Double subdivision of relative categories

Neil Strickland

February 9, 2024

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For n ∈ N we have a poset [n] = {0,..., n}. Posets can be regarded as categories, with one morphism from x to y if x ≤ y, and none otherwise.
- For any category C, we have a simplicial set NC with $(NC)_n = Cat([n], C)$.
- Simplicial sets arising this way are precisely those with *unique* fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category Ho(X) with $obj(Ho(X)) = X_0$, morphisms generated by X_1 , one relation $d_1(u) = d_0(u) \circ d_2(u)$ for each $u \in X_2$.

- This satisfies Cat(Ho(X), C) = sSet(X, NC) for all categories C, i.e. Ho: sSet → Cat is left adjoint to N: Cat → sSet. Also Ho(NC) ≃ C.
- The category Ho(X) is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For n∈ N we have a poset [n] = {0,...,n}. Posets can be regarded as categories, with one morphism from x to y if x ≤ y, and none otherwise.
- For any category C, we have a simplicial set NC with $(NC)_n = Cat([n], C)$.
- Simplicial sets arising this way are precisely those with *unique* fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category Ho(X) with $obj(Ho(X)) = X_0$, morphisms generated by X_1 , one relation $d_1(u) = d_0(u) \circ d_2(u)$ for each $u \in X_2$.

- This satisfies Cat(Ho(X), C) = sSet(X, NC) for all categories C, i.e. Ho: sSet → Cat is left adjoint to N: Cat → sSet. Also Ho(NC) ≃ C.
- The category Ho(X) is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

- Recall: a *quasicategory* is simplicial set with fillers for all inner horns.
- For n ∈ N we have a poset [n] = {0,...,n}. Posets can be regarded as categories, with one morphism from x to y if x ≤ y, and none otherwise.
- For any category C, we have a simplicial set NC with $(NC)_n = Cat([n], C)$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category Ho(X) with $obj(Ho(X)) = X_0$, morphisms generated by X_1 , one relation $d_1(u) = d_0(u) \circ d_2(u)$ for each $u \in X_2$.

- ▶ This satisfies Cat(Ho(X), C) = sSet(X, NC) for all categories C, i.e. Ho: $sSet \rightarrow Cat$ is left adjoint to N: $Cat \rightarrow sSet$. Also $Ho(NC) \simeq C$.
- The category Ho(X) is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For n ∈ N we have a poset [n] = {0,...,n}. Posets can be regarded as categories, with one morphism from x to y if x ≤ y, and none otherwise.
- ▶ For any category C, we have a simplicial set NC with $(NC)_n = Cat([n], C)$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category Ho(X) with $obj(Ho(X)) = X_0$, morphisms generated by X_1 , one relation $d_1(u) = d_0(u) \circ d_2(u)$ for each $u \in X_2$.

- This satisfies Cat(Ho(X), C) = sSet(X, NC) for all categories C, i.e. Ho: sSet → Cat is left adjoint to N: Cat → sSet. Also Ho(NC) ≃ C.
- The category Ho(X) is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For n∈ N we have a poset [n] = {0,...,n}. Posets can be regarded as categories, with one morphism from x to y if x ≤ y, and none otherwise.
- For any category C, we have a simplicial set NC with $(NC)_n = Cat([n], C)$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category Ho(X) with $obj(Ho(X)) = X_0$, morphisms generated by X_1 , one relation $d_1(u) = d_0(u) \circ d_2(u)$ for each $u \in X_2$.

- ▶ This satisfies Cat(Ho(X), C) = sSet(X, NC) for all categories C, i.e. Ho: $sSet \rightarrow Cat$ is left adjoint to N: $Cat \rightarrow sSet$. Also $Ho(NC) \simeq C$.
- The category Ho(X) is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- For n ∈ N we have a poset [n] = {0,..., n}. Posets can be regarded as categories, with one morphism from x to y if x ≤ y, and none otherwise.
- For any category C, we have a simplicial set NC with $(NC)_n = Cat([n], C)$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category Ho(X) with $obj(Ho(X)) = X_0$, morphisms generated by X_1 , one relation $d_1(u) = d_0(u) \circ d_2(u)$ for each $u \in X_2$.

- This satisfies Cat(Ho(X), C) = sSet(X, NC) for all categories C, i.e. Ho: sSet → Cat is left adjoint to N: Cat → sSet. Also Ho(NC) ≃ C.
- The category Ho(X) is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- ▶ For $n \in \mathbb{N}$ we have a poset $[n] = \{0, ..., n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category C, we have a simplicial set NC with $(NC)_n = Cat([n], C)$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category Ho(X) with $obj(Ho(X)) = X_0$, morphisms generated by X_1 , one relation $d_1(u) = d_0(u) \circ d_2(u)$ for each $u \in X_2$.

This satisfies Cat(Ho(X), C) = sSet(X, NC) for all categories C, i.e. Ho: sSet → Cat is left adjoint to N: Cat → sSet. Also Ho(NC) ≃ C.

The category Ho(X) is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

- Recall: a quasicategory is simplicial set with fillers for all inner horns.
- ▶ For $n \in \mathbb{N}$ we have a poset $[n] = \{0, ..., n\}$. Posets can be regarded as categories, with one morphism from x to y if $x \leq y$, and none otherwise.
- For any category C, we have a simplicial set NC with $(NC)_n = Cat([n], C)$.
- Simplicial sets arising this way are precisely those with unique fillers for inner horns; so quasicategories are a generalisation of categories.
- For any simplicial set X, we have a homotopy category Ho(X) with $obj(Ho(X)) = X_0$, morphisms generated by X_1 , one relation $d_1(u) = d_0(u) \circ d_2(u)$ for each $u \in X_2$.

- This satisfies Cat(Ho(X), C) = sSet(X, NC) for all categories C, i.e. Ho: sSet → Cat is left adjoint to N: Cat → sSet. Also Ho(NC) ≃ C.
- The category Ho(X) is more closely related to X in the case where X is a quasicategory. In particular, each morphism can be represented by an edge.

- Problem: construct examples of quasicategories from natural input data.
- One construction is the *coherent nerve* of a simplicial/topological/differential graded category. But that is only appropriate when *all* objects of C are homotopically well-behaved.
- Often we start with a *relative category*, i.e. a category C with a class we ⊆ mor(C) of *weak equivalences* (containing all identities and closed under composition).
- ▶ We want to construct a relative nerve NC which should be a quasicategory with Ho(NC) = C[we⁻¹].
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

Problem: construct examples of quasicategories from natural input data.

