MAS61015 ALGEBRAIC TOPOLOGY — PROBLEM SHEET 11 — Solutions

Please hand in Exercises 2 and 4 by the Wednesday lecture of Week 5. I would prefer paper, but if that is not
possible for some reason, then you can send me a scan by email.

Exercise 1. Give an elementary proof (just using real analysis, not algebraic topology) of the case n = 1 of the
Brouwer Fixed Point Theorem.

Solution: The theorem says that if f: B! — B! is continuous, then there is a point z € B! with f(z) = x. Note
here that B! is just the interval [~1,1]. Define g: [-1,1] — R by g(z) = f(z) — z (so g is again continuous). Now
g(—1) = f(-1)+ 1 with =1 < f(—=1) <150 0 < g(—1) < 2. Similarly we have g(1) = f(1) — 1 with —1 < f(1) <1 so
—2<g(1) <0. As g(1) <0 < g(—1), the Intermediate Value Theorem tells us that there exists x € [—1,1] such that
g(x) =0. As g(z) = f(z) — z, this means that f(z) = x as required.

Exercise 2. Consider B? as a subset of C, so B> = {z € C | |2| < 1}. Check that the following formulae define
continuous maps fr: B? — B2, and find their fixed points.

_ 2z —1
fi(z) = -z faz) =2 fa(2) = 5 — fa(z) = 2]z + 1 - |2
(Note that in particular, you need to show that f;(z) € B2 whenever z € B2. For f3(z), you can give a direct argument
or you can recall some relevant theory from Complex Analysis. To understand f4(z), think about the same expression

with |z| replaced by an arbitrary real number ¢.)

Solution: It is clear that |—z| = |z| = |z| for all 2, so f; and f, send B? to B2. The map f3 is a Mobius transformation,
and standard complex analysis shows that such maps send circles to circles or straight lines. You can pick any three
points z € St (say z = 1,—1,7) and check that f3(z) € S*. This proves that f3(S!) is a circle that meets S! in
three places and so is the same as S'. We also have f3(0) = —1/2 € OB? and it follows that f3 sends B? to itself.
Alternatively, if z = 2 + iy € B? one can expand everything out to check that

222~ 22~ 12 =301 —2® — ?) 2 0,

0 |2 — z| > |22 — 1|, so |f3(2)] < 1. Finally, note that if z € B? and 0 < ¢ < 1 then the point tz + (1 — t) lies on the
straight line joining z to 1, and so lies in B%. Taking t = |z| € [0, 1], we get the point f4(2), so f4 also sends B? to
itself.

It is clear that z = —z iff 2 = 0, so the fixed set of f; is {0}. It is also clear that z = Z iff z is real, so the fixed set
of fo is BENR = [~1,1]. Next, we have f3(z) = z iff 22 — 1 = (2 — 2)z, which simplifies to 22 = 1, so the fixed set of
f3is {1,—1}. Finally, we have f4(z) — 2z = (|z|] = 1)(2 — 1), so f4(2) = z iff |z| =1 or z = 1. Moreover, if z =1 then
|z] = 1 so we do not need to consider the second case separately. We find that the fixed set of f4 is S*.

Exercise 3. Suppose that n > 0. For each of the spaces X = S™,R"™ OB"™ define a continuous map f: X — X that
has no fixed points.

Solution:
(a) We can define f: S™ — S™ by f(z) = —x. If —x = x then x = 0 so z € S™; this proves that f has no fixed
points.
(b) We can define g: R™ — R™ by

g(x1,...,xn)=(x1+1,...,2, +1).

This clearly has no fixed points.

(c) We can define a homeomorphism h: OB™ — R" by h(z) = x//1 — ||z]|2, with inverse h=1(y) = y//1 + ||y]|2.
We can then define k: OB™ — OB™ by k = h=logoh, with g as in (b). Now if k(z) = z then h~*(g(h(z))) = z,
so g(h(z)) = h(x), so the point y = h(z) € R™ is a fixed point of g, which is impossible. Thus, &k has no fixed
points.

For an alternative construction, pick any point a € OB™ with a # 0, and define m(z) = = + (1 — ||z]|a).
If x € OB™ then we can write x = ru for some unit vector u and some r € [0,1). We then have m(z) =
ru-+ (1 —r)a, which lies on the line segment joining u to a, but is not equal to u. This shows that m(z) € OB"
as required. We have m(z) — = (1 — ||z||)a, which is nonzero as ||z|| < 1 and a # 0. This shows that m has
no fixed points.

Exercise 4. You can assume all homology calculations mentioned in the notes. Show that
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(a) Neither of RP! and RP? is a homotopy retract of the other.

