
Algebraic Topology Exam Questions
This is a collection of questions taken from Algebraic Topology exams over a number of years. To some extent, they

have been modified to be compatible with the version of the course taught in 2021-22, but some differences remain.

1 Compactness

Some questions in this section use ideas that are specific to metric spaces rather than general topological spaces. These
ideas are not developed in the current version of the course.

(1) Let X be a metric space.

(a) Let Y be a compact subspace of X. Prove that Y is closed in X.

(b) Let Y and Z be two compact subspaces of X. Prove that Y ∪ Z is compact.

(c) Deduce (or prove otherwise) that every finite space is compact.

(d) Let Y and Z be compact metric spaces. Prove that Y × Z is compact.

(e) Conversely, let Y and Z be metric spaces such that Z ̸= ∅ and Y × Z is compact. Prove that Y is compact.

(f) Put X = {(x, y, z) ∈ R3 : x4+ y4+ z4 = 1}. Prove that X is compact. You may use general theorems provided
that you state them precisely.

Solution:

(a) Let (yn) be a sequence in Y , converging to some point x ∈ X. Clearly any subsequence converges to x also. By
compactness, some subsequence (ynk

) converges to some y ∈ Y , and as limits are unique we must have x = y,
so x ∈ Y . This means that Y is closed, as required.

(b) Let (xn) be a sequence in Y ∪ Z. Then either xn ∈ Y for infinitely many n, or xn ∈ Z for infinitely many n.
In the first case, we can choose a subsequence (x′n) of (xn) such that x′n ∈ Y for all n in other words we have
a sequence in Y . As Y is compact, some subsequence (x′′n) of (x′n) converges in Y , and thus in Y ∪ Z. The
other case is similar, so in either case some subsequence of (xn) converges in Y ∪ Z. This implies that Y ∪ Z is
compact.

(c) If X has only one point then every sequence converges so X is compact. If X has n > 1 points, we can write it
in the form X = Y ∪ Z where |Y | = n− 1 and |Z| = 1, so Y and Z are compact by induction, so X is compact
by (ii).

(d) Let (wn) be a sequence in Y × Z, with wn = (yn, zn) say. As Y is compact, some subsequence (ynk
) converges

to some y ∈ Y . Put y′k = ynk
and z′k = znk

and w′
k = (y′k, z

′
k) = wnk

. As Z is compact, some subsequence z′kj

converges to some point z ∈ Z. Put y′′j = y′kj
and z′′j = z′kj

and w′′
j = (y′′j , z

′′
j ) = w′

kj
. As (y′′j ) is a subsequence

of the sequence (y′k) which converges to y, we see that y′′j −→ y. By assumption we have z′′j −→ z, so w′′
j −→ (y, z).

Thus, some subsequence of (wn) converges in Y × Z, proving that Y × Z is compact as claimed.

(e) As Z ̸= ∅ we can choose a point a ∈ Z. Let p : Y ×Z −→ Y be defined by p(y, z) = y. We have p(y, a) = y, which
shows that p is surjective. In general, if f : A −→ B is a surjective continuous map of spaces and A is compact
we know that B is compact. As Y × Z is assumed compact, we deduce that Y is compact.

(e) If (x, y, z) ∈ X then x4 ≤ x4 + y4 + z4 = 1 so |x| ≤ 1. Similarly, we see that |y| ≤ 1 and |z| ≤ 1, which implies
that X is bounded. I claim that it is also closed in R3. Indeed, suppose we have a sequence an = (xn, yn, zn) in
X converging to some point a = (x, y, z) ∈ R3. then x4n + y4n + z4n = 1 and xn −→ x, yn −→ y and zn −→ z, so by
the algebra of limits we have

x4 + y4 + z4 = lim(x4n + y4n + z4n) = 1,

so a ∈ X.

A bounded closed subset of Rn is compact, so we deduce that X is compact as claimed.

(2) Let X be a metric space.
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(a) Let Y be a compact subspace of X. Prove that Y is closed in X.

(b) Let Y and Z be two compact subspaces of X. Prove that Y ∪ Z is compact.

(c) Deduce (or prove otherwise) that every finite space is compact.

(d) Let Y and Z be compact metric spaces. Prove that Y × Z is compact.

(e) Conversely, let Y and Z be metric spaces such that Z ̸= ∅ and Y × Z is compact. Prove that Y is compact.

(f) Put X = {(x, y, z) ∈ R3 : x4+ y4+ z4 = 1}. Prove that X is compact. You may use general theorems provided
that you state them precisely.

Solution:

(a) Let (yn) be a sequence in Y , converging to some point x ∈ X. Clearly any subsequence converges to x also. By
compactness, some subsequence (ynk

) converges to some y ∈ Y , and as limits are unique we must have x = y,
so x ∈ Y . This means that Y is closed, as required.

(b) Let (xn) be a sequence in Y ∪ Z. Then either xn ∈ Y for infinitely many n, or xn ∈ Z for infinitely many n.
In the first case, we can choose a subsequence (x′n) of (xn) such that x′n ∈ Y for all n in other words we have
a sequence in Y . As Y is compact, some subsequence (x′′n) of (x′n) converges in Y , and thus in Y ∪ Z. The
other case is similar, so in either case some subsequence of (xn) converges in Y ∪ Z. This implies that Y ∪ Z is
compact.