- One construction is the *coherent nerve* of a simplicial/topological/differential graded category. But that is only appropriate when *all* objects of C are homotopically well-behaved.
- Often we start with a *relative category*, i.e. a category C with a class we ⊆ mor(C) of *weak equivalences* (containing all identities and closed under composition).
- We want to construct a relative nerve NC which should be a quasicategory with Ho(NC) = C[we⁻¹].
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

- Problem: construct examples of quasicategories from natural input data.
- One construction is the *coherent nerve* of a simplicial/topological/differential graded category. But that is only appropriate when *all* objects of C are homotopically well-behaved.
- Often we start with a *relative category*, i.e. a category C with a class we ⊆ mor(C) of *weak equivalences* (containing all identities and closed under composition).
- We want to construct a *relative nerve NC* which should be a quasicategory with Ho(NC) = C[we⁻¹].
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

- Problem: construct examples of quasicategories from natural input data.
- One construction is the *coherent nerve* of a simplicial/topological/differential graded category. But that is only appropriate when *all* objects of C are homotopically well-behaved.
- Often we start with a *relative category*, i.e. a category C with a class we ⊆ mor(C) of *weak equivalences* (containing all identities and closed under composition).
- We want to construct a relative nerve NC which should be a quasicategory with Ho(NC) = C[we⁻¹].
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

- Problem: construct examples of quasicategories from natural input data.
- One construction is the *coherent nerve* of a simplicial/topological/differential graded category. But that is only appropriate when *all* objects of C are homotopically well-behaved.
- Often we start with a *relative category*, i.e. a category C with a class we ⊆ mor(C) of *weak equivalences* (containing all identities and closed under composition).
- We want to construct a relative nerve NC which should be a quasicategory with Ho(NC) = C[we⁻¹].
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

- Problem: construct examples of quasicategories from natural input data.
- One construction is the *coherent nerve* of a simplicial/topological/differential graded category. But that is only appropriate when *all* objects of C are homotopically well-behaved.
- ► Often we start with a *relative category*, i.e. a category C with a class we ⊆ mor(C) of *weak equivalences* (containing all identities and closed under composition).
- We want to construct a relative nerve NC which should be a quasicategory with Ho(NC) = C[we⁻¹].
- Work of Lennart Meier (with many precursors) shows how to do this, but the proof of correctness is indirect and relies on a lot of literature. We seek a more direct argument.

► Ξ_n is the set of sets of the form $\theta = \{\sigma_0, \sigma_1, \dots, \sigma_r\}$, where $\emptyset \neq \sigma_0 \subset \sigma_1 \subset \dots \subset \sigma_r \subseteq [n].$

- Order this by $\theta \leq \theta'$ iff $\theta \subseteq \theta'$, and so regard Ξ_n as a category.
- Define nondecreasing $\pi : \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For $\theta \leq \theta'$, declare that $\theta \to \theta'$ is a weak equivalence iff $\pi(\theta) = \pi(\theta')$. This makes Ξ_n a relative category.
- For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ▶ This makes Ξ_{*} into a cosimplicial object in relative categories.
- ▶ Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(Ξ_n, C): this is the relative nerve.
- Suppose that C is discrete, i.e. we = $\{1_c \mid c \in obj(C)\}$. Then any relative functor $\Xi_n \to C$ factors uniquely through $\pi : \Xi_n \to [n]$, so NC is just the ordinary nerve.

► Ξ_n is the set of sets of the form $\theta = \{\sigma_0, \sigma_1, \dots, \sigma_r\}$, where $\emptyset \neq \sigma_0 \subset \sigma_1 \subset \dots \subset \sigma_r \subseteq [n].$

- Order this by $\theta \leq \theta'$ iff $\theta \subseteq \theta'$, and so regard Ξ_n as a category.
- Define nondecreasing $\pi \colon \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For $\theta \leq \theta'$, declare that $\theta \to \theta'$ is a weak equivalence iff $\pi(\theta) = \pi(\theta')$. This makes Ξ_n a relative category.
- For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ▶ This makes Ξ_{*} into a cosimplicial object in relative categories.
- ▶ Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(Ξ_n, C): this is the relative nerve.
- Suppose that C is discrete, i.e. we = $\{1_c \mid c \in obj(C)\}$. Then any relative functor $\Xi_n \to C$ factors uniquely through $\pi \colon \Xi_n \to [n]$, so NC is just the ordinary nerve.

► Ξ_n is the set of sets of the form $\theta = \{\sigma_0, \sigma_1, \dots, \sigma_r\}$, where $\emptyset \neq \sigma_0 \subset \sigma_1 \subset \dots \subset \sigma_r \subset [n].$

- Define nondecreasing $\pi \colon \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For $\theta \leq \theta'$, declare that $\theta \to \theta'$ is a weak equivalence iff $\pi(\theta) = \pi(\theta')$. This makes Ξ_n a relative category.
- For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ▶ This makes Ξ_{*} into a cosimplicial object in relative categories.
- ▶ Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(Ξ_n, C): this is the relative nerve.
- Suppose that C is discrete, i.e. we = $\{1_c \mid c \in obj(C)\}$. Then any relative functor $\Xi_n \to C$ factors uniquely through $\pi \colon \Xi_n \to [n]$, so NC is just the ordinary nerve.

► Ξ_n is the set of sets of the form $\theta = \{\sigma_0, \sigma_1, \dots, \sigma_r\}$, where $\emptyset \neq \sigma_0 \subset \sigma_1 \subset \dots \subset \sigma_r \subset [n].$

- Define nondecreasing $\pi: \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For $\theta \leq \theta'$, declare that $\theta \to \theta'$ is a weak equivalence iff $\pi(\theta) = \pi(\theta')$. This makes Ξ_n a relative category.
- For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ▶ This makes Ξ_{*} into a cosimplicial object in relative categories.
- ▶ Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(Ξ_n, C): this is the relative nerve.
- Suppose that C is discrete, i.e. we = $\{1_c \mid c \in obj(C)\}$. Then any relative functor $\Xi_n \to C$ factors uniquely through $\pi \colon \Xi_n \to [n]$, so NC is just the ordinary nerve.

$$\emptyset \neq \sigma_0 \subset \sigma_1 \subset \cdots \subset \sigma_r \subseteq [n].$$

- Define nondecreasing $\pi: \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For $\theta \leq \theta'$, declare that $\theta \to \theta'$ is a weak equivalence iff $\pi(\theta) = \pi(\theta')$. This makes Ξ_n a relative category.
- For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ► This makes Ξ_{*} into a cosimplicial object in relative categories.
- ▶ Thus, for a relative category C we can define a simplicial set NC by $(NC)_n = \text{RelCat}(\Xi_n, C)$: this is the relative nerve.
- Suppose that C is discrete, i.e. we = $\{1_c \mid c \in obj(C)\}$. Then any relative functor $\Xi_n \to C$ factors uniquely through $\pi \colon \Xi_n \to [n]$, so NC is just the ordinary nerve.

$$\emptyset \neq \sigma_0 \subset \sigma_1 \subset \cdots \subset \sigma_r \subseteq [n].$$

- Define nondecreasing $\pi: \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For $\theta \leq \theta'$, declare that $\theta \to \theta'$ is a weak equivalence iff $\pi(\theta) = \pi(\theta')$. This makes Ξ_n a relative category.
- ▶ For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ► This makes Ξ_{*} into a cosimplicial object in relative categories.
- ► Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(Ξ_n, C): this is the relative nerve.
- Suppose that C is discrete, i.e. we = {1_c | c ∈ obj(C)}. Then any relative functor Ξ_n → C factors uniquely through π: Ξ_n → [n], so NC is just the ordinary nerve.

$$\emptyset \neq \sigma_0 \subset \sigma_1 \subset \cdots \subset \sigma_r \subseteq [n].$$

• Order this by $\theta \leq \theta'$ iff $\theta \subseteq \theta'$, and so regard Ξ_n as a category.

- Define nondecreasing $\pi: \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For θ ≤ θ', declare that θ → θ' is a weak equivalence iff π(θ) = π(θ'). This makes Ξ_n a relative category.
- ► For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).

▶ This makes Ξ_{*} into a cosimplicial object in relative categories.

- ► Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(Ξ_n, C): this is the relative nerve.
- Suppose that C is discrete, i.e. we = {1_c | c ∈ obj(C)}. Then any relative functor Ξ_n → C factors uniquely through π: Ξ_n → [n], so NC is just the ordinary nerve.

$$\emptyset \neq \sigma_0 \subset \sigma_1 \subset \cdots \subset \sigma_r \subseteq [n].$$

- Define nondecreasing $\pi: \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For θ ≤ θ', declare that θ → θ' is a weak equivalence iff π(θ) = π(θ'). This makes Ξ_n a relative category.
- ► For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ▶ This makes Ξ_{*} into a cosimplicial object in relative categories.
- ► Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(Ξ_n, C): this is the relative nerve.
- Suppose that C is discrete, i.e. we = {1_c | c ∈ obj(C)}. Then any relative functor Ξ_n → C factors uniquely through π: Ξ_n → [n], so NC is just the ordinary nerve.

$$\emptyset \neq \sigma_0 \subset \sigma_1 \subset \cdots \subset \sigma_r \subseteq [n].$$

• Order this by $\theta \leq \theta'$ iff $\theta \subseteq \theta'$, and so regard Ξ_n as a category.

- Define nondecreasing $\pi: \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For θ ≤ θ', declare that θ → θ' is a weak equivalence iff π(θ) = π(θ'). This makes Ξ_n a relative category.
- ► For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ▶ This makes Ξ_{*} into a cosimplicial object in relative categories.
- ► Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(Ξ_n, C): this is the relative nerve.

Suppose that C is discrete, i.e. we = {1_c | c ∈ obj(C)}. Then any relative functor Ξ_n → C factors uniquely through π: Ξ_n → [n], so NC is just the ordinary nerve.

$$\emptyset \neq \sigma_0 \subset \sigma_1 \subset \cdots \subset \sigma_r \subseteq [n].$$

- Define nondecreasing $\pi: \Xi_n \to [n]$ by $\pi(\theta) = \min(\sigma_0) = \min(\bigcap \theta)$.
- For θ ≤ θ', declare that θ → θ' is a weak equivalence iff π(θ) = π(θ'). This makes Ξ_n a relative category.
- ► For $u \in \Delta(n, m)$ and $\emptyset \neq \sigma \subseteq [n]$ define $u_*(\sigma) = \{u(i) \mid i \in \sigma\}$.
- ▶ Then for $\theta \in \Xi_n$ put $u_{\#}(\theta) = \{u_*(\sigma) \mid \sigma \in \theta\}$. This is a relative functor $\Xi_n \to \Xi_m$ (with $\pi(u_{\#}(\theta)) = u(\pi(\theta))$).
- ▶ This makes Ξ_{*} into a cosimplicial object in relative categories.
- Thus, for a relative category C we can define a simplicial set NC by (NC)_n = RelCat(\(\mathbf{E}_n, C\)): this is the relative nerve.
- Suppose that C is discrete, i.e. we = {1_c | c ∈ obj(C)}. Then any relative functor Ξ_n → C factors uniquely through π: Ξ_n → [n], so NC is just the ordinary nerve.

- Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.
- This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.
- If u is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, $\alpha_0(u) = \alpha_2(u)$ and $\alpha_1(u) = \alpha_3(u)$ and these are inverse to each other; so α_2 extends to give $\alpha : C[we^{-1}] \to Ho(NC)$.
- Any edge $u \in (NC)_1$ gives morphisms $\bullet \stackrel{u_0}{\bullet} \bullet \stackrel{u_1}{\bullet} \bullet \stackrel{u_2}{\leftarrow} \bullet \stackrel{u_3}{\leftarrow} \bullet$ in C, and in Ho(NC) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.
- This extension α is an isomorphism of categories.

• Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.

This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.

If u is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

Theorem:

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, α₀(u) = α₂(u) and α₁(u) = α₃(u) and these are inverse to each other; so α₂ extends to give α: C[we⁻¹] → Ho(NC).
- Any edge $u \in (NC)_1$ gives morphisms $\bullet \stackrel{u_0}{\bullet} \bullet \stackrel{u_1}{\bullet} \bullet \stackrel{u_2}{\leftarrow} \bullet \stackrel{u_3}{\leftarrow} \bullet$ in C, and in Ho(NC) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.

• This extension α is an isomorphism of categories.

• Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.

This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.

If u is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

Theorem:

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, $\alpha_0(u) = \alpha_2(u)$ and $\alpha_1(u) = \alpha_3(u)$ and these are inverse to each other; so α_2 extends to give $\alpha : C[we^{-1}] \to Ho(NC)$.
- Any edge $u \in (NC)_1$ gives morphisms $\bullet \stackrel{u_0}{\bullet} \bullet \stackrel{u_1}{\bullet} \bullet \stackrel{u_2}{\leftarrow} \bullet \stackrel{u_3}{\leftarrow} \bullet$ in C, and in Ho(NC) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.
- This extension α is an isomorphism of categories.

• Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.

This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.

▶ If *u* is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

► Theorem:

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, α₀(u) = α₂(u) and α₁(u) = α₃(u) and these are inverse to each other; so α₂ extends to give α: C[we⁻¹] → Ho(NC).
- ▶ Any edge $u \in (NC)_1$ gives morphisms $\overset{u_0}{\bullet} \bullet \overset{u_1}{\leftarrow} \bullet \overset{u_2}{\leftarrow} \bullet \overset{u_3}{\leftarrow} \bullet$ in *C*, and in Ho(*NC*) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.
- This extension α is an isomorphism of categories.

- ▶ Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.
- This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.
- ▶ If *u* is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, $\alpha_0(u) = \alpha_2(u)$ and $\alpha_1(u) = \alpha_3(u)$ and these are inverse to each other; so α_2 extends to give $\alpha : C[we^{-1}] \to Ho(NC)$.
- ▶ Any edge $u \in (NC)_1$ gives morphisms $\overset{u_0}{\bullet} \bullet \overset{u_1}{\leftarrow} \bullet \overset{u_2}{\leftarrow} \bullet \overset{u_3}{\leftarrow} \bullet$ in *C*, and in Ho(*NC*) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.
- This extension α is an isomorphism of categories.

- Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.
- This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.
- ▶ If *u* is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, $\alpha_0(u) = \alpha_2(u)$ and $\alpha_1(u) = \alpha_3(u)$ and these are inverse to each other; so α_2 extends to give $\alpha : C[we^{-1}] \to Ho(NC)$.
- ▶ Any edge $u \in (NC)_1$ gives morphisms $\overset{u_0}{\bullet} \bullet \overset{u_1}{\leftarrow} \bullet \overset{u_2}{\leftarrow} \bullet \overset{u_3}{\leftarrow} \bullet$ in *C*, and in Ho(*NC*) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.
- This extension α is an isomorphism of categories.

- Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.
- This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.
- ▶ If *u* is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, α₀(u) = α₂(u) and α₁(u) = α₃(u) and these are inverse to each other; so α₂ extends to give α: C[we⁻¹] → Ho(NC).
- Any edge $u \in (NC)_1$ gives morphisms $\bullet \stackrel{u_0}{\bullet} \bullet \stackrel{u_1}{\bullet} \bullet \stackrel{u_2}{\leftarrow} \bullet \stackrel{u_3}{\leftarrow} \bullet$ in C, and in Ho(NC) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.
- This extension α is an isomorphism of categories.

- Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.
- This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.
- ▶ If *u* is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

► Theorem:

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, α₀(u) = α₂(u) and α₁(u) = α₃(u) and these are inverse to each other; so α₂ extends to give α: C[we⁻¹] → Ho(NC).
- Any edge $u \in (NC)_1$ gives morphisms $\bullet \stackrel{u_0}{\to} \bullet \stackrel{u_1}{\to} \bullet \stackrel{u_2}{\to} \bullet \stackrel{u_3}{\leftarrow} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_2}{\to} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_3}{\to} \bullet \stackrel{u_3}{\to} \stackrel{u_3}$

• This extension α is an isomorphism of categories.

- Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.
- This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.
- ▶ If *u* is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

► Theorem:

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, α₀(u) = α₂(u) and α₁(u) = α₃(u) and these are inverse to each other; so α₂ extends to give α: C[we⁻¹] → Ho(NC).
- Any edge $u \in (NC)_1$ gives morphisms $\overset{u_0}{\bullet} \bullet \overset{u_1}{\bullet} \bullet \overset{u_2}{\bullet} \bullet \overset{u_3}{\leftarrow} \bullet$ in C, and in Ho(NC) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.
- This extension α is an isomorphism of categories.

- Given $u: c \to d$ in C, we define $\alpha_2(u) \in (NC)_1$ (i.e. $\alpha_2(u): \Xi_1 \to C$) by $a_0, a_1, a_2 \mapsto c$ and $a_3, a_4 \mapsto d$ and $(a_2 \to a_3) \mapsto u$.
- This in turn gives a morphism in Ho(NC)(c, d), which we also call $\alpha_2(u)$.
- ▶ If *u* is a weak equivalence, we can also define $\alpha_0(u) \in Ho(NC)(c, d)$ and $\alpha_1(u), \alpha_3(u) \in Ho(C)(d, c)$ in a similar way.

► Theorem:

- α_2 is a functor $\mathcal{C} \to \text{Ho}(N\mathcal{C})$.
- When u is a weak equivalence, α₀(u) = α₂(u) and α₁(u) = α₃(u) and these are inverse to each other; so α₂ extends to give α: C[we⁻¹] → Ho(NC).
- Any edge $u \in (N\mathcal{C})_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in \mathcal{C} , and in Ho($N\mathcal{C}$) we have $u = \alpha(u_3)^{-1}\alpha(u_2)\alpha(u_1)^{-1}\alpha(u_0)$.
- This extension α is an isomorphism of categories.

The poset Ξ_2

The universal example of a relative category with a weak equivalence is i[1]. Any morphism $\Xi_2 \rightarrow i[1]$ gives a relation in Ho(N(i[1])).

Any edge u ∈ (NC)₁ gives morphisms • ^{u₀}/_→ • ^{u₁}/_→ • ^{u₂}/_→ • ^{u₃}/_→ • in C.
 Claim: in Ho(NC) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ .

• If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$

- If $\max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

• The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

► (The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search

Any edge u ∈ (NC)₁ gives morphisms • → • ↔ u₁ • u₂ • ↔ u₃ • in C.
 Claim: in Ho(NC) we have

 $u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ .

• If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$

- If $\max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

► (The poset Ξ₄ has 1081 elements. The map g was found by computer-aided searc

- Any edge $u \in (N\mathcal{C})_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in \mathcal{C} .
- ▶ Claim: in Ho(NC) we have

 $u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ .
 - If $\theta = \{\{0\}\}$, we put $g(\theta) = a_0$
 - If $\max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
 - If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
 - If min(σ_0) \geq 3 but $\theta \neq$ {{4}}, we put $g(\theta) = a_3$
 - ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

► (The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.

Define g: Ξ₄ → Ξ₁ as follows. Consider an element θ ∈ Ξ₄, and let σ₀ be the smallest set in θ
If θ = {{0}}, we put g(θ) = a₀
If max(σ₀) ≤ 1 but θ ≠ {{0}}, we put g(θ) = a₁
If θ = {{4}}, we put g(θ) = a₄
If min(σ₀) ≥ 3 but θ ≠ {{4}}, we put g(θ) = a₃
In all other cases we put g(θ) = a₂.
One can check that this is a morphism of relative posets.
The composite Ξ₄ ^g/₂ Ξ₁ ^u/₂ C is the required 4-simplex in NC.
(The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search.)

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ .

▶ If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$
▶ If max $(\sigma_0) \le 1$ but $\theta \ne \{\{0\}\}$, we put $g(\theta) = a_0$

- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

• The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

► (The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search.

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ .

• If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$

- If $max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

(The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search.

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define g: Ξ₄ → Ξ₁ as follows. Consider an element θ ∈ Ξ₄, and let σ₀ be the smallest set in θ.

• If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$

- If $max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

(The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search.

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define g: Ξ₄ → Ξ₁ as follows. Consider an element θ ∈ Ξ₄, and let σ₀ be the smallest set in θ.
 If θ = {{0}}, we put g(θ) = a₀
 If max(σ₀) ≤ 1 but θ ≠ {{0}}, we put g(θ) = a₁
 If θ = {{4}}, we put g(θ) = a₄
 If min(σ₀) ≥ 3 but θ ≠ {{4}}, we put g(θ) = a₃
 In all other cases we put g(θ) = a₂.
 One can check that this is a morphism of relative posets.
- ▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.
- ► (The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search.

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- Define g: Ξ₄ → Ξ₁ as follows. Consider an element θ ∈ Ξ₄, and let σ₀ be the smallest set in θ.
 If θ = {{0}}, we put g(θ) = a₀
 If max(σ₀) ≤ 1 but θ ≠ {{0}}, we put g(θ) = a₁
 If θ = {{4}}, we put g(θ) = a₄
 - If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
 - ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

► (The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search.)

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ . ▶ If $\theta = \{f_0\}$, we put $\sigma(\theta) = 2\theta$.

• If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$

- If $\max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

• The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

(The poset \(\equiv 4\) has 1081 elements. The map g was found by computer-aided search.)

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ .

• If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$

- If $\max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

► (The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search.)

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ .

• If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$

- If $\max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.

One can check that this is a morphism of relative posets.

▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.

(The poset Ξ_4 has 1081 elements. The map g was found by computer-aided set

Any edge $u \in (NC)_1$ gives morphisms $\bullet \xrightarrow{u_0} \bullet \xleftarrow{u_1} \bullet \xrightarrow{u_2} \bullet \xleftarrow{u_3} \bullet$ in C.

► Claim: in Ho(*NC*) we have

$$u = \alpha(u_3)^{-1} \alpha(u_2) \alpha(u_1)^{-1} \alpha(u_0) = \alpha_3(u_3) \alpha_2(u_2) \alpha_1(u_1) \alpha_0(u_0).$$

- To prove a claim like this about the composite of 4 edges, we need a 4-simplex incorporating those edges.
- ▶ Define $g: \Xi_4 \to \Xi_1$ as follows. Consider an element $\theta \in \Xi_4$, and let σ_0 be the smallest set in θ .

• If
$$\theta = \{\{0\}\}$$
, we put $g(\theta) = a_0$

- If $\max(\sigma_0) \leq 1$ but $\theta \neq \{\{0\}\}$, we put $g(\theta) = a_1$
- If $\theta = \{\{4\}\}$, we put $g(\theta) = a_4$
- If $\min(\sigma_0) \ge 3$ but $\theta \ne \{\{4\}\}$, we put $g(\theta) = a_3$
- ln all other cases we put $g(\theta) = a_2$.
- One can check that this is a morphism of relative posets.
- ▶ The composite $\Xi_4 \xrightarrow{g} \Xi_1 \xrightarrow{u} C$ is the required 4-simplex in *NC*.
- ► (The poset Ξ₄ has 1081 elements. The map g was found by computer-aided search.)