(b) The torus T2 is a homotopy retract of T, but 7% is not a homotopy retract of T2.
(c) St is a retract of S3\ S*

(d) OB? is a homotopy retract of B2, but not an actual retract.

Solution:

(a) Recall that Hy(RP') = Z and H;(RP?) = Z/2. There is no injective homomorphism from Z to Z/2 because
Z is infinite and Z/2 is finite. There is no injective homomorphism from Z/2 to Z, because Z/2 has an element
of order 2 and Z does not. It follows that neither of these spaces can be a homotopy retract of the other.

(b) Recall that T2 = S! x S! and T3 = S x S x S1. We can define T2 EN CREN by f(u,v) = (u,v,1)
and g(u,v,w) = (u,v). Then go f =id: T? — T?, so T? is a retract of 7. On the other hand, we have
Hy(T*) = Z* and there is no injective homomorphism from Z3 to Z? so T° is not a homotopy retract of 72,
(To prove the algebraic claim rigorously, let a: Z3 — Z? be a homomorphism. Let e; be the basis vector in Z3,
and put u; = afe;) € Z2 < Q2. We have three vectors in the space Q?, so by standard linear algebra they must
be linearly dependent, say aju; + agus + agus = 0 for some a; € Q with (a3, as,a3) # (0,0,0). We can put
these numbers a; over a common denominator, say (a1, as,as) = (b1/n,be/n,bs/n) for some by,bs,b3,n € Z
with n > 0. We then have

C\f(b) = blul + b2u2 + bgUg = n(a1u1 + asug + ag’LLg) = 0,
o « is not injective.)
(¢) Recall that
S3 = {(w,z,y,2) € R* | w? + 2% + 9> + 22 =1}.
As usual, we identify S with the subset
St ={(w,2,0,0) e R | w’ + 2" =1} = {(w,z,9,2) € §| (y,2) = (0,0)},

s0
S\ St ={(w,,y,2) € $° | (y.2) # (0,0)}.
Note that if (w,z,y,2) € S\ S* then y? + 22 > 0 so we can legitimately define

g(w,z,y,2) = (y,2)/Vy? + 22 € S*.
This gives a continuous map g: S\ S* — S!. In the opposite direction, we can define f: S* — §3\ St by
g(u,v) = (0,0, u,v). Tt is then clear that f(g(u,v)) = (u,v) for all (u,v) € S, so we have defined a retraction.
(d) We can define maps O B2 ENy ;P IENVoY: 2 by f(z) =0 and g(z) = 0. As OB? is convex, the composite g o f is
homotopic to the identity by a straight line homotopy. Thus, we have a homotopy retraction. We could make
this closer to being an actual retraction by taking f(x) = z and g(z) = 0.999992. However, we cannot have
an actual retraction. To see this, note that if go f = id: OB? — OB? then any x € OB? is equal to g(f(z))
and so lies in the image of g. This means that g is a surjective continuous map from the compact space B? to
the non-compact space OB?2, contradicting Proposition 8.20.

Exercise 5. Let p,q: C — C be continuous maps such that p is a polynomial of degree n > 0 and ¢ satisfies |¢(z)| < 1
for all z € C. By adapting the proof of the Fundamental Theorem of Algebra, prove that there exists € C such that

p(x) = q(z).
Solution: We have
p(z) =ap+arz+ -+ apa”
for some coefficients a; with a,, # 0. Put f(z) = p(z) — g(x). Suppose, for a contradiction that f(x) is never zero.
Choose some very large radius R and define h: [0,1]> — C\ {0} by
h(s,t) = f(Rse®™)/ f(Rs).
As we are assuming that f is never zero, the division is valid and h(s,t) lies in C\ {0} as required. Now put
u(t) = h(1,t). We have h(s,0) = h(s,1) =1 for all s, and h(0,¢) =1 for all ¢, so h is a pinned homotopy between the
constant path and u. On the other hand, we have chosen R to be very large, so when |z| = R the term a,z™ will be
much larger than all the other terms in p(x), and also much larger than g(x), because |g(x)| < 1 for all z. This gives
u(t) _ f(Re2m't) N aane27rint _ eZm’nt.
f(R) an R"
Thus, if we put v(t) = 2™ then u(t) will be very close to v(t) for all ¢, so the straight line path from u(t) to v(t) will
not pass through the origin, so we have a pinned homotopy between v and v in C\ {0}. We now conclude that the
constant path is path homotopic to v. However, this is impossible, because in the group H;(C\ {0}) ~ H;(S') ~ Z
the constant path corresponds to 0 and v corresponds to n.
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