(c) If X has only one point then every sequence converges so X is compact. If X has n > 1 points, we can write it
in the form X = Y ∪ Z where |Y | = n− 1 and |Z| = 1, so Y and Z are compact by induction, so X is compact
by (ii).

(d) Let (wn) be a sequence in Y × Z, with wn = (yn, zn) say. As Y is compact, some subsequence (ynk
) converges

to some y ∈ Y . Put y′k = ynk
and z′k = znk

and w′
k = (y′k, z

′
k) = wnk

. As Z is compact, some subsequence z′kj

converges to some point z ∈ Z. Put y′′j = y′kj
and z′′j = z′kj

and w′′
j = (y′′j , z

′′
j ) = w′

kj
. As (y′′j ) is a subsequence

of the sequence (y′k) which converges to y, we see that y′′j −→ y. By assumption we have z′′j −→ z, so w′′
j −→ (y, z).

Thus, some subsequence of (wn) converges in Y × Z, proving that Y × Z is compact as claimed.

(e) As Z ̸= ∅ we can choose a point a ∈ Z. Let p : Y ×Z −→ Y be defined by p(y, z) = y. We have p(y, a) = y, which
shows that p is surjective. In general, if f : A −→ B is a surjective continuous map of spaces and A is compact
we know that B is compact. As Y × Z is assumed compact, we deduce that Y is compact.

(f) If (x, y, z) ∈ X then x4 ≤ x4 + y4 + z4 = 1 so |x| ≤ 1. Similarly, we see that |y| ≤ 1 and |z| ≤ 1, which implies
that X is bounded. I claim that it is also closed in R3. Indeed, suppose we have a sequence an = (xn, yn, zn) in
X converging to some point a = (x, y, z) ∈ R3. then x4n + y4n + z4n = 1 and xn −→ x, yn −→ y and zn −→ z, so by
the algebra of limits we have

x4 + y4 + z4 = lim(x4n + y4n + z4n) = 1,

so a ∈ X.

A bounded closed subset of Rn is compact, so we deduce that X is compact as claimed.

(3)

(a) What does it mean to say that a metric space X is compact? (3 marks)

(b) Let f : X −→ Y be a continuous surjective map of metric spaces, where X is compact. Prove that Y is compact.
(6 marks)

(c) Let Z be a closed subset of a compact space X. Prove that Z is compact. (6 marks)

(d) Put U = {z ∈ C | 0 ≤ Re(z) ≤ 1}, and define g : C −→ C by g(z) = ez.

(i) Is U compact? (2 marks)

(ii) Is g(U) compact? (4 marks)

(iii) Is g(g(U)) compact? (4 marks)
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Justify your answers.

Solution:

(a) A metric space X is compact if for every sequence (xn) in X there is a subsequence (xnk
) and a point x ∈ X

such that xnk
−→ x. [bookwork][3]

(b) Let f : X −→ Y be a continuous surjective map, and suppose that X is compact. Consider a sequence (yn) in
Y . As f is surjective, we can choose xn ∈ X for each n such that f(xn) = yn. As X is compact, there is a
subsequence (xnk

) of (xn) and a point x ∈ X such that xnk
−→ x. Put y = f(x) ∈ Y , and note that ynk

= f(xnk
).

As f is continuous, it follows that ynk
−→ y. Thus our original sequence has a convergent subsequence, proving

that Y is compact. [bookwork][6]

(c) Let X be compact, and let Z be a closed subspace of X. Consider a sequence (zn) in Z. We can regard this as
a sequence in the compact space X, so some subsequence (znk

) converges to some point x ∈ X. However, Z is
closed and znk

lies in Z for all k and znk
−→ x, so x must actually lie in Z. Thus our original sequence has a

subsequence that converges to a point in Z, proving that Z is compact. [bookwork][6]

(d) Put U = {z ∈ C | 0 ≤ Re(z) ≤ 1}, and define g : C −→ C by g(z) = ez. Then U is clearly unbounded and
thus not compact; the sequence i, 2i, 3i, . . . has no convergent subsequence. [2] On the other hand, we can use
the fact that g(x + iy) = ex(cos(y) + i sin(y)) to see that g(U) = {z ∈ C | 1 ≤ |z| ≤ e} [2]. This is bounded
and closed and thus compact [2]. We can regard g as a continuous surjective map from g(U) to g(g(U)) and it
follows from (b) that g(g(U)) is compact [4] [unseen]. The properties of the complex exponential map
are reviewed in lectures and used in several examples.

(4)

(a) What does it mean to say that a metric space X is compact? (3 marks)

(b) Let X and Y be compact metric spaces. Prove that X × Y is compact. (8 marks)

(c) Let f : I −→ Y be a continuous map (where I = [0, 1]). Prove that f(I) is closed in Y . (7 marks)

(d) Put X = Z× Z and Y = {(x, y) ∈ R2 | x2 + y2 < 4}, considered as subspaces of the plane R2.

