{aligned}
$$

- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and

$$
\omega \circ \pi \geq p_{0} \leq q_{1} \geq p_{1} \leq q_{2} \geq \cdots \geq p_{n-1} \leq q_{n} \geq p_{n}=1,
$$

- Using this, we see that $\pi: \mathrm{Ho}\left(\bar{\Xi}_{n}\right) \rightarrow[n]$ is an equivalence of categories.
- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.
> This feeds into the proof that $\mathrm{a}: \mathrm{C}\left[\mathrm{we}{ }^{-1}\right] \rightarrow \mathrm{Ho}($ NC $)$ is an isomorphism of categories.

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor $\pi: \Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$.

It is easy to guess that this is an equivalence, but not trivial to prove.

- Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:

$$
\begin{array}{ll}
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- For $\theta \in \Xi_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \Xi_{n}$ by
- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and
- Using this, we see that $\pi: \mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$ is an equivalence of categories.
- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.
$>$ This feeds into the proof that $\mathrm{a}: \mathrm{C}^{[}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(\mathrm{NC})$ is an isomorphism of categories.

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor $\pi: \Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$.

It is easy to guess that this is an equivalence, but not trivial to prove.

- Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:

$$
\begin{array}{ll}
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.

- For $\theta \in \bar{\Xi}_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \bar{\Xi}_{n}$ by

- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and
- Using this, we see that $\pi: \mathrm{Ho}\left(\bar{\Xi}_{n}\right) \rightarrow[n]$ is an equivalence of categories.
- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.
> This feeds into the proof that $\mathrm{a}: \mathrm{C}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(\mathrm{NC})$ is an isomorphism of categories.

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor π : $\Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \rightarrow[n]$.

It is easy to guess that this is an equivalence, but not trivial to prove.

- Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:

$$
\begin{array}{ll}
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and
- Using this, we see that $\pi: \mathrm{Ho}\left(\bar{\Xi}_{n}\right) \rightarrow[n]$ is an equivalence of categories.
- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.
\Rightarrow This feeds into the proof that $\mathrm{a}: \mathrm{C}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(N C)$ is an isomorphism of categories.

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor π : $\Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$.

It is easy to guess that this is an equivalence, but not trivial to prove.

- Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:

$$
\begin{array}{ll}
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- For $\theta \in \bar{\Xi}_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \Xi_{n}$ by

$$
\begin{aligned}
& p_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma|>k\} \\
& q_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma| \geq k\} .
\end{aligned}
$$

\Rightarrow Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\bar{\Xi}_{n}, \bar{\Xi}_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and

- Using this, we see that $\pi: \mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$ is an equivalence of categories.
- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to
make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that $\alpha: \mathcal{C}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(N C)$ is an isomorphism of categories.

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor π : $\Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$.

It is easy to guess that this is an equivalence, but not trivial to prove.

- Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:

$$
\begin{array}{ll}
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- For $\theta \in \bar{\Xi}_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \Xi_{n}$ by

$$
\begin{aligned}
& p_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma|>k\} \\
& q_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma| \geq k\} .
\end{aligned}
$$

- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and

$$
\omega \circ \pi \geq p_{0} \leq q_{1} \geq p_{1} \leq q_{2} \geq \cdots \geq p_{n-1} \leq q_{n} \geq p_{n}=1,
$$

- Using this, we see that $\pi: \mathrm{Ho}\left(\bar{\Xi}_{n}\right) \rightarrow[n]$ is an equivalence of categories.
- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to
make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.
\downarrow This feeds into the proof that $\mathrm{a}: \mathrm{C}_{\mathrm{Cw}}{ }^{-1} \mathrm{]} \rightarrow \mathrm{Ho}(\mathrm{NC})$ is an isomorphism of categories.

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor $\pi: \Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$.

It is easy to guess that this is an equivalence, but not trivial to prove.

- Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:

$$
\begin{array}{ll}
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- For $\theta \in \Xi_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \Xi_{n}$ by

$$
\begin{aligned}
& p_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma|>k\} \\
& q_{k}(\theta)=\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma| \geq k\}
\end{aligned}
$$

- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and

$$
\omega \circ \pi \geq p_{0} \leq q_{1} \geq p_{1} \leq q_{2} \geq \cdots \geq p_{n-1} \leq q_{n} \geq p_{n}=1
$$

- Using this, we see that $\pi: \operatorname{Ho}\left(\Xi_{n}\right) \rightarrow[n]$ is an equivalence of categories.
make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor $\pi: \Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$.

