
MAS61015 ALGEBRAIC TOPOLOGY — PROBLEM SHEET 11 — Solutions

Please hand in Exercises 2 and 4 by the Wednesday lecture of Week 5. I would prefer paper, but if that is not
possible for some reason, then you can send me a scan by email.

Exercise 1. Give an elementary proof (just using real analysis, not algebraic topology) of the case n = 1 of the
Brouwer Fixed Point Theorem.

Solution: The theorem says that if f : B1 → B1 is continuous, then there is a point x ∈ B1 with f(x) = x. Note
here that B1 is just the interval [−1, 1]. Define g : [−1, 1] → R by g(x) = f(x) − x (so g is again continuous). Now
g(−1) = f(−1) + 1 with −1 ≤ f(−1) ≤ 1 so 0 ≤ g(−1) ≤ 2. Similarly we have g(1) = f(1)− 1 with −1 ≤ f(1) ≤ 1 so
−2 ≤ g(1) ≤ 0. As g(1) ≤ 0 ≤ g(−1), the Intermediate Value Theorem tells us that there exists x ∈ [−1, 1] such that
g(x) = 0. As g(x) = f(x)− x, this means that f(x) = x as required.

Exercise 2. Consider B2 as a subset of C, so B2 = {z ∈ C | |z| ≤ 1}. Check that the following formulae define
continuous maps fk : B

2 → B2, and find their fixed points.

f1(z) = −z f2(z) = z f3(z) =
2z − 1

2− z
f4(z) = |z|z + 1− |z|

(Note that in particular, you need to show that fi(z) ∈ B2 whenever z ∈ B2. For f3(z), you can give a direct argument
or you can recall some relevant theory from Complex Analysis. To understand f4(z), think about the same expression
with |z| replaced by an arbitrary real number t.)

Solution: It is clear that |−z| = |z| = |z| for all z, so f1 and f2 send B2 to B2. The map f3 is a Möbius transformation,
and standard complex analysis shows that such maps send circles to circles or straight lines. You can pick any three
points z ∈ S1 (say z = 1,−1, i) and check that f3(z) ∈ S1. This proves that f3(S

1) is a circle that meets S1 in
three places and so is the same as S1. We also have f3(0) = −1/2 ∈ OB2 and it follows that f3 sends B2 to itself.
Alternatively, if z = x+ iy ∈ B2 one can expand everything out to check that

|2− z|2 − |2z − 1|2 = 3(1− x2 − y2) ≥ 0,

so |2− z| ≥ |2z − 1|, so |f3(z)| ≤ 1. Finally, note that if z ∈ B2 and 0 ≤ t ≤ 1 then the point tz + (1− t) lies on the
straight line joining z to 1, and so lies in B2. Taking t = |z| ∈ [0, 1], we get the point f4(z), so f4 also sends B2 to
itself.

It is clear that z = −z iff z = 0, so the fixed set of f1 is {0}. It is also clear that z = z iff z is real, so the fixed set
of f2 is B2 ∩ R = [−1, 1]. Next, we have f3(z) = z iff 2z − 1 = (2− z)z, which simplifies to z2 = 1, so the fixed set of
f3 is {1,−1}. Finally, we have f4(z)− z = (|z| − 1)(z − 1), so f4(z) = z iff |z| = 1 or z = 1. Moreover, if z = 1 then
|z| = 1 so we do not need to consider the second case separately. We find that the fixed set of f4 is S1.

Exercise 3. Suppose that n > 0. For each of the spaces X = Sn,Rn, OBn define a continuous map f : X → X that
has no fixed points.

Solution:

(a) We can define f : Sn → Sn by f(x) = −x. If −x = x then x = 0 so x ̸∈ Sn; this proves that f has no fixed
points.

(b) We can define g : Rn → Rn by

g(x1, . . . , xn) = (x1 + 1, . . . , xn + 1).

This clearly has no fixed points.
(c) We can define a homeomorphism h : OBn → Rn by h(x) = x/

√
1− ∥x∥2, with inverse h−1(y) = y/

√
1 + ∥y∥2.

We can then define k : OBn → OBn by k = h−1◦g◦h, with g as in (b). Now if k(x) = x then h−1(g(h(x))) = x,
so g(h(x)) = h(x), so the point y = h(x) ∈ Rn is a fixed point of g, which is impossible. Thus, k has no fixed
points.

For an alternative construction, pick any point a ∈ OBn with a ̸= 0, and define m(x) = x + (1 − ∥x∥a).
If x ∈ OBn then we can write x = ru for some unit vector u and some r ∈ [0, 1). We then have m(x) =
ru+(1−r)a, which lies on the line segment joining u to a, but is not equal to u. This shows that m(x) ∈ OBn

as required. We have m(x)− x = (1− ∥x∥)a, which is nonzero as ∥x∥ < 1 and a ̸= 0. This shows that m has
no fixed points.