(i) Is X compact? (2 marks)

(ii) Is Y compact? (2 marks)

(iii) Is X ∩ Y compact? (3 marks)

Justify your answers.

Solution:

(a) A metric space X is compact if for every sequence (xn) in X there is a subsequence (xnk
) and a point x ∈ X

such that xnk
−→ x. [bookwork][3]

(b) Consider a sequence zn = (xn, yn) in X × Y [1]. As X is compact, the sequence (xn) has a convergent
subsequence, say (xn1

, xn2
, . . .) converging to x ∈ X [1]. We write x′m = xnm

for convenience, and also put
y′m = ynm

and z′m = (x′m, y
′
m) = znm

[1]. Note that x′m −→ x as m −→ ∞ [1]. Next, observe that Y is compact, so
the sequence (y′m) has a convergent subsequence, say (y′m1

, y′m2
, . . .) converging to y ∈ Y [1]. Now put y′′k = y′mk

and x′′k = x′mk
and z′′k = (x′′k , y

′′
k ) [1]. Then y′′k −→ y by assumption, and x′′k −→ x because (x′′k) is a subsequence

of (x′m), and x′m −→ x [1]. This means that z′′k = (x′′k , y
′′
k ) −→ (x, y), so (z′′k ) is a convergent subsequence of our

original sequence (zn) [1]. This proves that X × Y is compact. [bookwork]

(c) We know that I is compact [2], and that the image of a compact set under any continuous map is again compact
[2]. This means that f(I) is a compact subspace of Y [1]. However, any compact subset of a metric space is
automatically closed [2], so f(I) is closed in Y as claimed. [seen]

(d) (i) X is unbounded and thus not compact. [2]

(ii) Y is not closed, and thus is not compact. [2]

(iii) X ∩ Y is a finite set; explicitly,

X ∩ Y = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}.

It follows that X ∩ Y is compact. [3]
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2 Path components

(5)

(a) What does it mean to say that a topological space X is path-connected?

(b) Prove that the space Sn is path-connected for all n > 0.

(c) Let X be a subset of Rn, and let a be a point in X. What does it mean to say that X is star-shaped around a?
Show that if X is star-shaped around a, then it is path-connected.

(d) Suppose that f : X −→ R is continuous, f(x) is nonzero for all x, and there exist x0, x1 ∈ X with f(x0) < 0 <
f(x1). Prove that X is not path-connected.

(e) Recall that GL3(R) is the space of 3× 3 invertible matrices over R. Prove that this space is not path-connected.

Solution:

(a) A space X is path-connected if for each pair of points x0, x1 ∈ X there exists a continuous map u : I −→ X such
that u(0) = x0 and u(1) = x1.

(b) Suppose that n > 1 and that x0, x1 ∈ Sn. Suppose first that x1 ̸= −x0, so that the line segment from x0 to x1
does not pass through the origin. Thus, if we put f(t) = (1− t)x0 + tx1 then f(t) ̸= 0 for all t ∈ I. We can thus
define a continuous map u : I −→ Sn by u(t) = f(t)/∥f(t)∥ and this satisfies u(0) = x0/∥x0∥ = x0 and u(1) = x1
as required.

Now consider the exceptional case where x1 = −x0. As n > 0 the set Sn has more than two points so we can
choose a point x2 that is different from both −x0 and −x1. By the first part of the proof we can define a path
u from x0 to x2 and a path v from x1 to x2 in Sn. This gives a path w := u ∗ v from x0 to x2.

(c) A subset X ⊆ Rn is star-shaped around a point a ∈ X if for all x ∈ X, the linear path from x to a (given by the
formula u(t) = (1− t)x+ ta, which is meaningful because x and a are vectors in Rn) lies wholly in X.

Suppose that this holds. For any x0, x1 ∈ X we can let u0 be the linear path from x0 to a and let u1 be the
linear path from x1 to a. Then u0 ∗ u1 is a path from x0 to x1, showing that X is path-connected.

(d) Suppose that f : X −→ R is continuous, f(x) is nonzero for all x, and there exist x0, x1 ∈ X with f(x0) < 0 <
f(x1). I claim that there is no continuous path in X from x0 to x1, so that X is not path-connected. Indeed,
if u is such a path, put g(t) = f(u(t)), giving a continuous function g : I −→ R. We have g(0) = f(x0) < 0 and
g(1) = f(x1) > 0. By the Intermediate Value Theorem, there must be some t ∈ I with g(t) = 0, or in other
words f(u(t)) = 0. However, u(t) ∈ X, and f(x) ̸= 0 for all x ∈ X by assumption. This contradiction shows
that there can be no such map u.

(e) Consider the map det : GL3(R) −→ R. As det(A) is a polynomial expression in the entries of the matrix A, we
see that det is continuous. If A ∈ GL3(R) then A is invertible, so det(A) ̸= 0. The matrices

A0 =

 −1 0 0
0 1 0
0 0 1


A1 =

 1 0 0
0 1 0
0 0 1


lie in GL3(R) and satisfy det(A0) < 0 < det(A1). It follows from the previous part that GL3(R) is disconnected.