It is easy to guess that this is an equivalence, but not trivial to prove.

- Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:

$$
\begin{array}{ll}
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- For $\theta \in \Xi_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \Xi_{n}$ by

$$
\begin{aligned}
p_{k}(\theta) & =\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma|>k\} \\
q_{k}(\theta) & =\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma| \geq k\}
\end{aligned}
$$

- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and

$$
\omega \circ \pi \geq p_{0} \leq q_{1} \geq p_{1} \leq q_{2} \geq \cdots \geq p_{n-1} \leq q_{n} \geq p_{n}=1
$$

- Using this, we see that $\pi: \operatorname{Ho}\left(\Xi_{n}\right) \rightarrow[n]$ is an equivalence of categories.
- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

- The functor $\pi: \Xi_{n} \rightarrow[n]$ induces $\mathrm{Ho}\left(\Xi_{n}\right) \rightarrow[n]$.

It is easy to guess that this is an equivalence, but not trivial to prove.

- Define $\omega:[n] \rightarrow \Xi_{n}$ by $\omega(k)=\{[j, n] \mid 0 \leq j \leq k\}$, so for $n=3$:

$$
\begin{array}{ll}
\omega(0)=\{\{0,1,2,3\}\} & \omega(1)=\{\{1,2,3\},\{0,1,2,3\}\} \\
\omega(2)=\{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3)=\{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{array}
$$

- This is a poset map with $\pi \circ \omega=1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq[n]$ put $\rho(\sigma)=[\min (\sigma), n]$.
- For $\theta \in \Xi_{n}$ define $p_{k}(\theta), q_{k}(\theta) \in \Xi_{n}$ by

$$
\begin{aligned}
p_{k}(\theta) & =\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma|>k\} \\
q_{k}(\theta) & =\{\sigma|\sigma \in \theta,|\sigma| \leq k\} \cup\{\rho(\sigma)|\sigma \in \theta,|\sigma| \geq k\}
\end{aligned}
$$

- Then $p_{k}, q_{k} \in \operatorname{RelPos}\left(\Xi_{n}, \Xi_{n}\right)$ with $\pi \circ p_{k}=\pi \circ q_{k}=\pi$ and

$$
\omega \circ \pi \geq p_{0} \leq q_{1} \geq p_{1} \leq q_{2} \geq \cdots \geq p_{n-1} \leq q_{n} \geq p_{n}=1
$$

- Using this, we see that $\pi: \operatorname{Ho}\left(\Xi_{n}\right) \rightarrow[n]$ is an equivalence of categories.
- Now define $\zeta:[n] \rightarrow \mathrm{Ho}\left(\Xi_{n}\right)$ by $\zeta(i)=\{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta=1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that $\alpha: \mathcal{C}\left[\mathrm{we}^{-1}\right] \rightarrow \mathrm{Ho}(N C)$ is an isomorphism of categories.

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\bar{E}_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\bar{E}_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\bar{E}_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{E}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\bar{\Xi}_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\mathrm{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

$\operatorname{Ho}\left(\Xi_{n}\right) \simeq[n]$

The left adjoint $K:$ sSet \rightarrow RelCat

- Theorem: There is a functor $K:$ sSet \rightarrow RelCat, left adjoint to $N:$ RelCat \rightarrow sSet, with $K(X)\left[\mathrm{we}^{-1}\right] \simeq \mathrm{Ho}(X)$. Moreover, $K(X)$ is actually a poset.
- Morally, $K(X)$ is defined as a certain colimit of \bar{E}_{n} 's; but colimits of categories are generally hard to handle.
\Rightarrow In this case the final answer is not too bad, although it takes substantial work to prove that.

$$
\begin{aligned}
& \text { Put } \Xi_{n}^{\top}=\left\{\theta \in \Xi_{n} \mid[n] \in \theta\right\} \text { (the interior of } \Xi_{n} \text {). } \\
& \text { Put } N D(X)_{n}=\{\text { nondegenerate } n \text {-simplices }\} \text {. } \\
& \text { Then } K(X)=\coprod_{n} N D(X)_{n} \times \Xi_{n}^{\top} \\
& \text { (with appropriate structure as a relative poset). }
\end{aligned}
$$

- Maximally degenerate example: X_{n} is the set of partitions of $[n]$ into intervals. There is a unique nondegenerate simplex in every degree.

