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» Recall: a quasicategory is simplicial set with fillers for all inner horns.

» For n € N we have a poset [n] = {0, ..., n}. Posets can be regarded as
categories, with one morphism from x to y if x < y, and none otherwise.

> For any category C, we have a simplicial set NC with (NC), = Cat([n],C).

» Simplicial sets arising this way are precisely those with unique fillers for
inner horns; so quasicategories are a generalisation of categories.

» For any simplicial set X, we have a homotopy category Ho(X) with
obj(Ho(X)) = Xo, morphisms generated by Xi, one relation
di(u) = do(u) o da(u) for each u € Xs.

d1(u) do(u)

dz(u)
» This satisfies Cat(Ho(X),C) = sSet(X, NC) for all categories C, i.e.
Ho: sSet — Cat is left adjoint to N: Cat — sSet. Also Ho(NC) ~ C.

» The category Ho(X) is more closely related to X in the case where X is a
quasicategory. In particular, each morphism can be represented by an edge.
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The problem

» Problem: construct examples of quasicategories from natural input data.

» One construction is the coherent nerve of a
simplicial /topological /differential graded category. But that is only
appropriate when all objects of C are homotopically well-behaved.

» Often we start with a relative category, i.e. a category C with a class
we C mor(C) of weak equivalences
(containing all identities and closed under composition).

» We want to construct a relative nerve NC which should be a quasicategory
with Ho(NC) = C[we™].

» Work of Lennart Meier (with many precursors) shows how to do this, but

the proof of correctness is indirect and relies on a lot of literature.
We seek a more direct argument.
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Define nondecreasing 7: =, — [n] by m(6) = min(oo) = min([10).
For 0 < @', declare that § — ¢’ is a weak equivalence iff 7(0) = w(6).
This makes =, a relative category.

For u € A(n,m) and 0 # o C [n] define u.(o) = {u(i) | i € o}.

Then for 6 € =, put ug(0) = {u.(o) | o € 6}.

This is a relative functor =, — =, (with 7(ux(0)) = u(w(0))).

This makes =, into a cosimplicial object in relative categories.

Thus, for a relative category C we can define a simplicial set NC by
(NC)n = RelCat(=,,C): this is the relative nerve.

Suppose that C is discrete, i.e. we = {1, | ¢ € obj(C)}.
Then any relative functor =, — C factors uniquely through 7: =, — [n],
so NC is just the ordinary nerve.



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.

» This in turn gives a morphism in Ho(NC)(c, d), which we also call ax(u).



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.
» This in turn gives a morphism in Ho(NC)(c, d), which we also call ax(u).

> If uis a weak equivalence, we can also define ag(u) € Ho(NC)(c, d) and
a1(u), as(u) € Ho(C)(d, c) in a similar way.



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.
» This in turn gives a morphism in Ho(NC)(c, d), which we also call ax(u).

> If uis a weak equivalence, we can also define ag(u) € Ho(NC)(c, d) and
a1(u), as(u) € Ho(C)(d, c) in a similar way.
» Theorem:



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.
» This in turn gives a morphism in Ho(NC)(c, d), which we also call ax(u).
> If uis a weak equivalence, we can also define ag(u) € Ho(NC)(c, d) and
a1(u), as(u) € Ho(C)(d, c) in a similar way.
» Theorem:
> ap is a functor C — Ho(NC).



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.

» This in turn gives a morphism in Ho(NC)(c, d), which we also call ax(u).

> If uis a weak equivalence, we can also define ag(u) € Ho(NC)(c, d) and
a1(u), as(u) € Ho(C)(d, c) in a similar way.
» Theorem:

> ap is a functor C — Ho(NC).
> When u is a weak equivalence, ap(u) = az(u) and a1(u) = as(u) and these
are inverse to each other; so ay extends to give a: C[we™!] — Ho(NC).



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.

» This in turn gives a morphism in Ho(NC)(c, d), which we also call ax(u).

> If uis a weak equivalence, we can also define ag(u) € Ho(NC)(c, d) and
a1(u), as(u) € Ho(C)(d, c) in a similar way.
» Theorem:
> ap is a functor C — Ho(NC).
> When u is a weak equivalence, ap(u) = az(u) and a1(u) = as(u) and these
are inverse to each other; so ay extends to give a: C[we™!] — Ho(NC).
> Any edge u € (NC)1 gives morphisms e L e+t o 2042 0inC, and in
Ho(NC) we have u = a(uz) " La(up)a(ur) "L wp).



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.

» This in turn gives a morphism in Ho(NC)(c, d), which we also call ax(u).

> If uis a weak equivalence, we can also define ag(u) € Ho(NC)(c, d) and
a1(u), as(u) € Ho(C)(d, c) in a similar way.
» Theorem:

> ap is a functor C — Ho(NC).

> When u is a weak equivalence, ap(u) = az(u) and a1(u) = as(u) and these
are inverse to each other; so ay extends to give a: C[we™!] — Ho(NC).