(6)

(a) Let X be a topological space. Define the equivalence relation ∼ on X such that π0(X) = X/ ∼, and prove that
it is an equivalence relation.

(b) Let f : X −→ Y be a continuous map. Define the induced map f∗ : π0(X) −→ π0(Y ), and prove that it is well-
defined.
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(c) Show that if f, g : X −→ Y are homotopic maps then f∗ = g∗ : π0(X) −→ π0(Y ).

(d) Put X = [−3,−2]∪ [−1, 1]∪ [2, 3] and Y = [0, 1]∪ [2, 10], and define f : X −→ Y by f(x) = x2. Describe the sets
π0(X) and π0(Y ) and the map f∗ : π0(X) −→ π0(Y ).

Solution:

(a) We write x ∼ y iff there is a path in X from x to y, in other words a continuous map s : I −→ X such that
s(0) = x and s(1) = y. For any x ∈ X we can define cx : I −→ X by cx(t) = x for all t; this is a path from x to
x, proving that x ∼ x. If x ∼ y then there is a path s from x to y and we can define a path s from y to x by
s(t) = s(1− t); this shows that y ∼ x. If there is also a path r from y to z then we can define a path s ∗ r from
x to z by

(s ∗ r)(t) =

{
s(2t) if 0 ≤ t ≤ 1/2

r(2t− 1) if 1/2 ≤ t ≤ 1,

and this shows that x ∼ z. Thus ∼ is reflexive, symmetric and transitive and thus is an equivalence relation.

(b) Let c be an element of π0(X), in other words a path component in X. For any x ∈ c we have a point f(x) ∈ Y ,
and thus a path-component [f(x)] ∈ π0(Y ). If x′ is another point in c then x ∼ x′ so we can choose a path s
from x to x′ in X. Thus f ◦ s : I −→ Y is a path in Y from f(x) to f(x′), so f(x) ∼ f(x′), so [f(x)] = [f(x′)].
We can thus define f∗(c) = [f(x)]; this is independent of the choice of x and thus is well-defined.

(c) If f, g : X −→ Y are homotopic then we can chooose a map h : I −→ X −→ Y such that h(0, x) = f(x) and
h(1, x) = g(x) for all x. If c ∈ π0(X) we can choose x ∈ X and note that f∗(c) = [f(x)] and g∗(c) = [g(x)].
We can also define a map s : I −→ Y by s(t) = h(t, x). This gives a path from s(0) = f(x) to s(1) = g(x), so
[f(x)] = [g(x)], in other words f∗(c) = g∗(c).

(d) Write

a = [−3,−2]

b = [−1, 1]

c = [2, 3]

d = [0, 1]

e = [2, 11]

Then π0(X) = {a, b, c} and π0(Y ) = {c, d}. The map f∗ : π0(X) −→ π0(Y ) is given by f∗(a) = f∗(c) = e and
f∗(b) = d.

(7)

(a) Let X be a metric space. Define the equivalence relation ∼ on X such that π0(X) = X/ ∼, and prove that it is
indeed an equivalence relation. (8 marks)

(b) Let f : X −→ Y be a continuous map. Define the function f∗ : π0(X) −→ π0(Y ), and check that it is well-defined.
(5 marks)

(c) Suppose that Y is path-connected and X is not. Show that there do not exist maps f : X −→ Y and g : Y −→ X
such that gf is homotopic to the identity map idX . (6 marks)

(d) Put X = {A ∈ M2R | A2 = A}. What can you say about det(A) when A ∈ X? Show that X is not
path-connected. (6 marks)

Solution:

(a) Write x ∼ y iff there is a path in X from x to y [1], or in other words a continuous map u : I −→ X such that
u(0) = x and u(1) = y [1]. I claim that this is an equivalence relation. Indeed, given x ∈ X we can define
cx : I −→ X by cx(t) = x for all t. This gives a path from x to itself, showing that ∼ is reflexive [1]. Next,
suppose that x ∼ y, so there exists a path u from x to y in X. We can then define u(t) = u(1− t) to get a path
from y to x, showing that y ∼ x, showing that ∼ is symmetric [2]. Finally, suppose we have a path u from x to
y, and a path v from y to z. We then define a map w : I −→ X by

w(t) =

{
u(2t) if 0 ≤ t ≤ 1/2

v(2t− 1) if 1/2 ≤ t ≤ 1.[2]
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This is well-defined and continuous because u(1) = y = v(0). We have w(0) = u(0) = x and w(1) = v(1) = z, so
w gives a path from x to z; this proves that ∼ is transitive [1]. [bookwork]

(b) Let f : X −→ Y be a continuous map. We define f∗ : π0(X) −→ π0(Y ) by f∗([x]) = [f(x)] [1](where [x] is the
equivalence class of x under the relation ∼). To see that this is well-defined, suppose that [x0] = [x1] in π0(X)
[1]. This means that x0 ∼ x1, so there is a path u : I −→ X from x0 to x1 [1]. The function f ◦ u : I −→ Y gives
a path from f(x0) to f(x1) in Y [1], so [f(x0)] = [f(x1)] as required [1]. [bookwork]

