MAS61015 ALGEBRAIC TOPOLOGY - PROBLEM SHEET 11 - Solutions

Please hand in Exercises 2 and 4 by the Wednesday lecture of Week 5. I would prefer paper, but if that is not possible for some reason, then you can send me a scan by email.
Exercise 1. Give an elementary proof (just using real analysis, not algebraic topology) of the case $n=1$ of the Brouwer Fixed Point Theorem.
Solution: The theorem says that if $f: B^{1} \rightarrow B^{1}$ is continuous, then there is a point $x \in B^{1}$ with $f(x)=x$. Note here that B^{1} is just the interval $[-1,1]$. Define $g:[-1,1] \rightarrow \mathbb{R}$ by $g(x)=f(x)-x$ (so g is again continuous). Now $g(-1)=f(-1)+1$ with $-1 \leq f(-1) \leq 1$ so $0 \leq g(-1) \leq 2$. Similarly we have $g(1)=f(1)-1$ with $-1 \leq f(1) \leq 1$ so $-2 \leq g(1) \leq 0$. As $g(1) \leq 0 \leq g(-1)$, the Intermediate Value Theorem tells us that there exists $x \in[-1,1]$ such that $g(x)=0$. As $g(x)=f(x)-x$, this means that $f(x)=x$ as required.
Exercise 2. Consider B^{2} as a subset of \mathbb{C}, so $B^{2}=\{z \in \mathbb{C}| | z \mid \leq 1\}$. Check that the following formulae define continuous maps $f_{k}: B^{2} \rightarrow B^{2}$, and find their fixed points.

$$
f_{1}(z)=-z \quad f_{2}(z)=\bar{z} \quad f_{3}(z)=\frac{2 z-1}{2-z} \quad f_{4}(z)=|z| z+1-|z|
$$

(Note that in particular, you need to show that $f_{i}(z) \in B^{2}$ whenever $z \in B^{2}$. For $f_{3}(z)$, you can give a direct argument or you can recall some relevant theory from Complex Analysis. To understand $f_{4}(z)$, think about the same expression with $|z|$ replaced by an arbitrary real number t.)
Solution: It is clear that $|-z|=|\bar{z}|=|z|$ for all z, so f_{1} and f_{2} send B^{2} to B^{2}. The map f_{3} is a Möbius transformation, and standard complex analysis shows that such maps send circles to circles or straight lines. You can pick any three points $z \in S^{1}$ (say $\left.z=1,-1, i\right)$ and check that $f_{3}(z) \in S^{1}$. This proves that $f_{3}\left(S^{1}\right)$ is a circle that meets S^{1} in three places and so is the same as S^{1}. We also have $f_{3}(0)=-1 / 2 \in O B^{2}$ and it follows that f_{3} sends B^{2} to itself. Alternatively, if $z=x+i y \in B^{2}$ one can expand everything out to check that

$$
|2-z|^{2}-|2 z-1|^{2}=3\left(1-x^{2}-y^{2}\right) \geq 0
$$

so $|2-z| \geq|2 z-1|$, so $\left|f_{3}(z)\right| \leq 1$. Finally, note that if $z \in B^{2}$ and $0 \leq t \leq 1$ then the point $t z+(1-t)$ lies on the straight line joining z to 1 , and so lies in B^{2}. Taking $t=|z| \in[0,1]$, we get the point $f_{4}(z)$, so f_{4} also sends B^{2} to itself.

It is clear that $z=-z$ iff $z=0$, so the fixed set of f_{1} is $\{0\}$. It is also clear that $z=\bar{z}$ iff z is real, so the fixed set of f_{2} is $B^{2} \cap \mathbb{R}=[-1,1]$. Next, we have $f_{3}(z)=z$ iff $2 z-1=(2-z) z$, which simplifies to $z^{2}=1$, so the fixed set of f_{3} is $\{1,-1\}$. Finally, we have $f_{4}(z)-z=(|z|-1)(z-1)$, so $f_{4}(z)=z$ iff $|z|=1$ or $z=1$. Moreover, if $z=1$ then $|z|=1$ so we do not need to consider the second case separately. We find that the fixed set of f_{4} is S^{1}.
Exercise 3. Suppose that $n>0$. For each of the spaces $X=S^{n}, \mathbb{R}^{n}, O B^{n}$ define a continuous map $f: X \rightarrow X$ that has no fixed points.

