## MAS61015 ALGEBRAIC TOPOLOGY - PROBLEM SHEET 9

Please hand in Exercises 2 and 9 by the Wednesday lecture of Week 3. I would prefer paper, but if that is not possible for some reason, then you can send me a scan by email.

Exercise 1. Write down all isomorphism classes of abelian groups of order 2, 4 and 8. Write down all isomorphism classes of abelian groups of order $6,10,15$.

## Exercise 2.

(a) If there is an exact sequence

$$
0 \rightarrow \mathbb{Z} / 4 \xrightarrow{\alpha} A \xrightarrow{\beta} \mathbb{Z} / 2 \rightarrow 0
$$

what are the possible isomorphism types for $A$ ? If you think that $A$ could be $\mathbb{Z} / 10$, for example, you should give explicit maps $\mathbb{Z} / 4 \xrightarrow{\alpha} \mathbb{Z} / 10 \xrightarrow{\beta} \mathbb{Z} / 2$ and check that they are well-defined and give a short exact sequence. Optional extra: If there is an exact sequence

$$
0 \rightarrow \mathbb{Z} / 2 \xrightarrow{\alpha} \mathbb{Z} / 4 \xrightarrow{\beta} B \xrightarrow{\gamma} \mathbb{Z} / 4 \oplus \mathbb{Z} / 2 \xrightarrow{\delta} C \xrightarrow{\epsilon} \mathbb{Z} / 2 \rightarrow 0,
$$

what are the possible isomorphism types for $B$ and $C$ ? (There are many possibilities.)
(b) Show that if there is an exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} \mathbb{Z} \rightarrow 0$ then $B \cong A \oplus \mathbb{Z}$. You should start by showing that there is a homomorphism $\sigma: \mathbb{Z} \rightarrow B$ such that $\beta \sigma=1$.

## Exercise 3.

(a) Let $\phi: A \rightarrow B$ be a homomorphism between Abelian groups. Show that $\phi(n a)=n \phi(a)$ for all $a \in A$ and $n \in \mathbb{Z}$. (Start with the case $n \geq 0$ and use induction.)
(b) Let $B$ be an Abelian group, and let $\phi: \mathbb{Z}^{2} \rightarrow B$ be a homomorphism. Show that there are elements $u, v \in B$ such that $\phi(n, m)=n u+m v$ for all $(n, m) \in \mathbb{Z}^{2}$.
(c) List all the homomorphisms from $\mathbb{Z}^{2}$ to $\mathbb{Z} / 9$. How many of them are surjective?
(d) Prove that there is no homomorphism $\phi: \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 12$ such that $\phi(1)=1$.
(e) How much can you say about homomorphisms from $\mathbb{Z} / n$ to $\mathbb{Z} / m$ for arbitrary natural numbers $n$, $m$ ?

Exercise 4. What is the minimum number of generators for $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$ ? What is the minimum number of generators for $\mathbb{Z} / 2 \oplus \mathbb{Z} / 3$ ? Is $\mathbb{Q}$ a finitely generated abelian group?

Exercise 5. Let $p$ and $q$ be coprime integers, and let $\phi: \mathbb{Z} \rightarrow \mathbb{Z} / p$ be the homomorphism $\phi(n)=(n q \bmod p)$. Prove that $\phi$ is surjective. Prove also that the only homomorphism from $\mathbb{Z} / q$ to $\mathbb{Z} / p$ is the zero homomorphism

Exercise 6. Let $A$ be a finite Abelian group, and let $B$ be a free Abelian group. Prove that if $\phi: A \rightarrow B$ is a homomorphism, then $\phi=0$.

Exercise 7. Suppose we have two sets $D$ and $E$ each with precisely two elements, say $D=\{p, q\}$ and $E=\{r, s\}$. Define a function $\psi: D \rightarrow \mathbb{Z}[E]$ by

$$
\psi(p)=3[r]+[s] \quad \psi(q)=5[r]+2[s]
$$

and let $\phi: \mathbb{Z}[D] \rightarrow \mathbb{Z}[E]$ be the linear extension of $\psi$. What is $\phi([p]-[q])$ ? What is $\phi(n[p]+m[q])$ ?
Now define a map $\zeta: E \rightarrow \mathbb{Z}[D]$ by

$$
\zeta(r)=2[p]-[q] \quad \zeta(s)=-5[p]+3[q]
$$

and let $\xi$ be the linear extension of $\zeta$. What is $\xi \phi([p])$ ? Extend this calculation to show that $\xi=\phi^{-1}$.

Exercise 8. Let $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z} / 12$ be the homomorphism defined by

$$
\phi(n, m)=(3 n,(2 n+4 m \bmod 12)) .
$$

Give an isomorphism $\psi: \mathbb{Z} \rightarrow \operatorname{ker}(\phi)$.

Exercise 9. Consider the following sequences of abelian groups and homomorphisms. The degrees are indicated by the top row, so for example $B_{0}=\mathbb{Z} / 6$ and $B_{1}=B_{2}=\mathbb{Z} / 4$.

For each sequence, decide whether it is a chain complex. If it is a chain complex, find the homology, and decide whether the sequence is exact.

(Here notation like $\mathbb{Z} / n \xrightarrow{p} \mathbb{Z} / m$ refers to the map $f: \mathbb{Z} / n \rightarrow \mathbb{Z} / m$ given by $f(i(\bmod n))=p i(\bmod m)$. You should think about the conditions on $n, m$ and $p$ that are needed to make this well-defined.)