(c) Suppose that Y is path-connected, so π0(Y ) has only a single element, which we will call b. Then f∗ : π0(X) −→
π0(Y ) must be the constant map with value b, so g∗f∗ : π0(X) −→ π0(X) must be the constant map with value
g∗(b). On the other hand, if gf ≃ 1 then g∗f∗ is the identity. Thus, the identity map of π0(X) is constant,
so π0(X) can only have a single element. This means that X is path-connected, contrary to assumption. [6]
[similar examples seen]

(d) Put X = {A ∈ M2R | A2 = A}. For A ∈ X we have det(A)2 = det(A) so det(A) ∈ {0, 1} [2]. We can thus
regard det as a continuous map X −→ R such that det(A) ̸= 1/2 for all A. The zero matrix and the identity
matrix lie in X, with det(0) = 0 < 1/2 and det(I) = 1 > 1/2. It follows that 0 cannot be connected to I by
a path in X, so X is not path-connected. [4] [similar examples seen]A proposition proved in lectures
says that if f : X −→ R is nowhere zero and f(x) < 0 and f(y) > 0 then x ̸∼ y. A number of examples
were discussed, including some where the “missing value” is not zero. In particular, the trace was
used to show that {A ∈MnR | A2 = A} is disconnected for n > 1.

3 The fundamental group

These questions involve material that is not covered in the current version of the course.

(8)

(a) Let X be a metric space, and let x0 and x1 be points in X. What does it mean to say that two paths from x0
to x1 are pinned homotopic? Define the set π1(X;x0, x1).

(b) Let X be path-connected. Prove that the group π1(X;x0) is isomorphic to the group π1(X;x1).

(c) Put X = {(w, x, y, z) ∈ C4 | w ̸= x , x ̸= y , y ̸= z}, and take x0 = (0, 1, 2, 3) as the basepoint in X. Calculate
π1(X). (You may wish to consider the expression f(w, x, y, z) = (w, x− w, y − x, z − y).)

Solution:

(a) Let X be a metric space, and let x0 and x1 be two points in X. Let u, v : I −→ X be two paths, both of which
start at x0 and end at x1. We say that u and v are pinned homotopic if there exists a map h : I × I −→ X such
that

– h(0, t) = u(t) for all t ∈ I

– h(1, t) = v(t) for all t ∈ I

– h(s, 0) = x0 for all s ∈ I

– h(s, 1) = x1 for all s ∈ I.

This is an equivalence relation on the set of all paths from x0 to x1 in X; the set π1(X;x0, x1) is just the set of
equivalence classes.

(b) Now suppose that X is path-connected, so we can choose a path u from x0 to x1 in X, and put q = [u] ∈
π1(X;x0, x1). If a ∈ π1(X;x0) = π1(X;x0, x0) then q

−1 runs from x1 to x0, and a runs from x0 to x0, and q runs
from x0 to x1, so q

−1aq runs from x1 to itself. We can thus define a function f : π1(X;x0) −→ π1(X;x1) by f(a) =
q−1aq. Similarly, we can define g : π1(X;x1) −→ π1(X;x0) by g(b) = qbq−1. Clearly g(f(a)) = qq−1aqq−1 = a and
similarly f(g(b)) = b, so f is a bijection with inverse g. Moreover, f(a)f(a′) = q−1aqq−1a′q = q−1aa′q = f(aa′),
so f is a group homomorphism, and thus an isomorphism π1(X;x0) −→ π1(X;x1).

(c) Define f : X −→ C × C× × C× × C× by f(w, x, y, z) = (w, x − w, y − x, z − y) (where C× means C \ {0}). This
is a homeomorphism, with inverse f−1(a, b, c, d) = (a, a + b, a + b + c, a + b + c + d). On the other hand, C is
homotopy equivalent to a point, and C× is homotopy equivalent to S1; it follows that X is homotopy equivalent
to S1 × S1 × S1, and thus that π1(X) is isomorphic to Z× Z× Z.
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(9)

(a) Let X be a based topological space, and let Y be a subspace of X containing the basepoint. What does it mean
to say that Y is a retract of X?

(b) Prove that if Y is a retract of X, then |π1(Y )| ≤ |π1(X)|.

(c) Recall that RP 3 is a subspace of the space M4(R) of all 4× 4 matrices over R, which is homeomorphic to R16.
Prove that RP 3 is not a retract of M4(R).

(d) Recall that U(3) is the space of 3× 3 matrices A over C such that A†A = I. You may assume that for such A
we have det(A) ∈ S1. Define j : S1 −→ U(3) by

j(z) =

 z 0 0
0 1 0
0 0 1

 .

What is det(j(z))? Deduce that π1(U(3)) is infinite.

Solution:

(a) Let X be a based topological space, let Y be a subspace of X containing the basepoint, and let i : Y −→ X be the
inclusion map. We say that Y is a retract of X if there exists a continuous map r : X −→ Y such that r ◦ i = idY ,
or equivalently r(y) = y for all y ∈ Y .