The left adjoint $K:$ sSet \rightarrow RelCat

- Theorem: There is a functor $K:$ sSet \rightarrow RelCat, left adjoint to $N:$ RelCat \rightarrow sSet, with $K(X)\left[\mathrm{we}^{-1}\right] \simeq \mathrm{Ho}(X)$. Moreover, $K(X)$ is actually a poset.
- Morally, $K(X)$ is defined as a certain colimit of Ξ_{n} 's; but colimits of categories are generally hard to handle
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\bar{E}_{n}^{\top}=\left\{\theta \in \bar{Z}_{n} \mid[n] \in \theta\right\}$ (the interior of \bar{E}_{n})
Put $N D(X)_{n}=\{$ nondegenerate n - simplices $\}$
Then $K(X)=I I_{n} N D(X)_{n} \times \Xi_{n}^{\top}$
(with appropriate structure as a relative poset)

- Maximally degenerate example: X_{n} is the set of partitions of [n] into intervals. There is a unique nondegenerate simplex in every degree.

The left adjoint $K:$ sSet \rightarrow RelCat

- Theorem: There is a functor $K:$ sSet \rightarrow RelCat, left adjoint to $N: \operatorname{RelCat} \rightarrow \mathrm{sSet}$, with $K(X)\left[\mathrm{we}^{-1}\right] \simeq \mathrm{Ho}(X)$. Moreover, $K(X)$ is actually a poset.

```
> Morally, K(X) is defined as a certain colimit of 淐's;
but colimits of categories are generally hard to handle
| In this case the final ansmer is not too bad, although it takes substantial
work to prove that.
```

Put $\bar{\Xi}_{n}^{\top}=\left\{\theta \in \bar{\Xi}_{n} \mid[n] \in \theta\right\}$ (the interior of $\bar{\Xi}_{n}$)
Put $N D(X)_{n}=\{$ nondegenerate n - simplices $\}$
Then $K(X)=\amalg_{n} N D(X)_{n} \times$ 三 $_{n}^{\top}$
(with appropriate structure as a relative poset).

- Maximally degenerate example: X_{n} is the set of partitions of $[n]$ into intervals. There is a unique nondegenerate simplex in every degree.

The left adjoint $K:$ sSet \rightarrow RelCat

- Theorem: There is a functor $K:$ sSet \rightarrow RelCat, left adjoint to $N: \operatorname{RelCat} \rightarrow \mathrm{sSet}$, with $K(X)\left[\mathrm{we}^{-1}\right] \simeq \mathrm{Ho}(X)$. Moreover, $K(X)$ is actually a poset.
- Morally, $K(X)$ is defined as a certain colimit of $\bar{\Xi}_{n}$'s; but colimits of categories are generally hard to handle.
\rightarrow In this case the final answer is not too bad, although it takes substantial
work to prove that.

Put $\Xi_{n}^{\top}=\left\{\theta \in \Xi_{n} \mid[n] \in \theta\right\}$ (the interior of Ξ_{n})
Put $N D(X)_{n}=\{$ nondegenerate n - simplices $\}$
Then $K(X)=\coprod_{n} N D(X)_{n} \times$ 三 $_{n}^{\top}$
(with appropriate structure as a relative poset).

- Maximally degenerate example: X_{n} is the set of partitions of $[n]$ into intervals. There is a unique nondegenerate simplex in every degree.

The left adjoint $K:$ sSet \rightarrow RelCat

- Theorem: There is a functor $K:$ sSet \rightarrow RelCat, left adjoint to $N:$ RelCat \rightarrow sSet, with $K(X)\left[\mathrm{we}^{-1}\right] \simeq \mathrm{Ho}(X)$. Moreover, $K(X)$ is actually a poset.
- Morally, $K(X)$ is defined as a certain colimit of Ξ_{n} 's; but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_{n}^{\top}=\left\{\theta \in \Xi_{n} \mid[n] \in \theta\right\}$ (the interior of Ξ_{n}).
Put $N D(X)_{n}=\{$ nondegenerate n - simplices $\}$
Then $K(X)=L_{n} N D(X)_{n} \times \bar{\Xi}_{n}^{\top}$
(with appropriate structure as a relative poset).