> Any edge u € (NC)1 gives morphisms e D et 025 042 0inC, and in
Ho(NC) we have u = a(uz) " La(up)a(ur) "L wp).

» This extension « is an isomorphism of categories.



PRV VVVVVVVVENE IRV VIV VVVVVVE I WPV WV VNV VU
a0={{0}} a1={{0},{0,1}} 2={{0,1}} a={{1},{0,1}} a={{1}}

w(a0)=m(a1)=m(22)=0 m(a3)=m(as)=1

» Given u: ¢ — d in C, we define ax(u) € (NC)1 (i.e. az(u): =1 = C) by
a0,a1,a2 — c and as,as — d and (a2 — a3) — u.

» This in turn gives a morphism in Ho(NC)(c, d), which we also call ax(u).

> If uis a weak equivalence, we can also define ag(u) € Ho(NC)(c, d) and
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are inverse to each other; so ay extends to give a: C[we™!] — Ho(NC).
> Any edge u € (NC)1 gives morphisms e L e+t o 2042 0inC, and in
Ho(NC) we have u = a(uz) " La(up)a(ur) "L wp).
» This extension « is an isomorphism of categories.
» Proofs by constructing some explicit maps between =,’s and [m]’s, and
analysing their properties.






Relations in Ho(NC)

The universal example

of a relative category with a weak equivalence is i[1].

Any morphism =, — i[1] gives a relation in Ho(N(i[1])).
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> If 6 = {{0}}, we put g(0) = ao
> If max(og) <1 but 6 # {{0}}, we put g(0) = a1
> If 6 = {{4}}, we put g(6) = as
> If min(og) > 3 but 6 # {{4}}, we put g(0) = a3
» In all other cases we put g(0) = az.

» One can check that this is a morphism of relative posets.

v

The composite =5 £5 =; % C is the required 4-simplex in NC.

» (The poset =4 has 1081 elements.
The map g was found by computer-aided search.)
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The functor w: =, — [n] induces Ho(=,) — [n].
It is easy to guess that this is an equivalence, but not trivial to prove.
Define w: [n] = =, by w(k) = {[j,n] | 0 <j < k}, so for n = 3:
w(0) = {{0,1,2,3}} w(1) ={{1,2,3},{0,1,2,3}}
w(2) = {{27 3}7 {17 2, 3}7 {0’ 1,2, 3}} w(3) = {{3}7 {27 3}7 {17 2, 3}7 {07 1,2 3}}
This is a poset map with mow = 1. The map 7 is cosimplicial but w is not.
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g(0) ={c o€, |o| <k}tU{p(c)|o€b, |o| >k}
Then px, gk € RelPos(=,,=,) with 7o px = mo g« = w and
wor2p<qr>2p1<q>-2>pa-1<gn > pon=1,
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The functor w: =, — [n] induces Ho(=,) — [n].

It is easy to guess that this is an equivalence, but not trivial to prove.

Define w: [n] = =, by w(k) = {[j,n] | 0 <j < k}, so for n = 3:

w(0) = {{0,1,2,3}} w(1) ={{1,2,3},{0,1,2,3}}

w(2) = {{27 3}7 {17 2, 3}7 {0’ 1,2, 3}} w(3) = {{3}7 {27 3}7 {17 2, 3}7 {07 1,2 3}}
This is a poset map with mow = 1. The map 7 is cosimplicial but w is not.

For 0 # o C [n] put p(c) = [min(o), n].

For 6 € =, define pi(0), qx(0) € =, by

pi(60) = {0 | 0 €0, |o| < k}U{p(0) |0 €0, o] > K}
a(0) = {0 | 7 €0, |o] <k} U{p(0) |0 €0, |o] > K}.

Then px, gk € RelPos(=,,=,) with 7o px = mo g« = w and
womZpo<q>2p1<q > 2> po1 < g > pn=1,

Using this, we see that 7: Ho(=,) — [n] is an equivalence of categories.
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Define w: [n] = =, by w(k) = {[j,n] | 0 <j < k}, so for n = 3:
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This is a poset map with mow = 1. The map 7 is cosimplicial but w is not.
For @ # o C [n] put p(c) = [min(a), n].
For 6 € =, define pi(0), qx(0) € =, by
p(8) = {0 | o €6, o] < k}U{p(o) | o €6, |o] > k}
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Now define ¢: [n] — Ho(=,) by ¢(i) = {{i}}. There is a unique way to
make this a functor with ro{ =1 and (om ~ 1.
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The functor w: =, — [n] induces Ho(=,) — [n].
It is easy to guess that this is an equivalence, but not trivial to prove.
Define w: [n] = =, by w(k) = {[j,n] | 0 <j < k}, so for n = 3:
w(0) = {{0,1,2,3}} w(1) ={{1,2,3},{0,1,2,3}}
w(2) = {{27 3}7 {17 2, 3}7 {0’ 1,2, 3}} w(3) = {{3}7 {27 3}7 {17 2, 3}a {07 1,2 3}}
This is a poset map with mow = 1. The map 7 is cosimplicial but w is not.
For @ # o C [n] put p(c) = [min(a), n].
For 6 € =, define pi(0), qx(0) € =, by
p(8) = {0 | o €6, o] < k}U{p(o) | o €6, |o] > k}
g(0) ={c o€, |o| <k}tU{p(c)|o€b, |o| >k}
Then px, gk € RelPos(=,,=,) with 7o px = mo g« = w and
wor2p<qr>2p1<q>-2>pa-1<gn > pon=1,

Using this, we see that 7: Ho(=,) — [n] is an equivalence of categories.
Now define ¢: [n] — Ho(=,) by ¢(i) = {{i}}. There is a unique way to
make this a functor with ro{ =1 and (om ~ 1.