(b) Suppose that Y is a retract of X. We then have homomorphisms i∗ : π1(Y ) −→ π1(X) and r∗ : π1(X) −→ π1(Y )
such that r∗i∗ = 1: π1(Y ) −→ π1(Y ). Now let a and a′ be two different elements of π1(Y ). Then r∗(i∗(a)) =
a ̸= a′ = r∗(i∗(a

′)), so clearly i∗(a) cannot be the same as i∗(a
′). Thus, all the different elements of π1(Y ) are

mapped to different elements of π1(X), so there must be at least as many elements in π1(X) as there are in
π1(Y ). In other words, we have |π1(Y )| ≤ |π1(X)|.

(c) We have |π1(RP 3)| = 2 and M4(R) ≃ R16 is contractible so |π1(M4(R))| = 1. By the previous part, RP 3 cannot
be a retract of M4(R).

(d) It is easy to see that det(j(z)) = z, so det ◦j = 1: S1 −→ S1. It follows that the maps j∗ : π1(S
1) −→ π1(U(3))

and det∗ : π1(U(3)) −→ π1(S
1) satisfy det∗ ◦j∗ = 1: π1(S

1) −→ π1(S
1). By the logic of part (b) we see that

|π1(U(3))| ≥ |π1(S1)| = |Z| = ∞.

4 Homotopy equivalence

(10)

(a) Let f, g : X −→ Y be continuous maps between topological spaces. What does it mean to say that f is homotopic
to g?

(b) Let X and Y be topological spaces. What does it mean to say that X and Y are homotopy equivalent?

(c) Show that if X and Y are homotopy equivalent then there is a bijection between the sets of path-components
π0(X) and π0(Y ).

(d) Consider the cross X = {(x, 0) | − 1 ≤ x ≤ 1} ∪ {(0, y) | − 1 ≤ y ≤ 1}, and let C = R2 \X be its complement.
Prove that C is homotopy equivalent to S1.

Solution:

(a) We say that f and g are homotopic if there exists a continuous map h : I ×X −→ Y such that h(0, x) = f(x) and
h(1, x) = g(x) for all x ∈ X.

(b) We say that spaces X and Y are homotopy equivalent if there are maps f : X −→ Y and g : Y −→ X such that gf
is homotopic to 1X and fg is homotopic to 1Y .
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(c) For any map u : X −→ Y we have an induced function u∗ : π0(X) −→ π0(Y ), given by u∗⟨x⟩ = ⟨u(x)⟩ for all x ∈ X.
These maps satisfy 1∗ = 1 and (vu)∗ = v∗u∗, and u

′
∗ = u∗ if u′ is homotopic to u. If f, g are as above we then

have maps f∗ : π0(X) −→ π0(Y ) and g∗ : π0(Y ) −→ π0(X), satisfying

f∗g∗ = (fg)∗ = (1Y )∗ = 1π0(Y )

g∗f∗ = (gf)∗ = (1X)∗ = 1π0(X).

Thus g∗ is an inverse for f∗, so f∗ is a bijection.

(d) Define maps as follows:

f : C −→ S1 f(x, y) = (x, y)/
√
x2 + y2

g : S1 −→ C g(x, y) = (2x, 2y)

h : I × C −→ C h(t, x, y) = (1− t)(x, y) + t(x, y)/
√
x2 + y2.

Then fg = 1S1 , and h is a (linear) homotopy from 1C to gf , so f is a homotopy equivalence.

C

g(a)

b

f(b)

a = fg(a)

f(b)

S1

(11) Consider a metric space X.

(a) (i) What does it mean to say that a subset U of X is open?

(ii) What does it mean to say that a subset F of X is closed?

(b) Show that a subset F ⊆ X is closed iff for every sequence (xn) in F that converges to a point x ∈ X, we actually
have x ∈ F .

(c) Explain what it means for a subset A ⊆ X to be compact. Show that if A is compact and f : X −→ Y is
continuous then f(A) is compact.

(d) Prove that the space [0, 1] is compact. Show that there is a continuous bijection g : [−1,−1/2)∪ [1/2, 1] −→ [0, 1];
can it be chosen to be a homeomorphism?

Solution:

(a) We say that U ⊆ X is open if for each point x ∈ U , there exists ϵ > 0 such that the open ball OB(x, ϵ) = {y ∈
X | d(x, y) < ϵ} is contained in U .

We say that F ⊆ X is closed if the complement X \ F is open.

(b) Suppose that F is closed, and that (xn) is a sequence in F converging to a point x ∈ X. I claim that x ∈ F . If

not, then x lies in the open set X\F , so there exists ϵ > 0 such that
◦
Bϵ(x) ⊆ X\F , or equivalently

◦
Bϵ(x)∩F = ∅.

Because xn −→ x, there exists N such that d(xn, x) < ϵ when n ≥ N , or in other words xn ∈
◦
Bϵ(x) when n ≥ N .