Solution:

(a) We can define $f: S^{n} \rightarrow S^{n}$ by $f(x)=-x$. If $-x=x$ then $x=0$ so $x \notin S^{n}$; this proves that f has no fixed points.
(b) We can define $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
g\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+1, \ldots, x_{n}+1\right)
$$

This clearly has no fixed points.
(c) We can define a homeomorphism $h: O B^{n} \rightarrow \mathbb{R}^{n}$ by $h(x)=x / \sqrt{1-\|x\|^{2}}$, with inverse $h^{-1}(y)=y / \sqrt{1+\|y\|^{2}}$. We can then define $k: O B^{n} \rightarrow O B^{n}$ by $k=h^{-1} \circ g \circ h$, with g as in (b). Now if $k(x)=x$ then $h^{-1}(g(h(x)))=x$, so $g(h(x))=h(x)$, so the point $y=h(x) \in \mathbb{R}^{n}$ is a fixed point of g, which is impossible. Thus, k has no fixed points.

For an alternative construction, pick any point $a \in O B^{n}$ with $a \neq 0$, and define $m(x)=x+(1-\|x\| a)$. If $x \in O B^{n}$ then we can write $x=r u$ for some unit vector u and some $r \in[0,1)$. We then have $m(x)=$ $r u+(1-r) a$, which lies on the line segment joining u to a, but is not equal to u. This shows that $m(x) \in O B^{n}$ as required. We have $m(x)-x=(1-\|x\|) a$, which is nonzero as $\|x\|<1$ and $a \neq 0$. This shows that m has no fixed points.

Exercise 4. You can assume all homology calculations mentioned in the notes. Show that
(a) Neither of $\mathbb{R} P^{1}$ and $\mathbb{R} P^{2}$ is a homotopy retract of the other.
(b) The torus T^{2} is a homotopy retract of T^{3}, but T^{3} is not a homotopy retract of T^{2}.
(c) S^{1} is a retract of $S^{3} \backslash S^{1}$
(d) $O B^{2}$ is a homotopy retract of B^{2}, but not an actual retract.

Solution:

(a) Recall that $H_{1}\left(\mathbb{R} P^{1}\right)=\mathbb{Z}$ and $H_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z} / 2$. There is no injective homomorphism from \mathbb{Z} to $\mathbb{Z} / 2$ because \mathbb{Z} is infinite and $\mathbb{Z} / 2$ is finite. There is no injective homomorphism from $\mathbb{Z} / 2$ to \mathbb{Z}, because $\mathbb{Z} / 2$ has an element of order 2 and \mathbb{Z} does not. It follows that neither of these spaces can be a homotopy retract of the other.
(b) Recall that $T^{2}=S^{1} \times S^{1}$ and $T^{3}=S^{1} \times S^{1} \times S^{1}$. We can define $T^{2} \xrightarrow{f} T^{3} \xrightarrow{g} T^{2}$ by $f(u, v)=(u, v, 1)$ and $g(u, v, w)=(u, v)$. Then $g \circ f=\mathrm{id}: T^{2} \rightarrow T^{2}$, so T^{2} is a retract of T^{3}. On the other hand, we have $H_{1}\left(T^{k}\right)=\mathbb{Z}^{k}$ and there is no injective homomorphism from \mathbb{Z}^{3} to \mathbb{Z}^{2} so T^{3} is not a homotopy retract of T^{2}. (To prove the algebraic claim rigorously, let $\alpha: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{2}$ be a homomorphism. Let e_{i} be the basis vector in \mathbb{Z}^{3}, and put $u_{i}=\alpha\left(e_{i}\right) \in \mathbb{Z}^{2}<\mathbb{Q}^{2}$. We have three vectors in the space \mathbb{Q}^{2}, so by standard linear algebra they must be linearly dependent, say $a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}=0$ for some $a_{i} \in \mathbb{Q}$ with $\left(a_{1}, a_{2}, a_{3}\right) \neq(0,0,0)$. We can put these numbers a_{i} over a common denominator, say $\left(a_{1}, a_{2}, a_{3}\right)=\left(b_{1} / n, b_{2} / n, b_{3} / n\right)$ for some $b_{1}, b_{2}, b_{3}, n \in \mathbb{Z}$ with $n>0$. We then have

$$
\alpha(b)=b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3}=n\left(a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}\right)=0
$$

so α is not injective.)
(c) Recall that

$$
S^{3}=\left\{(w, x, y, z) \in \mathbb{R}^{4} \mid w^{2}+x^{2}+y^{2}+z^{2}=1\right\}
$$