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
 Define ω: [n] → Ξ_n by ω(k) = {[j, n] | 0 ≤ j ≤ k}, so for n = 3: ω(0) = {{0, 1, 2, 3}} ω(1) = {{1, 2, 3}, {0, 1, 2, 3}} ω(2) = {{2, 3}, {1, 2, 3}, {0, 1, 2, 3}} ω(3) = {{3}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}}
- This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
 For Ø ≠ σ ⊂ [n] put ρ(σ) = [min(σ), n].
- For $\theta \in \Xi_n$ define $p_k(\theta), q_k(\theta) \in \Xi_n$ by

 $p_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| > k \}$ $q_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| \ge k \}.$

Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

 $\omega \circ \pi \geq p_0 \leq q_1 \geq p_1 \leq q_2 \geq \cdots \geq p_{n-1} \leq q_n \geq p_n = 1,$

- ▶ Now define $\zeta: [n] \to Ho(\Xi_n)$ by $\zeta(i) = \{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta = 1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
- Define $\omega : [n] \to \Xi_n$ by $\omega(k) = \{[j, n] \mid 0 \le j \le k\}$, so for n = 3:

$$\begin{split} \omega(0) &= \{\{0,1,2,3\}\} & \omega(1) &= \{\{1,2,3\},\{0,1,2,3\}\} \\ \omega(2) &= \{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3) &= \{\{3\},\{2,3\},\{1,2,3\},\{0,1,2\}\} \end{split}$$

- This is a poset map with $\pi \circ \omega = 1$. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq [n]$ put $\rho(\sigma) = [\min(\sigma), n]$.
- For $\theta \in \Xi_n$ define $p_k(\theta), q_k(\theta) \in \Xi_n$ by

 $p_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| > k \}$ $q_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| \ge k \}.$

Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

 $\omega \circ \pi \ge p_0 \le q_1 \ge p_1 \le q_2 \ge \cdots \ge p_{n-1} \le q_n \ge p_n = 1,$

- Using this, we see that $\pi: \operatorname{Ho}(\Xi_n) \to [n]$ is an equivalence of categories.
- Now define $\zeta: [n] \to Ho(\Xi_n)$ by $\zeta(i) = \{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta = 1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
Define ω: [n] → Ξ_n by ω(k) = {[j, n] | 0 ≤ j ≤ k}, so for n = 3:

$$\begin{split} \omega(0) &= \{\{0,1,2,3\}\} & \omega(1) = \{\{1,2,3\},\{0,1,2,3\}\} \\ \omega(2) &= \{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3) = \{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\} \end{split}$$

- This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
 For Ø ≠ σ ⊆ [n] put ρ(σ) = [min(σ), n].
- For $\theta \in \Xi_n$ define $p_k(\theta), q_k(\theta) \in \Xi_n$ by

 $p_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| > k \}$ $q_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| \ge k \}.$

Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

 $\omega \circ \pi \geq p_0 \leq q_1 \geq p_1 \leq q_2 \geq \cdots \geq p_{n-1} \leq q_n \geq p_n = 1,$

- Using this, we see that π : Ho $(\Xi_n) \rightarrow [n]$ is an equivalence of categories.
- ▶ Now define $\zeta: [n] \to Ho(\Xi_n)$ by $\zeta(i) = \{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta = 1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
- Define $\omega : [n] \to \Xi_n$ by $\omega(k) = \{[j, n] \mid 0 \le j \le k\}$, so for n = 3:

$$\begin{split} \omega(0) &= \{\{0,1,2,3\}\} & \omega(1) = \{\{1,2,3\},\{0,1,2,3\}\} \\ \omega(2) &= \{\{2,3\},\{1,2,3\},\{0,1,2,3\}\} & \omega(3) = \{\{3\},\{2,3\},\{1,2,3\},\{0,1,2,3\}\} \end{split}$$

This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
For Ø ≠ σ ⊆ [n] put ρ(σ) = [min(σ), n].
For θ ∈ Ξ_n define p_k(θ), q_k(θ) ∈ Ξ_n by

 $p_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| > k \}$ $q_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| \ge k \}.$

Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

 $\omega \circ \pi \geq p_0 \leq q_1 \geq p_1 \leq q_2 \geq \cdots \geq p_{n-1} \leq q_n \geq p_n = 1,$

- Now define $\zeta: [n] \to Ho(\Xi_n)$ by $\zeta(i) = \{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta = 1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
 Define ω: [n] → Ξ_n by ω(k) = {[j, n] | 0 ≤ j ≤ k}, so for n = 3: ω(0) = {{0, 1, 2, 3}} ω(1) = {{1, 2, 3}, {0, 1, 2, 3}} ω(2) = {{2, 3}, {1, 2, 3}, {0, 1, 2, 3}} ω(3) = {{3}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}}
- This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
 For Ø ≠ σ ⊆ [n] put ρ(σ) = [min(σ), n].
- ▶ For $\theta \in \Xi_n$ define $p_k(\theta), q_k(\theta) \in \Xi_n$ by

 $p_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| > k \}$ $q_k(\theta) = \{ \sigma \mid \sigma \in \theta, \ |\sigma| \le k \} \cup \{ \rho(\sigma) \mid \sigma \in \theta, \ |\sigma| \ge k \}.$

Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

 $\omega \circ \pi \geq p_0 \leq q_1 \geq p_1 \leq q_2 \geq \cdots \geq p_{n-1} \leq q_n \geq p_n = 1,$

- ▶ Now define $\zeta: [n] \to Ho(\Xi_n)$ by $\zeta(i) = \{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta = 1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
 Define ω: [n] → Ξ_n by ω(k) = {[j, n] | 0 ≤ j ≤ k}, so for n = 3: ω(0) = {{0, 1, 2, 3}} ω(1) = {{1, 2, 3}, {0, 1, 2, 3}} ω(2) = {{2, 3}, {1, 2, 3}, {0, 1, 2, 3}} ω(3) = {{3}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}}
- This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
 For Ø ≠ σ ⊆ [n] put ρ(σ) = [min(σ), n].
 For θ ∈ Ξ_n define p_k(θ), q_k(θ) ∈ Ξ_n by p_k(θ) = {σ | σ ∈ θ, |σ| ≤ k} ∪ {ρ(σ) | σ ∈ θ, |σ| > k}

$$q_k(heta) = \{\sigma \mid \sigma \in heta, \ |\sigma| \leq k\} \cup \{
ho(\sigma) \mid \sigma \in heta, \ |\sigma| \geq k\}.$$

Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

 $\omega \circ \pi \ge p_0 \le q_1 \ge p_1 \le q_2 \ge \cdots \ge p_{n-1} \le q_n \ge p_n = 1,$

- Now define $\zeta: [n] \to Ho(\Xi_n)$ by $\zeta(i) = \{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta = 1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
 Define ω: [n] → Ξ_n by ω(k) = {[j, n] | 0 ≤ j ≤ k}, so for n = 3: ω(0) = {{0, 1, 2, 3}} ω(1) = {{1, 2, 3}, {0, 1, 2, 3}} ω(2) = {{2, 3}, {1, 2, 3}, {0, 1, 2, 3}} ω(3) = {{3}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}}
- This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
 For Ø ≠ σ ⊆ [n] put ρ(σ) = [min(σ), n].
 For θ ∈ Ξ_n define p_k(θ), q_k(θ) ∈ Ξ_n by p_k(θ) = {σ | σ ∈ θ, |σ| ≤ k} ∪ {ρ(σ) | σ ∈ θ, |σ| > k} q_k(θ) = {σ | σ ∈ θ, |σ| ≤ k} ∪ {ρ(σ) | σ ∈ θ, |σ| > k}.
- ▶ Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

 $\omega \circ \pi \ge p_0 \le q_1 \ge p_1 \le q_2 \ge \cdots \ge p_{n-1} \le q_n \ge p_n = 1,$

• Using this, we see that π : Ho $(\Xi_n) \rightarrow [n]$ is an equivalence of categories.