- Maximally degenerate example: X_{n} is the set of partitions of $[n]$ into intervals. There is a unique nondegenerate simplex in every degree.

The left adjoint $K:$ sSet \rightarrow RelCat

- Theorem: There is a functor $K:$ sSet \rightarrow RelCat, left adjoint to $N: \operatorname{RelCat} \rightarrow \mathrm{sSet}$, with $K(X)\left[\mathrm{we}^{-1}\right] \simeq \mathrm{Ho}(X)$. Moreover, $K(X)$ is actually a poset.
- Morally, $K(X)$ is defined as a certain colimit of \equiv_{n} 's; but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_{n}^{\top}=\left\{\theta \in \Xi_{n} \mid[n] \in \theta\right\}$ (the interior of Ξ_{n}).
Put $N D(X)_{n}=\{$ nondegenerate n - simplices $\}$.
Then $K(X)=\coprod_{n} N D(X)_{n} \times \bar{\Xi}_{n}^{\top}$
(with appropriate structure as a relative poset).

\rightarrow Maximally degenerate example: X_{n} is the set of partitions of $[n]$ into intervals. There is a unique nondegenerate simplex in every degree.

The left adjoint $K:$ sSet \rightarrow RelCat

- Theorem: There is a functor $K:$ sSet \rightarrow RelCat, left adjoint to $N: \operatorname{RelCat} \rightarrow \mathrm{sSet}$, with $K(X)\left[\mathrm{we}^{-1}\right] \simeq \mathrm{Ho}(X)$. Moreover, $K(X)$ is actually a poset.
- Morally, $K(X)$ is defined as a certain colimit of Ξ_{n} 's; but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\bar{\Xi}_{n}^{\top}=\left\{\theta \in \bar{\Xi}_{n} \mid[n] \in \theta\right\}$ (the interior of $\bar{\Xi}_{n}$).
Put $N D(X)_{n}=\{$ nondegenerate n - simplices $\}$.
Then $K(X)=\coprod_{n} N D(X)_{n} \times \Xi_{n}^{\top}$
(with appropriate structure as a relative poset).

- Maximally degenerate example: X_{n} is the set of partitions of [n] into intervals.

There is a unique nondegenerate simplex in every degree.

The left adjoint $K:$ sSet \rightarrow RelCat

- Theorem: There is a functor $K:$ sSet \rightarrow RelCat, left adjoint to $N: \operatorname{RelCat} \rightarrow \mathrm{sSet}$, with $K(X)\left[\mathrm{we}^{-1}\right] \simeq \mathrm{Ho}(X)$. Moreover, $K(X)$ is actually a poset.
- Morally, $K(X)$ is defined as a certain colimit of Ξ_{n} 's; but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\bar{\Xi}_{n}^{\top}=\left\{\theta \in \bar{\Xi}_{n} \mid[n] \in \theta\right\}$ (the interior of $\bar{\Xi}_{n}$).
Put $N D(X)_{n}=\{$ nondegenerate n - simplices $\}$.
Then $K(X)=\coprod_{n} N D(X)_{n} \times \Xi_{n}^{\top}$
(with appropriate structure as a relative poset).

- Maximally degenerate example: X_{n} is the set of partitions of [n] into intervals. There is a unique nondegenerate simplex in every degree.

Sketch of construction of $K(X)$

- Given a simplicial set X, we construct a relative category $\widetilde{K}(X)$ with a class of "strong equivalences" contained in the weak equivalences.
$\Rightarrow K(X)$ is the quotient of $K(X)$ in which strong equivalences become identities.
- An object $a \in K(X)$ is a pair $\left(x_{a}, \theta_{a}\right)$ with $x_{a} \in X_{n_{a}}$ and $\theta_{a} \in \equiv_{n_{a}}$.
\Rightarrow A morphism is $u \in \Delta\left(n_{a}, n_{b}\right)$ with $u^{*} x_{b}=x_{a}$ and $u_{\#}\left(\theta_{a}\right) \leq \theta_{b}$.
- This is a weak equivalence if $\pi\left(u_{\#}\left(\theta_{a}\right)\right)=\pi\left(\theta_{b}\right)$, and a strong equivalence iff $u_{\#}\left(\theta_{a}\right)=\theta_{b}$.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