On the other hand, we have xn ∈ F for all n by assumption, so for n ≥ N we have xn ∈
◦
Bϵ(x) ∩ F = ∅, which

is impossible. Thus x ∈ F after all.
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Conversely, suppose that F satisfies the condition on sequences; we need to prove that F is closed, or equivalently

that X \F is open. If not, then there exists x ∈ X \F such that
◦
Bϵ(x) is not contained in X \F for any ϵ > 0. In

particular,
◦
B1/n(x) is not contained in X \ F , so we can choose a point xn ∈

◦
B1/n(x) ∩ F . As xn ∈

◦
B1/n(x) we

have d(xn, x) < 1/n so xn −→ x. Thus (xn) is a sequence in F converging to the point x outside F , contradicting
the condition on sequences.

(c) Not written

(d) Not written

(12)

(a) What does it mean to say that a topological space X is homotopy equivalent to a metric space Y ? Show that
the relation of homotopy equivalence is an equivalence relation.

(b) What does it mean for a space to be (a) contractible and (b) path connected? Show that any contractible space
is path connected. Is the reverse implication true?

(c) Consider the rational comb space

X = {(x, y) ∈ R2 | y ≥ 0 or x ∈ Q}.

Show that X is homotopy equivalent to the upper half plane Y = {(x, y) ∈ R2 | y ≥ 0}, and deduce that X is
contractible.

Solution:

(a) We say that X is homotopy equivalent to Y if there exist maps f : X −→ Y and g : Y −→ X such that fg ≃ idY
and gf ≃ idX (where p ≃ q means that p is homotopic to q).

Clearly any space X is homotopy equivalent to itself, because we can take f = g = idX .

If X is homotopy equivalent to Y then by reversing the rôles of f and g we see that Y is homotopy equivalent
to X.

Now suppose that X is homotopy equivalent to Y and that Y is homotopy equivalent to Z. We can then choose
maps f and g as above, and also maps u : Y −→ Z and v : Z −→ Y such that uv ≃ idZ and vu ≃ idY . These give
maps uf : X −→ Z and gv : Z −→ X such that

(uf)(gv) = u(fg)v ≃ u idY v = uv ≃ idZ

(gv)(uf) = g(vu)f ≃ g idY f = gf ≃ idX ,

so X is homotopy equivalent to Z.

This shows that the relation of homotopy equivalence is an equivalence relation.

(b) A space X is contractible if it is equivalent to the one-point space {0}. It is path connected if for any two points
x, y ∈ X there is a path s : I −→ X with s(0) = x and s(1) = y.

Suppose that X is contractible, so we have maps f : X −→ {0} and g : {0} −→ X and a homotopy h : idX ≃ gf .
Write a = g(0) ∈ X. Note that we must have f(x) = 0 for all x ∈ X, because there are no other points in
{0} that f(x) could be. Thus gf(x) = a for all x. As h is a homotopy from 1 to gf , we have h(0, x) = x and
h(1, x) = a for all x. Thus, for any point x ∈ X we can define a path sx : I −→ X by sx(t) = h(t, x). This starts
at x and ands at a. If y is any other point in X we can take the join of sx with the reverse of sy to get a path
from x to y. Thus X is path connected.

On the other hand, a path connected space need not be contractible. For example, the space S1 is path-connected
(we can define a path from eiθ to eiϕ by s(t) = ei((1−t)θ+tϕ)) but not contractible (because H1(S

1) ̸= 0).

(c) Let i : Y −→ X be the inclusion, and define r : X −→ Y by r(x, y) = (x,max(0, y)). We then have rj = 1. I claim
that if (x, y) ∈ X then the line segment joining (x, y) to jr(x, y) is contained in X. If y ≥ 0 then rj(x, y) = (x, y)
and the claim is clear. If y < 0 then (as (x, y) ∈ X) we must have x ∈ Q. We also have rj(x, y) = (x, 0) so
the line segment in question is the set of points (x,w) with y ≤ w ≤ 0. As x ∈ Q, all these points lie in X as
required. Thus rj is linearly homotopic to idX , which implies that j is a homotopy equivalence.

The set Y is convex and thus contractible, in other words homotopy equivalent to a point. As homotopy
equivalence is an equivalence relation, we deduce that X is also homotopy equivalent to a point.
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(13)

(a) What does it mean to say that a metric space X is homotopy equivalent to a metric space Y ? Show that the
relation of homotopy equivalence is an equivalence relation.

(b) What does it mean for a space to be (i) contractible and (ii) path connected? Show that any contractible space
is path connected. Is the reverse implication true?

(c) Consider the rational comb space

X = {(x, y) ∈ R2 | y ≥ 0 or x ∈ Q}.

Show that X is homotopy equivalent to the upper half plane Y = {(x, y) ∈ R2 | y ≥ 0}, and deduce that X is
contractible.

Solution:

(a) We say that X is homotopy equivalent to Y if there exist maps f : X −→ Y and g : Y −→ X such that fg ≃ idY
and gf ≃ idX (where p ≃ q means that p is homotopic to q).

Clearly any space X is homotopy equivalent to itself, because we can take f = g = idX .