This feeds into the proof that a:: C[we™'] — Ho(NC) is an isomorphism of
categories.
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In this case the final answer is not too bad, although it takes substantial
work to prove that.

Put =, = {0 € =, | [n] € 6} (the interior of =,,).
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RN



The left adjoint K: sSet — RelCat

>

>

Theorem: There is a functor K: sSet — RelCat, left adjoint to
N: RelCat — sSet, with K(X)[we™'] ~ Ho(X).

Moreover, K(X) is actually a poset.

Morally, K(X) is defined as a certain colimit of =,'s;

but colimits of categories are generally hard to handle.

In this case the final answer is not too bad, although it takes substantial
work to prove that.

Put =, = {0 € =, | [n] € 6} (the interior of =,,).
Put ND(X), = {nondegenerate n — simplices}.

AT,

Then K(X) =[], ND(X)n x =, f /‘\
(with appropriate structure as a relative poset). »{L\(L\,«
RN

Maximally degenerate example: X, is the set of partitions of [n] into
intervals.
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Theorem: There is a functor K: sSet — RelCat, left adjoint to
N: RelCat — sSet, with K(X)[we™'] ~ Ho(X).

Moreover, K(X) is actually a poset.

Morally, K(X) is defined as a certain colimit of =,'s;

but colimits of categories are generally hard to handle.

In this case the final answer is not too bad, although it takes substantial
work to prove that.

Put =, = {0 € =, | [n] € 6} (the interior of =,,).
Put ND(X), = {nondegenerate n — simplices}.

AT,

Then K(X) =[], ND(X)n x =, f /‘\
(with appropriate structure as a relative poset). »{L\(L\,«
RN

Maximally degenerate example: X, is the set of partitions of [n] into
intervals. There is a unique nondegenerate simplex in every degree.
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Given a simplicial set X, we construct a relative category K(X)
with a class of “strong equivalences” contained in the weak equivalences.

K(X) is the quotient of K(X) in which strong equivalences become
identities.

An object a € K(X) is a pair (xs,0,) with x, € X,, and 0, € =,,.
A morphism is u € A(n,, np) with u*x, = xa and ug(0a) < 0.

This is a weak equivalence if m(ux(6.)) = m(05), and a strong equivalence
Iff U#(ea) = 91,.



Sketch of construction of K(X)

> Given a simplicial set X, we construct a relative category K(X)
with a class of “strong equivalences” contained in the weak equivalences.

> K(X) is the quotient of K(X) in which strong equivalences become
identities.

> An object a € K(X) is a pair (xs,0,) with X, € X,,, and 0, € =,,.
» A morphism is u € A(n,, np) with u™x, = xa and ug(0a) < 0.

> This is a weak equivalence if m(ux(6.)) = m(05), and a strong equivalence
Iff U#(ea) = 91,.

» Any morphism factors uniquely as a surjective strong equivalence followed
by an injective morphism.



The pullback lemma

Suppose we have morphisms [n] = [k] <~ [m] in A, where u is injective and v
is surjective. Then there is a commutative square in A as shown on the left
below, which is a pullback in A or in the category of sets; and the resulting
diagram as shown on the right is also a pullback.

[ —2 [m] AN

T

[n] =—— [K] SR =

u.
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\ »
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i
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Extension properties

» A=, = union of faces of =, except k'th face = {0 € =, | [n], {k}¢ & 6}.
NS, ={0€=,|{k° &0}

N
M= \
N
\

Pt ———P s ———
» NC is a quasicategory iff every u: A=, — C (with 0 < k < n)
can be extended over =,.

» Ax=, is not a retract of =, so NC is not always a quasicategory.

> However, Af=, is a retract of =,, so NC is a quasicategory iff every
u: N¢=, — C can be extended over /\;rE,,.

> AF=, is [1] X A«=, union a cone under {1} x A(=,.

» If C has a model structure, we can make the required extension by
fibrantly replacing the diagram u: A=, — C and taking its inverse limit.

» As we have diagrams of a specific shape, we can assume less than a model
structure and be more explicit.
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Further topics

Compare this construction with the coherent nerve.

Compare this construction with the hammock localisation.

>
>
» Compare this construction with the Kan path groupoid.
» Investigate derived functors from this point of view.

>

Investigate homotopy (co)limits from this point of view.