As usual, we identify S^{1} with the subset

$$
S^{1}=\left\{(w, x, 0,0) \in \mathbb{R}^{4} \mid w^{2}+x^{2}=1\right\}=\left\{(w, x, y, z) \in S^{3} \mid(y, z)=(0,0)\right\}
$$

so

$$
S^{3} \backslash S^{1}=\left\{(w, x, y, z) \in S^{3} \mid(y, z) \neq(0,0)\right\}
$$

Note that if $(w, x, y, z) \in S^{3} \backslash S^{1}$ then $y^{2}+z^{2}>0$ so we can legitimately define

$$
g(w, x, y, z)=(y, z) / \sqrt{y^{2}+z^{2}} \in S^{1}
$$

This gives a continuous map $g: S^{3} \backslash S^{1} \rightarrow S^{1}$. In the opposite direction, we can define $f: S^{1} \rightarrow S^{3} \backslash S^{1}$ by $g(u, v)=(0,0, u, v)$. It is then clear that $f(g(u, v))=(u, v)$ for all $(u, v) \in S^{1}$, so we have defined a retraction.
(d) We can define maps $O B^{2} \xrightarrow{f} B^{2} \xrightarrow{g} O B^{2}$ by $f(x)=0$ and $g(x)=0$. As $O B^{2}$ is convex, the composite $g \circ f$ is homotopic to the identity by a straight line homotopy. Thus, we have a homotopy retraction. We could make this closer to being an actual retraction by taking $f(x)=x$ and $g(x)=0.99999 x$. However, we cannot have an actual retraction. To see this, note that if $g \circ f=\mathrm{id}: O B^{2} \rightarrow O B^{2}$ then any $x \in O B^{2}$ is equal to $g(f(x))$ and so lies in the image of g. This means that g is a surjective continuous map from the compact space B^{2} to the non-compact space $O B^{2}$, contradicting Proposition 8.20.
Exercise 5. Let $p, q: \mathbb{C} \rightarrow \mathbb{C}$ be continuous maps such that p is a polynomial of degree $n>0$ and q satisfies $|q(x)|<1$ for all $x \in \mathbb{C}$. By adapting the proof of the Fundamental Theorem of Algebra, prove that there exists $x \in \mathbb{C}$ such that $p(x)=q(x)$.
Solution: We have

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

for some coefficients a_{i} with $a_{n} \neq 0$. Put $f(x)=p(x)-q(x)$. Suppose, for a contradiction that $f(x)$ is never zero. Choose some very large radius R and define $h:[0,1]^{2} \rightarrow \mathbb{C} \backslash\{0\}$ by

$$
h(s, t)=f\left(R s e^{2 \pi i t}\right) / f(R s)
$$

As we are assuming that f is never zero, the division is valid and $h(s, t)$ lies in $\mathbb{C} \backslash\{0\}$ as required. Now put $u(t)=h(1, t)$. We have $h(s, 0)=h(s, 1)=1$ for all s, and $h(0, t)=1$ for all t, so h is a pinned homotopy between the constant path and u. On the other hand, we have chosen R to be very large, so when $|x|=R$ the term $a_{n} x^{n}$ will be much larger than all the other terms in $p(x)$, and also much larger than $q(x)$, because $|q(x)|<1$ for all x. This gives

$$
u(t)=\frac{f\left(R e^{2 \pi i t}\right)}{f(R)} \simeq \frac{a_{n} R^{n} e^{2 \pi i n t}}{a_{n} R^{n}}=e^{2 \pi i n t}
$$

Thus, if we put $v(t)=e^{2 \pi i n t}$ then $u(t)$ will be very close to $v(t)$ for all t, so the straight line path from $u(t)$ to $v(t)$ will not pass through the origin, so we have a pinned homotopy between u and v in $\mathbb{C} \backslash\{0\}$. We now conclude that the constant path is path homotopic to v. However, this is impossible, because in the group $H_{1}(\mathbb{C} \backslash\{0\}) \simeq H_{1}\left(S^{1}\right) \simeq \mathbb{Z}$ the constant path corresponds to 0 and v corresponds to n.