Sketch of construction of $K(X)$

- Given a simplicial set X, we construct a relative category $\widetilde{K}(X)$ with a class of "strong equivalences" contained in the weak equivalences.
- $K(X)$ is the quotient of $\widetilde{K}(X)$ in which strong equivalences become identities.
- An object $a \in K(X)$ is a pair ($\left(x_{a}, \theta_{a}\right)$ with $x_{a} \in X_{n_{a}}$ and $\theta_{a} \in \bar{\Xi}_{n_{a}}$.
- A morphism is $u \in \boldsymbol{\Delta}\left(n_{a}, n_{b}\right)$ with $u^{*} x_{b}=x_{a}$ and $u_{\#}\left(\theta_{a}\right) \leq \theta_{b}$.
- This is a weak equivalence if $\pi\left(u_{\#}\left(\theta_{a}\right)\right)=\pi\left(\theta_{b}\right)$, and a strong equivalence iff $u_{\#}\left(\hat{\theta}_{a}\right)=\hat{\theta}_{b}$.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

Sketch of construction of $K(X)$

- Given a simplicial set X, we construct a relative category $\widetilde{K}(X)$ with a class of "strong equivalences" contained in the weak equivalences.
- $K(X)$ is the quotient of $K(X)$ in which strong equivalences become identities.
- An object $a \in K(X)$ is a pair $\left(x_{a}, \theta_{a}\right)$ with $x_{a} \in X_{n_{a}}$ and $\theta_{a} \in \equiv_{n_{a}}$
- A morphism is $u \in \Delta\left(n_{a}, n_{b}\right)$ with $u^{*} x_{b}=x_{a}$ and $u_{\#}\left(\theta_{a}\right) \leq \theta_{b}$.
- This is a weak equivalence if $\pi\left(u_{\#}\left(\theta_{a}\right)\right)=\pi\left(\theta_{b}\right)$, and a strong equivalence iff $u_{\#}\left(\theta_{a}\right)=\theta_{b}$.
\rightarrow Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

Sketch of construction of $K(X)$

- Given a simplicial set X, we construct a relative category $\widetilde{K}(X)$ with a class of "strong equivalences" contained in the weak equivalences.
- $K(X)$ is the quotient of $\widetilde{K}(X)$ in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair $\left(x_{a}, \theta_{a}\right)$ with $x_{a} \in X_{n_{a}}$ and $\theta_{a} \in \bar{\Xi}_{n_{a}}$
- A morphism is $u \in \boldsymbol{\Delta}\left(n_{a}, n_{b}\right)$ with $u^{*} x_{b}=x_{a}$ and $u_{\#}\left(\theta_{a}\right) \leq \theta_{b}$.
- This is a weak equivalence if $\pi\left(u_{\#}\left(\theta_{a}\right)\right)=\pi\left(\theta_{b}\right)$, and a strong equivalence iff $u_{\#}\left(\theta_{a}\right)=\theta_{b}$.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism

Sketch of construction of $K(X)$

- Given a simplicial set X, we construct a relative category $\widetilde{K}(X)$ with a class of "strong equivalences" contained in the weak equivalences.
- $K(X)$ is the quotient of $\widetilde{K}(X)$ in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair $\left(x_{a}, \theta_{a}\right)$ with $x_{a} \in X_{n_{a}}$ and $\theta_{a} \in \bar{\Xi}_{n_{a}}$.
- This is a weak equivalence if $\pi\left(u_{\#}\left(\theta_{a}\right)\right)=\pi\left(\theta_{b}\right)$, and a strong equivalence iff $u_{\#}\left(\theta_{a}\right)=\theta_{b}$.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism

Sketch of construction of $K(X)$

- Given a simplicial set X, we construct a relative category $\widetilde{K}(X)$ with a class of "strong equivalences" contained in the weak equivalences.
- $K(X)$ is the quotient of $\widetilde{K}(X)$ in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair (x_{a}, θ_{a}) with $x_{a} \in X_{n_{a}}$ and $\theta_{a} \in \Xi_{n_{a}}$.
- A morphism is $u \in \boldsymbol{\Delta}\left(n_{a}, n_{b}\right)$ with $u^{*} x_{b}=x_{a}$ and $u_{\#}\left(\theta_{a}\right) \leq \theta_{b}$.
- This is a weak equivalence if $\pi\left(u_{\#}\left(\theta_{a}\right)\right)=\pi\left(\theta_{b}\right)$, and a strong equivalence
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

