MAS61015 ALGEBRAIC TOPOLOGY - PROBLEM SHEET 12

Please hand in Exercises 1 and 2 by the Wednesday lecture of Week 6. I would prefer paper, but if that is not possible for some reason, then you can send me a scan by email.

Exercise 1. We define groups U_{k}, V_{k} and W_{k} (for all $k \in \mathbb{Z}$) and maps between them as follows:

- U_{k} is a copy of $\mathbb{Z} / 4$ with generator u_{k}, and V_{k} is a copy of $\mathbb{Z} / 16$ with generator v_{k}, and W_{k} is a copy of $\mathbb{Z} / 4$ with generator w_{k}.
- The maps $d: U_{k} \rightarrow U_{k-1}$ and $d: V_{k} \rightarrow V_{k-1}$ and $d: W_{k} \rightarrow W_{k-1}$ are given by $d\left(u_{k}\right)=0$ and $d\left(w_{k}\right)=0$ and $d\left(v_{k}\right)=8 v_{k-1}$.
- The map $i: U_{k} \rightarrow V_{k}$ is given by $i\left(u_{k}\right)=4 v_{k}$.
- The map $p: V_{k} \rightarrow W_{k}$ is given by $p\left(v_{k}\right)=w_{k}$.
(a) Prove that this makes U_{*}, V_{*} and W_{*} into chain complexes.
(b) Prove that i and p are chain maps.
(c) Prove that the sequence $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ is short exact.
(d) Find the homology groups of U_{*}, V_{*} and W_{*}.
(e) Describe the action of the maps i_{*} and p_{*} on these homology groups.
(f) By finding suitable snakes, describe the connecting map $\delta: H_{k}(W) \rightarrow H_{k-1}(U)$. Check that the resulting long sequence of homology groups is exact.
Note: In working through this problem you will need to refer to various homology classes $[z]$. You must remember that this notation is only meaningful when z is a cycle, i.e. it satisfies $d(z)=0$. It is easy to violate this rule by accident; you should check your work carefully to ensure that you have not done so.

Exercise 2. Let U_{*} and W_{*} be chain complexes, and suppose we have maps $f_{n}: W_{n} \rightarrow U_{n-1}$ that satisfy $d f=$ $-f d: W_{n} \rightarrow U_{n-2}$. Put $V_{n}=U_{n} \oplus W_{n}$ and define $d: V_{n} \rightarrow V_{n-1}$ by

$$
d(u, w)=(d(u)+f(w), d(w))
$$

Define maps $U_{n} \xrightarrow{i} V_{n} \xrightarrow{p} W_{n}$ by $i(u)=(u, 0)$ and $p(u, w)=w$.
(a) Prove that V_{*} is a chain complex.
(b) Prove that i and p are chain maps and that the sequence $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ is short exact.
(c) Prove that the resulting map $\delta: H_{n}(W) \rightarrow H_{n-1}(U)$ satisfies $\delta([w])=[f(w)]$.

Exercise 3. Let $U_{*} \xrightarrow{i} V_{*} \xrightarrow{j} W_{*}$ be a short exact sequence of chain complexes and chain maps. Suppose that the groups $H_{n}(U)$ and $H_{n}(W)$ are finite for all n, and are zero when n is odd. Prove that $H_{n}(V)$ is finite for all n, with $\left|H_{n}(V)\right|=\left|H_{n}(U)\right|\left|H_{n}(W)\right|$.

Exercise 4. Let $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ be a short exact sequence of chain maps between chain complexes. Suppose that for every $w \in W_{k}$ with $d w=0$ there exists $v \in V_{k}$ with $d v=0$ and $p v=w$. Prove that the sequence $H_{*}(U) \xrightarrow{i_{*}} H_{*}(V) \xrightarrow{p_{*}} H_{*}(W)$ is short exact.