- ▶ Now define $\zeta: [n] \to Ho(\Xi_n)$ by $\zeta(i) = \{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta = 1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
 Define ω: [n] → Ξ_n by ω(k) = {[j, n] | 0 ≤ j ≤ k}, so for n = 3: ω(0) = {{0, 1, 2, 3}} ω(1) = {{1, 2, 3}, {0, 1, 2, 3}} ω(2) = {{2, 3}, {1, 2, 3}, {0, 1, 2, 3}} ω(3) = {{3}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}}
- This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
 For Ø ≠ σ ⊆ [n] put ρ(σ) = [min(σ), n].
 For θ ∈ Ξ_n define p_k(θ), q_k(θ) ∈ Ξ_n by p_k(θ) = {σ | σ ∈ θ, |σ| ≤ k} ∪ {ρ(σ) | σ ∈ θ, |σ| > k}

 $q_k(heta) = \{ \sigma \mid \sigma \in heta, \ |\sigma| \le k \} \cup \{
ho(\sigma) \mid \sigma \in heta, \ |\sigma| \ge k \}.$

▶ Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

 $\omega \circ \pi \geq p_0 \leq q_1 \geq p_1 \leq q_2 \geq \cdots \geq p_{n-1} \leq q_n \geq p_n = 1,$

- Using this, we see that $\pi: \operatorname{Ho}(\Xi_n) \to [n]$ is an equivalence of categories.
- Now define ζ: [n] → Ho(Ξ_n) by ζ(i) = {{i}}. There is a unique way to make this a functor with π ∘ ζ = 1 and ζ ∘ π ≃ 1.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
 Define ω: [n] → Ξ_n by ω(k) = {[j, n] | 0 ≤ j ≤ k}, so for n = 3: ω(0) = {{0, 1, 2, 3}} ω(1) = {{1, 2, 3}, {0, 1, 2, 3}} ω(2) = {{2, 3}, {1, 2, 3}, {0, 1, 2, 3}} ω(3) = {{3}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}}
 This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
- For $\emptyset \neq \sigma \subseteq [n]$ put $\rho(\sigma) = [\min(\sigma), n]$. For $\theta \in \Xi_n$ define $p_k(\theta), q_k(\theta) \in \Xi_n$ by $p_k(\theta) = \{\sigma \mid \sigma \in \theta, \ |\sigma| \le k\} \cup \{\rho(\sigma) \mid \sigma \in \theta, \ |\sigma| > k\}$ $q_k(\theta) = \{\sigma \mid \sigma \in \theta, \ |\sigma| \le k\} \cup \{\rho(\sigma) \mid \sigma \in \theta, \ |\sigma| \ge k\}.$
- ▶ Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

$$\omega \circ \pi \geq p_0 \leq q_1 \geq p_1 \leq q_2 \geq \cdots \geq p_{n-1} \leq q_n \geq p_n = 1,$$

- ▶ Using this, we see that π : Ho(Ξ_n) \rightarrow [*n*] is an equivalence of categories.
- Now define ζ: [n] → Ho(Ξ_n) by ζ(i) = {{i}}. There is a unique way to make this a functor with π ∘ ζ = 1 and ζ ∘ π ≃ 1.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- The functor π: Ξ_n → [n] induces Ho(Ξ_n) → [n]. It is easy to guess that this is an equivalence, but not trivial to prove.
 Define ω: [n] → Ξ_n by ω(k) = {[j, n] | 0 ≤ j ≤ k}, so for n = 3: ω(0) = {{0, 1, 2, 3}} ω(1) = {{1, 2, 3}, {0, 1, 2, 3}} ω(2) = {{2, 3}, {1, 2, 3}, {0, 1, 2, 3}} ω(3) = {{3}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}}
- This is a poset map with π ∘ ω = 1. The map π is cosimplicial but ω is not.
 For Ø ≠ σ ⊆ [n] put ρ(σ) = [min(σ), n].
 For θ ∈ Ξ_n define p_k(θ), q_k(θ) ∈ Ξ_n by p_k(θ) = {σ | σ ∈ θ, |σ| ≤ k} ∪ {ρ(σ) | σ ∈ θ, |σ| > k} q_k(θ) = {σ | σ ∈ θ, |σ| ≤ k} ∪ {ρ(σ) | σ ∈ θ, |σ| ≥ k}.

▶ Then $p_k, q_k \in \text{RelPos}(\Xi_n, \Xi_n)$ with $\pi \circ p_k = \pi \circ q_k = \pi$ and

$$\omega \circ \pi \ge p_0 \le q_1 \ge p_1 \le q_2 \ge \cdots \ge p_{n-1} \le q_n \ge p_n = 1,$$

- Using this, we see that $\pi: \operatorname{Ho}(\Xi_n) \to [n]$ is an equivalence of categories.
- ▶ Now define $\zeta: [n] \to Ho(\Xi_n)$ by $\zeta(i) = \{\{i\}\}$. There is a unique way to make this a functor with $\pi \circ \zeta = 1$ and $\zeta \circ \pi \simeq 1$.
- This feeds into the proof that α: C[we⁻¹] → Ho(NC) is an isomorphism of categories.

- Theorem: There is a functor K: sSet → RelCat, left adjoint to N: RelCat → sSet, with K(X)[we⁻¹] ≃ Ho(X). Moreover, K(X) is actually a poset.
- Morally, K(X) is defined as a certain colimit of Ξ_n's; but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_n^{\top} = \{\theta \in \Xi_n \mid [n] \in \theta\}$ (the *interior* of Ξ_n). Put $ND(X)_n = \{$ nondegenerate n -simplices $\}$. Then $K(X) = \coprod_n ND(X)_n \times \Xi_n^{\top}$ (with appropriate structure as a relative poset).

▶ **Theorem:** There is a functor K: sSet \rightarrow RelCat, left adjoint to N: RelCat \rightarrow sSet, with $K(X)[we^{-1}] \simeq Ho(X)$.

Moreover, K(X) is actually a poset.

- Morally, K(X) is defined as a certain colimit of \(\exists n's\); but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_n^{\top} = \{\theta \in \Xi_n \mid [n] \in \theta\}$ (the *interior* of Ξ_n). Put $ND(X)_n = \{$ nondegenerate n -simplices $\}$. Then $K(X) = \coprod_n ND(X)_n \times \Xi_n^{\top}$ (with appropriate structure as a relative poset).

- Theorem: There is a functor K: sSet → RelCat, left adjoint to N: RelCat → sSet, with K(X)[we⁻¹] ≃ Ho(X). Moreover, K(X) is actually a poset.
- Morally, K(X) is defined as a certain colimit of \(\exists n's\); but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_n^{\top} = \{\theta \in \Xi_n \mid [n] \in \theta\}$ (the *interior* of Ξ_n). Put $ND(X)_n = \{$ nondegenerate n -simplices $\}$. Then $K(X) = \coprod_n ND(X)_n \times \Xi_n^{\top}$ (with appropriate structure as a relative poset).