Sketch of construction of $K(X)$

- Given a simplicial set X, we construct a relative category $\widetilde{K}(X)$ with a class of "strong equivalences" contained in the weak equivalences.
- $K(X)$ is the quotient of $\widetilde{K}(X)$ in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair (x_{a}, θ_{a}) with $x_{a} \in X_{n_{a}}$ and $\theta_{a} \in \Xi_{n_{a}}$.
- A morphism is $u \in \boldsymbol{\Delta}\left(n_{a}, n_{b}\right)$ with $u^{*} x_{b}=x_{a}$ and $u_{\#}\left(\theta_{a}\right) \leq \theta_{b}$.
- This is a weak equivalence if $\pi\left(u_{\#}\left(\theta_{a}\right)\right)=\pi\left(\theta_{b}\right)$, and a strong equivalence iff $u_{\#}\left(\theta_{a}\right)=\theta_{b}$.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism

Sketch of construction of $K(X)$

- Given a simplicial set X, we construct a relative category $\widetilde{K}(X)$ with a class of "strong equivalences" contained in the weak equivalences.
- $K(X)$ is the quotient of $\widetilde{K}(X)$ in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair $\left(x_{a}, \theta_{a}\right)$ with $x_{a} \in X_{n_{a}}$ and $\theta_{a} \in \Xi_{n_{a}}$.
- A morphism is $u \in \boldsymbol{\Delta}\left(n_{a}, n_{b}\right)$ with $u^{*} x_{b}=x_{a}$ and $u_{\#}\left(\theta_{a}\right) \leq \theta_{b}$.
- This is a weak equivalence if $\pi\left(u_{\#}\left(\theta_{a}\right)\right)=\pi\left(\theta_{b}\right)$, and a strong equivalence iff $u_{\#}\left(\theta_{a}\right)=\theta_{b}$.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

The pullback lemma

Suppose we have morphisms $[n] \stackrel{u}{\rightarrow}[k] \stackrel{v}{\leftarrow}[m]$ in $\boldsymbol{\Delta}$ ，where u is injective and v is surjective．Then there is a commutative square in $\boldsymbol{\Delta}$ as shown on the left below，which is a pullback in $\boldsymbol{\Delta}$ or in the category of sets；and the resulting diagram as shown on the right is also a pullback．

$$
\begin{aligned}
& \text { 三/ } \succ^{\widetilde{u}_{\#}} \text { 三 }_{m} \\
& \widetilde{v}_{\#} \downarrow \quad v_{\#} \\
& \text { 三 }_{n} \succ_{u_{\#}} \text { 三 }_{k}
\end{aligned}
$$

Extension properties

- $\Lambda_{k} \bar{\Xi}_{n}=$ union of faces of $\bar{\Xi}_{n}$ except k^{\prime} th face $=\left\{\theta \in \bar{\Xi}_{n} \mid[n],\{k\}^{c} \notin \theta\right\}$. $\Lambda_{k}^{+} \Xi_{n}=\left\{\theta \in \Xi_{n} \mid\{k\}^{c} \notin \theta\right\}$.

$$
\Lambda_{1} \bar{\Xi}_{2}
$$

- $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ (with $0<k<n$) can be extended over Ξ_{n}.
$\Rightarrow \Lambda_{k} \bar{\Xi}_{n}$ is not a retract of $\bar{\Xi}_{n}$, so NC is not always a quasicategory.
- However, $\Lambda_{k}^{+} \Xi_{n}$ is a retract of Ξ_{n}, so $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ can be extended over $\Lambda_{k}^{+} \bar{\Xi}_{n}$.
$\rightarrow \Lambda_{k}^{+} \bar{\Xi}_{n}$ is $[1] \times \Lambda_{k} \bar{\Xi}_{n}$ union a cone under $\{1\} \times \Lambda_{k} \bar{\Xi}_{n}$.
- If \mathcal{C} has a model structure, we can make the required extension by fibrantly replacing the diagram $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

Extension properties

- $\Lambda_{k} \Xi_{n}=$ union of faces of Ξ_{n} except k^{\prime} th face $=\left\{\theta \in \Xi_{n} \mid[n],\{k\}^{c} \notin \theta\right\}$. $\Lambda_{k}^{+} \bar{\Xi}_{n}=\left\{\theta \in \Xi_{n} \mid\{k\}^{c} \notin \theta\right\}$.

