
MAS61015 ALGEBRAIC TOPOLOGY — PROBLEM SHEET 14

Please hand in exercise 1 by the end of Week 8.

Exercise 1. Let X be a graph, consisting of some points in R2 (called vertices) and straight edges between them.
We assume that no two edges intersect except at the endpoints. In this exercise we will work through the standard
calculation of H∗(X).

Part (a) below shows an example. However, you should give answers that work for any X, except in cases where
the question specifically tells you to use the example in (a).

By a combinatorial path in X we mean a sequence of vertices u0, . . . , ur such that each pair (ui, ui+1) is an edge
of X. The combinatorial distance between vertices a and b is the minimum possible length of a combinatorial path
between them.

(a) A spanning tree is a subgraph T ⊆ X that contains all of the vertices and some of the edges, with the property
that it is connected and contains no loops.
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Show that there always exists a spanning tree. (Just choose a connected loop-free subgraph containing a with
as many edges as possible, and prove that it must be a spanning tree.) For the rest of this exercise, we choose
a spanning tree T and a vertex a ∈ T .

(b) Show that if x is a vertex of X, then there is a unique combinatorial path ux that goes from x to a without
visiting any vertex twice. Draw some examples of paths ux in the complex illustrated above.

(c) We also write ux for the sum of the edges in ux, considered as an element of C1(X). What is ∂(ux)?
(d) Define r(x) to be the first vertex on ux after x (to be interpreted as r(a) = a in the exceptional case where

x = a). In other words, r(x) is the vertex that we reach after taking one step towards a from x. Annotate the
above diagram to show the effect of the map r.

(e) Let e be an edge of T . Show that there is a vertex x such that the endpoints of e are x and r(x).
(f) Part (d) defined r as a map vert(T ) → vert(T ), where vert(T ) is the set of vertices of T . Explain how to

extend this to give a map r : T → T . Show that r is homotopic to the identity (but not by a linear homotopy).
Deduce that T is contractible.

(g) Now let the edges not in T be e1, . . . , em, where eq = (xq, yq). Define aq, bq, cq ∈ eq by
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Put zq = ⟨xq, yq⟩ − uxq
+ uyq

∈ C1(X). Prove that ∂(zq) = 0 (so we have a corresponding element hq = [zq] ∈
H1(X)).

(h) Put U = X \T , so U consists of the edges eq with the endpoints removed. Put V = X \{b1, . . . , bm}. Describe
the homology of U , V and U ∩ V in terms of the points aq, bq, cq and a.

(i) Use the Mayer-Vietoris sequence to show that H1(X) ≃ Zm.
(j) In the construction of the Mayer-Vietoris sequence we use the subcomplex C∗(U, V ) = C∗(U)+C∗(V ) ≤ C∗(X).

Show that zq ̸∈ C∗(U, V ). Find elements z′q ∈ C1(U) and z′′q ∈ C1(V ) such that sd2(zq) = z′q + z′′q , proving

that sd2(zq) ∈ C1(U, V ). (For this you will need to think about sd2(ux) and sd2(⟨xq, yq⟩). You can just leave

sd2(ux) as sd
2(ux) but you will need to analyse sd2(⟨xq, yq⟩) in more detail.)

(k) Use z′q and z′′q to find a snake involving sd2(zq) and thus compute δ(hq) in the Mayer-Vietoris sequence.
Conclude that the elements h1, . . . , hm give a basis for H1(X).
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