- Theorem: There is a functor K: sSet → RelCat, left adjoint to N: RelCat → sSet, with K(X)[we⁻¹] ≃ Ho(X). Moreover, K(X) is actually a poset.
- Morally, K(X) is defined as a certain colimit of Ξ_n's; but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_n^{\top} = \{\theta \in \Xi_n \mid [n] \in \theta\}$ (the *interior* of Ξ_n). Put $ND(X)_n = \{\text{nondegenerate } n - \text{simplices}\}$. Then $K(X) = \coprod_n ND(X)_n \times \Xi_n^{\top}$ (with appropriate structure as a relative poset).

- Theorem: There is a functor K: sSet → RelCat, left adjoint to N: RelCat → sSet, with K(X)[we⁻¹] ≃ Ho(X). Moreover, K(X) is actually a poset.
- Morally, K(X) is defined as a certain colimit of \(\equiv n's\); but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_n^{\top} = \{\theta \in \Xi_n \mid [n] \in \theta\}$ (the *interior* of Ξ_n). Put $ND(X)_n = \{\text{nondegenerate } n - \text{simplices}\}$. Then $K(X) = \coprod_n ND(X)_n \times \Xi_n^{\top}$ (with appropriate structure as a relative poset).

- Theorem: There is a functor K: sSet → RelCat, left adjoint to N: RelCat → sSet, with K(X)[we⁻¹] ≃ Ho(X). Moreover, K(X) is actually a poset.
- Morally, K(X) is defined as a certain colimit of \(\equiv n's\); but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_n^{\top} = \{\theta \in \Xi_n \mid [n] \in \theta\}$ (the *interior* of Ξ_n). Put $ND(X)_n = \{\text{nondegenerate } n - \text{simplices}\}$. Then $K(X) = \coprod_n ND(X)_n \times \Xi_n^{\top}$

(with appropriate structure as a relative poset).

- Theorem: There is a functor K: sSet → RelCat, left adjoint to N: RelCat → sSet, with K(X)[we⁻¹] ≃ Ho(X). Moreover, K(X) is actually a poset.
- Morally, K(X) is defined as a certain colimit of \(\equiv n's\); but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_n^{\top} = \{\theta \in \Xi_n \mid [n] \in \theta\}$ (the *interior* of Ξ_n). Put $ND(X)_n = \{\text{nondegenerate } n - \text{simplices}\}$. Then $K(X) = \coprod_n ND(X)_n \times \Xi_n^{\top}$ (with appropriate structure as a relative poset).

- Theorem: There is a functor K: sSet → RelCat, left adjoint to N: RelCat → sSet, with K(X)[we⁻¹] ≃ Ho(X). Moreover, K(X) is actually a poset.
- Morally, K(X) is defined as a certain colimit of \(\equiv n's\); but colimits of categories are generally hard to handle.
- In this case the final answer is not too bad, although it takes substantial work to prove that.

Put $\Xi_n^{\top} = \{\theta \in \Xi_n \mid [n] \in \theta\}$ (the *interior* of Ξ_n). Put $ND(X)_n = \{\text{nondegenerate } n - \text{simplices}\}$. Then $K(X) = \coprod_n ND(X)_n \times \Xi_n^{\top}$ (with appropriate structure as a relative poset).

- Given a simplicial set X, we construct a relative category K(X) with a class of "strong equivalences" contained in the weak equivalences
- ► K(X) is the quotient of K̃(X) in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair (x_a, θ_a) with $x_a \in X_{n_a}$ and $\theta_a \in \Xi_{n_a}$.
- A morphism is $u \in \Delta(n_a, n_b)$ with $u^* x_b = x_a$ and $u_{\#}(\theta_a) \leq \theta_b$.
- This is a weak equivalence if π(u_#(θ_a)) = π(θ_b), and a strong equivalence iff u_#(θ_a) = θ_b.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

- Given a simplicial set X, we construct a relative category K(X) with a class of "strong equivalences" contained in the weak equivalences" contained in the weak equivalences.
- ► K(X) is the quotient of K̃(X) in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair (x_a, θ_a) with $x_a \in X_{n_a}$ and $\theta_a \in \Xi_{n_a}$.
- ▶ A morphism is $u \in \Delta(n_a, n_b)$ with $u^* x_b = x_a$ and $u_{\#}(\theta_a) \le \theta_b$.
- This is a weak equivalence if π(u_#(θ_a)) = π(θ_b), and a strong equivalence iff u_#(θ_a) = θ_b.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

- Given a simplicial set X, we construct a relative category K(X) with a class of "strong equivalences" contained in the weak equivalences.
- K(X) is the quotient of $\widetilde{K}(X)$ in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair (x_a, θ_a) with $x_a \in X_{n_a}$ and $\theta_a \in \Xi_{n_a}$.
- ▶ A morphism is $u \in \Delta(n_a, n_b)$ with $u^* x_b = x_a$ and $u_{\#}(\theta_a) \le \theta_b$.
- This is a weak equivalence if π(u_#(θ_a)) = π(θ_b), and a strong equivalence iff u_#(θ_a) = θ_b.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

- Given a simplicial set X, we construct a relative category K(X) with a class of "strong equivalences" contained in the weak equivalences.
- ► K(X) is the quotient of K̃(X) in which strong equivalences become identities.
- An object $a \in \widetilde{K}(X)$ is a pair (x_a, θ_a) with $x_a \in X_{n_a}$ and $\theta_a \in \Xi_{n_a}$.
- ▶ A morphism is $u \in \Delta(n_a, n_b)$ with $u^* x_b = x_a$ and $u_{\#}(\theta_a) \le \theta_b$.
- This is a weak equivalence if π(u_#(θ_a)) = π(θ_b), and a strong equivalence iff u_#(θ_a) = θ_b.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

- Given a simplicial set X, we construct a relative category K(X) with a class of "strong equivalences" contained in the weak equivalences.
- ► K(X) is the quotient of K̃(X) in which strong equivalences become identities.
- ▶ An object $a \in \widetilde{K}(X)$ is a pair (x_a, θ_a) with $x_a \in X_{n_a}$ and $\theta_a \in \Xi_{n_a}$.
- ▶ A morphism is $u \in \Delta(n_a, n_b)$ with $u^* x_b = x_a$ and $u_{\#}(\theta_a) \le \theta_b$.
- This is a weak equivalence if π(u_#(θ_a)) = π(θ_b), and a strong equivalence iff u_#(θ_a) = θ_b.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

- Given a simplicial set X, we construct a relative category K(X) with a class of "strong equivalences" contained in the weak equivalences.
- ► K(X) is the quotient of K̃(X) in which strong equivalences become identities.
- ▶ An object $a \in \widetilde{K}(X)$ is a pair (x_a, θ_a) with $x_a \in X_{n_a}$ and $\theta_a \in \Xi_{n_a}$.
- ▶ A morphism is $u \in \Delta(n_a, n_b)$ with $u^* x_b = x_a$ and $u_{\#}(\theta_a) \le \theta_b$.
- This is a weak equivalence if π(u_#(θ_a)) = π(θ_b), and a strong equivalence iff u_#(θ_a) = θ_b.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

- Given a simplicial set X, we construct a relative category K(X) with a class of "strong equivalences" contained in the weak equivalences.
- ► K(X) is the quotient of K̃(X) in which strong equivalences become identities.
- ▶ An object $a \in \widetilde{K}(X)$ is a pair (x_a, θ_a) with $x_a \in X_{n_a}$ and $\theta_a \in \Xi_{n_a}$.
- ▶ A morphism is $u \in \Delta(n_a, n_b)$ with $u^* x_b = x_a$ and $u_{\#}(\theta_a) \le \theta_b$.
- This is a weak equivalence if π(u_#(θ_a)) = π(θ_b), and a strong equivalence iff u_#(θ_a) = θ_b.

Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

- Given a simplicial set X, we construct a relative category K(X) with a class of "strong equivalences" contained in the weak equivalences.
- ► K(X) is the quotient of K̃(X) in which strong equivalences become identities.
- ▶ An object $a \in \widetilde{K}(X)$ is a pair (x_a, θ_a) with $x_a \in X_{n_a}$ and $\theta_a \in \Xi_{n_a}$.
- ▶ A morphism is $u \in \Delta(n_a, n_b)$ with $u^* x_b = x_a$ and $u_{\#}(\theta_a) \le \theta_b$.
- This is a weak equivalence if π(u_#(θ_a)) = π(θ_b), and a strong equivalence iff u_#(θ_a) = θ_b.
- Any morphism factors uniquely as a surjective strong equivalence followed by an injective morphism.

The pullback lemma

Suppose we have morphisms $[n] \xrightarrow{v} [k] \xleftarrow{v} [m]$ in Δ , where *u* is injective and *v* is surjective. Then there is a commutative square in Δ as shown on the left below, which is a pullback in Δ or in the category of sets; and the resulting diagram as shown on the right is also a pullback.

- ▶ *NC* is a quasicategory iff every $u: \Lambda_k \Xi_n \to C$ (with 0 < k < n) can be extended over Ξ_n .
- $\Lambda_k \Xi_n$ is not a retract of Ξ_n , so NC is not always a quasicategory.
- ► However, $\Lambda_k^+ \equiv_n$ is a retract of \equiv_n , so NC is a quasicategory iff every $u: \Lambda_k \equiv_n \to C$ can be extended over $\Lambda_k^+ \equiv_n$.
- $\blacktriangleright \Lambda_k^+ \Xi_n \text{ is } [1] \times \Lambda_k \Xi_n \text{ union a cone under } \{1\} \times \Lambda_k \Xi_n.$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram u: Λ_kΞ_n → C and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

- ▶ *NC* is a quasicategory iff every $u: \Lambda_k \Xi_n \to C$ (with 0 < k < n) can be extended over Ξ_n .
- $\Lambda_k \equiv_n$ is not a retract of \equiv_n , so *NC* is not always a quasicategory.
- ▶ However, $\Lambda_k^+ \equiv_n$ is a retract of \equiv_n , so NC is a quasicategory iff every $u: \Lambda_k \equiv_n \to C$ can be extended over $\Lambda_k^+ \equiv_n$.
- $\blacktriangleright \Lambda_k^+ \Xi_n \text{ is } [1] \times \Lambda_k \Xi_n \text{ union a cone under } \{1\} \times \Lambda_k \Xi_n.$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram u: Λ_kΞ_n → C and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

- NC is a quasicategory iff every u: Λ_kΞ_n → C (with 0 < k < n) can be extended over Ξ_n.
- $\Lambda_k \equiv_n$ is not a retract of \equiv_n , so *NC* is not always a quasicategory.
- ► However, $\Lambda_k^+ \equiv_n$ is a retract of \equiv_n , so NC is a quasicategory iff every $u: \Lambda_k \equiv_n \to C$ can be extended over $\Lambda_k^+ \equiv_n$.
- $\blacktriangleright \Lambda_k^+ \Xi_n \text{ is } [1] \times \Lambda_k \Xi_n \text{ union a cone under } \{1\} \times \Lambda_k \Xi_n.$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram u: Λ_kΞ_n → C and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

- ▶ NC is a quasicategory iff every $u: \Lambda_k \Xi_n \to C$ (with 0 < k < n) can be extended over Ξ_n .
- ► $\Lambda_k \Xi_n$ is not a retract of Ξ_n , so NC is not always a quasicategory.
- ▶ However, $\Lambda_k^+ \equiv_n$ is a retract of \equiv_n , so NC is a quasicategory iff every $u: \Lambda_k \equiv_n \to C$ can be extended over $\Lambda_k^+ \equiv_n$.
- $\land \Lambda_k^+ \Xi_n \text{ is } [1] \times \Lambda_k \Xi_n \text{ union a cone under } \{1\} \times \Lambda_k \Xi_n.$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram u: Λ_kΞ_n → C and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

- NC is a quasicategory iff every u: Λ_kΞ_n → C (with 0 < k < n) can be extended over Ξ_n.
- ► $\Lambda_k \equiv_n$ is not a retract of \equiv_n , so NC is not always a quasicategory.
- ► However, $\Lambda_k^+ \equiv_n$ is a retract of \equiv_n , so NC is a quasicategory iff every $u: \Lambda_k \equiv_n \to C$ can be extended over $\Lambda_k^+ \equiv_n$.
- $\land \Lambda_k^+ \Xi_n \text{ is } [1] \times \Lambda_k \Xi_n \text{ union a cone under } \{1\} \times \Lambda_k \Xi_n.$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram u: Λ_kΞ_n → C and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

- NC is a quasicategory iff every u: Λ_kΞ_n → C (with 0 < k < n) can be extended over Ξ_n.
- ► $\Lambda_k \Xi_n$ is not a retract of Ξ_n , so NC is not always a quasicategory.
- ► However, $\Lambda_k^+ \equiv_n$ is a retract of \equiv_n , so NC is a quasicategory iff every $u: \Lambda_k \equiv_n \to C$ can be extended over $\Lambda_k^+ \equiv_n$.
- $\blacktriangleright \Lambda_k^+ \Xi_n \text{ is } [1] \times \Lambda_k \Xi_n \text{ union a cone under } \{1\} \times \Lambda_k \Xi_n.$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram u: Λ_kΞ_n → C and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

- NC is a quasicategory iff every u: Λ_kΞ_n → C (with 0 < k < n) can be extended over Ξ_n.
- ► $\Lambda_k \Xi_n$ is not a retract of Ξ_n , so NC is not always a quasicategory.
- ► However, $\Lambda_k^+ \equiv_n$ is a retract of \equiv_n , so NC is a quasicategory iff every $u: \Lambda_k \equiv_n \to C$ can be extended over $\Lambda_k^+ \equiv_n$.
- $\blacktriangleright \Lambda_k^+ \Xi_n \text{ is } [1] \times \Lambda_k \Xi_n \text{ union a cone under } \{1\} \times \Lambda_k \Xi_n.$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram u: Λ_kΞ_n → C and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

- NC is a quasicategory iff every u: Λ_kΞ_n → C (with 0 < k < n) can be extended over Ξ_n.
- ► $\Lambda_k \Xi_n$ is not a retract of Ξ_n , so NC is not always a quasicategory.
- ► However, $\Lambda_k^+ \equiv_n$ is a retract of \equiv_n , so NC is a quasicategory iff every $u: \Lambda_k \equiv_n \to C$ can be extended over $\Lambda_k^+ \equiv_n$.
- $\blacktriangleright \Lambda_k^+ \Xi_n \text{ is } [1] \times \Lambda_k \Xi_n \text{ union a cone under } \{1\} \times \Lambda_k \Xi_n.$
- If C has a model structure, we can make the required extension by fibrantly replacing the diagram u: Λ_kΞ_n → C and taking its inverse limit.
- As we have diagrams of a specific shape, we can assume less than a model structure and be more explicit.

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.

- Compare this construction with the coherent nerve.
- Compare this construction with the hammock localisation.
- Compare this construction with the Kan path groupoid.
- Investigate derived functors from this point of view.
- Investigate homotopy (co)limits from this point of view.