$\rightarrow N C$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow C$ (with $0<k<n$) can be extended over Ξ_{n}.
$\rightarrow \Lambda_{1} \bar{Z}_{n}$ is not a retract of Ξ_{n}, so NC is not always a quasicategory.
\rightarrow However, $\Lambda_{k}^{+} \bar{Z}_{n}$ is a retract of Ξ_{n}, so $N C$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ can be extended over $\Lambda_{k}^{+} \Xi_{n}$.
$\rightarrow \Lambda_{k}^{+} \Xi_{n}$ is $[1] \times \Lambda_{k} \Xi_{n}$ union a cone under $\{1\} \times \Lambda_{k} \Xi_{n}$.
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram $u: \Lambda_{k} \bar{\Xi}_{n} \rightarrow \mathcal{C}$ and taking its inverse limit.
\rightarrow As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

Extension properties

- $\Lambda_{k} \bar{\Xi}_{n}=$ union of faces of Ξ_{n} except k^{\prime} th face $=\left\{\theta \in \Xi_{n} \mid[n],\{k\}^{c} \notin \theta\right\}$. $\Lambda_{k}^{+} \Xi_{n}=\left\{\theta \in \Xi_{n} \mid\{k\}^{c} \notin \theta\right\}$.

- $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ (with $0<k<n$) can be extended over $\bar{\Xi}_{n}$.
$\rightarrow \Lambda_{k} \Xi_{n}$ is not a retract of Ξ_{n}, so $N C$ is not always a quasicategory
\rightarrow However, $\Lambda_{k}^{+} \Xi_{n}$ is a retract of Ξ_{n}, so $N C$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ can be extended over $\Lambda_{k}^{+} \Xi_{n}$.
$\rightarrow \wedge_{k}^{+} \bar{Z}_{n}$ is $[1] \times \wedge_{k} \bar{\Xi}_{n}$ union a cone under $\{1\} \times \wedge_{k} \bar{\Xi}_{n}$.
- If \mathcal{C} has a model structure, we can make the required extension by fibrantly replacing the diagram $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ and taking its inverse limit.
\rightarrow As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

Extension properties

- $\Lambda_{k} \bar{\Xi}_{n}=$ union of faces of Ξ_{n} except k^{\prime} th face $=\left\{\theta \in \Xi_{n} \mid[n],\{k\}^{c} \notin \theta\right\}$. $\Lambda_{k}^{+} \Xi_{n}=\left\{\theta \in \Xi_{n} \mid\{k\}^{c} \notin \theta\right\}$.

- $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ (with $0<k<n$) can be extended over Ξ_{n}.
- $\Lambda_{k} \Xi_{n}$ is not a retract of Ξ_{n}, so $N \mathcal{C}$ is not always a quasicategory.
\rightarrow However, $\Lambda_{k}^{+} \bar{Z}_{n}$ is a retract of Ξ_{n}, so $N C$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ can be extended over $\Lambda_{k}^{+} \Xi_{n}$.
$\rightarrow \Lambda_{k}^{+} \Xi_{n}$ is $[1] \times \Lambda_{k} \Xi_{n}$ union a cone under $\{1\} \times \Lambda_{k} \bar{Z}_{n}$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ and taking its inverse limit.
- As we have diagrams of a snecific shane, we can assume less than a model structure and be more explicit.

Extension properties

- $\Lambda_{k} \Xi_{n}=$ union of faces of Ξ_{n} except k^{\prime} th face $=\left\{\theta \in \Xi_{n} \mid[n],\{k\}^{c} \notin \theta\right\}$. $\Lambda_{k}^{+} \Xi_{n}=\left\{\theta \in \Xi_{n} \mid\{k\}^{c} \notin \theta\right\}$.