Exercise 4. You can assume all homology calculations mentioned in the notes. Show that
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(a) Neither of RP 1 and RP 2 is a homotopy retract of the other.
(b) The torus T 2 is a homotopy retract of T 3, but T 3 is not a homotopy retract of T 2.
(c) S1 is a retract of S3 \ S1

(d) OB2 is a homotopy retract of B2, but not an actual retract.

Solution:

(a) Recall that H1(RP 1) = Z and H1(RP 2) = Z/2. There is no injective homomorphism from Z to Z/2 because
Z is infinite and Z/2 is finite. There is no injective homomorphism from Z/2 to Z, because Z/2 has an element
of order 2 and Z does not. It follows that neither of these spaces can be a homotopy retract of the other.

(b) Recall that T 2 = S1 × S1 and T 3 = S1 × S1 × S1. We can define T 2 f−→ T 3 g−→ T 2 by f(u, v) = (u, v, 1)
and g(u, v, w) = (u, v). Then g ◦ f = id: T 2 → T 2, so T 2 is a retract of T 3. On the other hand, we have
H1(T

k) = Zk and there is no injective homomorphism from Z3 to Z2 so T 3 is not a homotopy retract of T 2.
(To prove the algebraic claim rigorously, let α : Z3 → Z2 be a homomorphism. Let ei be the basis vector in Z3,
and put ui = α(ei) ∈ Z2 < Q2. We have three vectors in the space Q2, so by standard linear algebra they must
be linearly dependent, say a1u1 + a2u2 + a3u3 = 0 for some ai ∈ Q with (a1, a2, a3) ̸= (0, 0, 0). We can put
these numbers ai over a common denominator, say (a1, a2, a3) = (b1/n, b2/n, b3/n) for some b1, b2, b3, n ∈ Z
with n > 0. We then have

α(b) = b1u1 + b2u2 + b3u3 = n(a1u1 + a2u2 + a3u3) = 0,

so α is not injective.)
(c) Recall that

S3 = {(w, x, y, z) ∈ R4 | w2 + x2 + y2 + z2 = 1}.
As usual, we identify S1 with the subset

S1 = {(w, x, 0, 0) ∈ R4 | w2 + x2 = 1} = {(w, x, y, z) ∈ S3 | (y, z) = (0, 0)},
so

S3 \ S1 = {(w, x, y, z) ∈ S3 | (y, z) ̸= (0, 0)}.
Note that if (w, x, y, z) ∈ S3 \ S1 then y2 + z2 > 0 so we can legitimately define

g(w, x, y, z) = (y, z)/
√
y2 + z2 ∈ S1.

This gives a continuous map g : S3 \ S1 → S1. In the opposite direction, we can define f : S1 → S3 \ S1 by
g(u, v) = (0, 0, u, v). It is then clear that f(g(u, v)) = (u, v) for all (u, v) ∈ S1, so we have defined a retraction.

(d) We can define maps OB2 f−→ B2 g−→ OB2 by f(x) = 0 and g(x) = 0. As OB2 is convex, the composite g ◦ f is
homotopic to the identity by a straight line homotopy. Thus, we have a homotopy retraction. We could make
this closer to being an actual retraction by taking f(x) = x and g(x) = 0.99999x. However, we cannot have
an actual retraction. To see this, note that if g ◦ f = id: OB2 → OB2 then any x ∈ OB2 is equal to g(f(x))
and so lies in the image of g. This means that g is a surjective continuous map from the compact space B2 to
the non-compact space OB2, contradicting Proposition 8.20.

Exercise 5. Let p, q : C → C be continuous maps such that p is a polynomial of degree n > 0 and q satisfies |q(x)| < 1
for all x ∈ C. By adapting the proof of the Fundamental Theorem of Algebra, prove that there exists x ∈ C such that
p(x) = q(x).

Solution: We have
p(x) = a0 + a1x+ · · ·+ anx

n

for some coefficients ai with an ̸= 0. Put f(x) = p(x) − q(x). Suppose, for a contradiction that f(x) is never zero.
Choose some very large radius R and define h : [0, 1]2 → C \ {0} by

h(s, t) = f(Rse2πit)/f(Rs).

As we are assuming that f is never zero, the division is valid and h(s, t) lies in C \ {0} as required. Now put
u(t) = h(1, t). We have h(s, 0) = h(s, 1) = 1 for all s, and h(0, t) = 1 for all t, so h is a pinned homotopy between the
constant path and u. On the other hand, we have chosen R to be very large, so when |x| = R the term anx

n will be
much larger than all the other terms in p(x), and also much larger than q(x), because |q(x)| < 1 for all x. This gives

u(t) =
f(Re2πit)

f(R)
≃ anR

ne2πint

anRn
= e2πint.

Thus, if we put v(t) = e2πint then u(t) will be very close to v(t) for all t, so the straight line path from u(t) to v(t) will
not pass through the origin, so we have a pinned homotopy between u and v in C \ {0}. We now conclude that the
constant path is path homotopic to v. However, this is impossible, because in the group H1(C \ {0}) ≃ H1(S

1) ≃ Z
the constant path corresponds to 0 and v corresponds to n.
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