MAS61015 ALGEBRAIC TOPOLOGY - PROBLEM SHEET 13

Please hand in Exercises 2 and 3 by the Wednesday lecture of Week 7. I would prefer paper, but if that is not possible for some reason, then you can send me a scan by email.

Throughout this problem sheet we use the notation of Section 18 of the notes. In particular, we use the elements $\theta_{n} \in C_{n}\left(\Delta_{n}\right)$ and $\kappa_{n} \in C_{n+1}\left(\Delta_{n}\right)$ that are defined in that section.

Exercise 1. Example 18.5 gives the following formula:

$$
\theta_{2}=\left\langle e_{012}, e_{12}, e_{2}\right\rangle-\left\langle e_{012}, e_{12}, e_{1}\right\rangle-\left\langle e_{012}, e_{02}, e_{2}\right\rangle+\left\langle e_{012}, e_{02}, e_{0}\right\rangle+\left\langle e_{012}, e_{01}, e_{1}\right\rangle-\left\langle e_{012}, e_{01}, e_{0}\right\rangle
$$

We could write this with abbreviated notation as follows:

$$
\theta_{2}=\langle 012,12,2\rangle-\langle 012,12,1\rangle-\langle 012,02,2\rangle+\langle 012,02,0\rangle+\langle 012,01,1\rangle-\langle 012,01,0\rangle
$$

Use the same method and the same abbreviated notation to give a formula for θ_{3} (which should have 24 terms).

Exercise 2. Give formulae for κ_{1} (with 3 terms) and κ_{2} (with 16 terms). Use abbreviated notation as in the previous exercise.

Exercise 3. We define slightly modified versions of sd and σ as follows. Define $\operatorname{sd}_{0}^{\prime}: C_{0}(X) \rightarrow C_{0}(X)$ to be the identity, and define $\sigma_{0}^{\prime}: C_{0}(X) \rightarrow C_{1}(X)$ to be zero. Define $\lambda, \rho: \Delta_{1} \rightarrow \Delta_{1}$ and $\phi: \Delta_{2} \rightarrow \Delta_{1}$ by

$$
\begin{aligned}
\lambda\left(t_{0}, t_{1}\right) & =\left(t_{0}+t_{1} / 2, t_{1} / 2\right) \\
\rho\left(t_{0}, t_{1}\right) & =\left(t_{0} / 2, t_{0} / 2+t_{1}\right) \\
\phi\left(t_{0}, t_{1}, t_{2}\right) & =\left(t_{0}+t_{1} / 2, t_{1} / 2+t_{2}\right) .
\end{aligned}
$$

For $u: \Delta_{1} \rightarrow X$ put $\operatorname{sd}_{1}^{\prime}(u)=u \circ \lambda+u \circ \rho \in C_{1}(X)$ and $\sigma_{1}^{\prime}(u)=-(u \circ \phi) \in C_{2}(X)$. Extend this linearly to define $\operatorname{sd}_{1}^{\prime}: C_{1}(X) \rightarrow C_{1}(X)$ and $\sigma_{1}^{\prime}: C_{1}(X) \rightarrow C_{2}(X)$.
(a) Check that $\partial\left(\sigma_{1}^{\prime}(u)\right)+\sigma_{0}^{\prime}(\partial(u))=u-\operatorname{sd}_{1}^{\prime}(u)$.
(b) What can you say about the relationship between sd_{1}^{\prime} and sd_{1} ?

Note: Here X is an arbitrary space, which may not have anything to do with \mathbb{R}^{N}. Even if $X=\mathbb{R}^{N}$, the map $u: \Delta_{1} \rightarrow X$ need not be linear. Thus, you should not be using ideas or notation that are only valid for linear simplices in \mathbb{R}^{N}.