- $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ (with $0<k<n$) can be extended over Ξ_{n}.
- $\Lambda_{k} \Xi_{n}$ is not a retract of Ξ_{n}, so $N C$ is not always a quasicategory.
- However, $\Lambda_{k}^{+} \Xi_{n}$ is a retract of Ξ_{n}, so $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ can be extended over $\Lambda_{k}^{+} \bar{\Xi}_{n}$.
$\Rightarrow \Lambda_{k}^{+} \bar{Z}_{n}$ is $[1] \times \Lambda_{k} \Xi_{n}$ union a cone under $\{1\} \times \Lambda_{k} \Xi_{n}$.
- If \mathcal{C} has a model structure, we can make the required extension by fibrantly replacing the diagram $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ and taking its inverse limit.
\rightarrow As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

Extension properties

- $\Lambda_{k} \bar{\Xi}_{n}=$ union of faces of Ξ_{n} except k^{\prime} th face $=\left\{\theta \in \Xi_{n} \mid[n],\{k\}^{c} \notin \theta\right\}$. $\Lambda_{k}^{+} \Xi_{n}=\left\{\theta \in \Xi_{n} \mid\{k\}^{c} \notin \theta\right\}$.

- $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ (with $0<k<n$) can be extended over Ξ_{n}.
- $\Lambda_{k} \Xi_{n}$ is not a retract of Ξ_{n}, so $N C$ is not always a quasicategory.
- However, $\Lambda_{k}^{+} \Xi_{n}$ is a retract of Ξ_{n}, so $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ can be extended over $\Lambda_{k}^{+} \bar{\Xi}_{n}$.
- $\Lambda_{k}^{+} \Xi_{n}$ is $[1] \times \Lambda_{k} \Xi_{n}$ union a cone under $\{1\} \times \Lambda_{k} \Xi_{n}$.
\rightarrow If C has a model structure, we can make the required extension by fibrantly replacing the diagram $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ and taking its inverse limit.
- As we have diagrams of a snecific shane, we can assume less than a model structure and be more explicit.

Extension properties

- $\Lambda_{k} \bar{\Xi}_{n}=$ union of faces of $\bar{\Xi}_{n}$ except k^{\prime} th face $=\left\{\theta \in \Xi_{n} \mid[n],\{k\}^{c} \notin \theta\right\}$. $\Lambda_{k}^{+} \Xi_{n}=\left\{\theta \in \Xi_{n} \mid\{k\}^{c} \notin \theta\right\}$.

- $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ (with $0<k<n$) can be extended over Ξ_{n}.
- $\Lambda_{k} \Xi_{n}$ is not a retract of Ξ_{n}, so $N \mathcal{C}$ is not always a quasicategory.
- However, $\Lambda_{k}^{+} \Xi_{n}$ is a retract of Ξ_{n}, so $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ can be extended over $\Lambda_{k}^{+} \bar{\Xi}_{n}$.
- $\Lambda_{k}^{+} \Xi_{n}$ is $[1] \times \Lambda_{k} \Xi_{n}$ union a cone under $\{1\} \times \Lambda_{k} \Xi_{n}$.
- If \mathcal{C} has a model structure, we can make the required extension by fibrantly replacing the diagram $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ and taking its inverse limit.
\rightarrow As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

Extension properties

- $\Lambda_{k} \bar{\Xi}_{n}=$ union of faces of $\bar{\Xi}_{n}$ except k^{\prime} th face $=\left\{\theta \in \Xi_{n} \mid[n],\{k\}^{c} \notin \theta\right\}$. $\Lambda_{k}^{+} \Xi_{n}=\left\{\theta \in \Xi_{n} \mid\{k\}^{c} \notin \theta\right\}$.

- $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ (with $0<k<n$) can be extended over Ξ_{n}.
- $\Lambda_{k} \Xi_{n}$ is not a retract of Ξ_{n}, so $N \mathcal{C}$ is not always a quasicategory.
- However, $\Lambda_{k}^{+} \Xi_{n}$ is a retract of Ξ_{n}, so $N \mathcal{C}$ is a quasicategory iff every $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ can be extended over $\Lambda_{k}^{+} \bar{\Xi}_{n}$.
- $\Lambda_{k}^{+} \Xi_{n}$ is $[1] \times \Lambda_{k} \Xi_{n}$ union a cone under $\{1\} \times \Lambda_{k} \Xi_{n}$.
- If \mathcal{C} has a model structure, we can make the required extension by fibrantly replacing the diagram $u: \Lambda_{k} \Xi_{n} \rightarrow \mathcal{C}$ and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

Further topics

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

Further topics

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

Further topics

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

Further topics

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
$>$ Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

Further topics

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

Further topics

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