If X is homotopy equivalent to Y then by reversing the rôles of f and g we see that Y is homotopy equivalent
to X.

Now suppose that X is homotopy equivalent to Y and that Y is homotopy equivalent to Z. We can then choose
maps f and g as above, and also maps u : Y −→ Z and v : Z −→ Y such that uv ≃ idZ and vu ≃ idY . These give
maps uf : X −→ Z and gv : Z −→ X such that

(uf)(gv) = u(fg)v ≃ u idY v = uv ≃ idZ

(gv)(uf) = g(vu)f ≃ g idY f = gf ≃ idX ,

so X is homotopy equivalent to Z.

This shows that the relation of homotopy equivalence is an equivalence relation.

(b) A space X is contractible if it is equivalent to the one-point space {0}. It is path connected if for any two points
x, y ∈ X there is a path s : I −→ X with s(0) = x and s(1) = y.

Suppose that X is contractible, so we have maps f : X −→ {0} and g : {0} −→ X and a homotopy h : idX ≃ gf .
Write a = g(0) ∈ X. Note that we must have f(x) = 0 for all x ∈ X, because there are no other points in
{0} that f(x) could be. Thus gf(x) = a for all x. As h is a homotopy from 1 to gf , we have h(0, x) = x and
h(1, x) = a for all x. Thus, for any point x ∈ X we can define a path sx : I −→ X by sx(t) = h(t, x). This starts
at x and ands at a. If y is any other point in X we can take the join of sx with the reverse of sy to get a path
from x to y. Thus X is path connected.

On the other hand, a path connected space need not be contractible. For example, the space S1 is path-connected
(we can define a path from eiθ to eiϕ by s(t) = ei((1−t)θ+tϕ)) but not contractible (because π1(S

1) ̸= {e}).

(c) Let i : Y −→ X be the inclusion, and define r : X −→ Y by r(x, y) = (x,max(0, y)). We then have rj = 1. I claim
that if (x, y) ∈ X then the line segment joining (x, y) to jr(x, y) is contained in X. If y ≥ 0 then rj(x, y) = (x, y)
and the claim is clear. If y < 0 then (as (x, y) ∈ X) we must have x ∈ Q. We also have rj(x, y) = (x, 0) so
the line segment in question is the set of points (x,w) with y ≤ w ≤ 0. As x ∈ Q, all these points lie in X as
required. Thus rj is linearly homotopic to idX , which implies that j is a homotopy equivalence.

The set Y is convex and thus contractible, in other words homotopy equivalent to a point. As homotopy
equivalence is an equivalence relation, we deduce that X is also homotopy equivalent to a point.

(14)

(a) Let X be a subspace of Rn, and let a be a point in X.

(i) Explain what it means for X to be star-shaped around a. (4 marks)

(ii) Prove that if X is star-shaped around a, then X is contractible. (4 marks)

(b) (i) Suppose that α, β > 0 and that 0 ≤ t ≤ 1. Show that αt+β(1− t) is strictly greater than zero. (3 marks)
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(ii) Suppose that γ, δ, ϵ > 0 and that 0 ≤ t ≤ 1. Show that γt2 + δt(1 − t) + ϵ(1 − t)2 is strictly greater than
zero. (3 marks)

(iii) Consider a matrix A =

(
a b
c d

)
∈M2R. Put λ = trace(A) and µ = det(A). Express trace((1− t)I + tA)

and det((1− t)I + tA) in terms of λ, µ and t. (6 marks)

(iv) Put X = {A ∈M2R | det(A) > 0 and trace(A) > 0}. Prove that X is contractible. (5 marks)

Solution:

(a) (i) We say that X is star-shaped around a if for each t ∈ I and x ∈ X, the point (1 − t)x + ta lies in X.
Equivalently, X is star-shaped around a if every linear path starting in X and ending at a lies wholly in
X. [4]

(ii) Suppose that X is star-shaped around a. We can then define a map h : I×X −→ X by h(t, x) = (1−t)x+ta.
We have h(0, x) = x and h(1, x) = a for all x ∈ X, so this gives a contraction of X. [4]

(b) (i) Suppose that α, β > 0 and 0 ≤ t ≤ 1. Then αt and β(1− t) are both greater than or equal to 0. Moreover,
αt is only zero when t = 0, and β(1 − t) is only zero when t = 1. Thus, for any t, at least one of the two
terms is strictly positive, and thus αt+ β(1− t) > 0. [3]

(ii) Suppose that γ, δ, ϵ > 0 and that 0 ≤ t ≤ 1. Then γt2, δt(1− t) and ϵ(1− t)2 are all greater than or equal
to zero. The first one is strictly greater than zero unless t = 0, and the last one is strictly greater than
zero unless t = 1. Thus, for all t, at least one term is strictly positive, so their sum is strictly positive. [3]
[unseen]

(iii) We have λ = a+ d and µ = ad− bc and

(1− t)I + tA =

[
1− t+ ta tb

tc 1− t+ td

]
,

so

trace((1− t)I + tA)) = (ta+ 1− t) + (td+ 1− t)

= (a+ d)t+ 2(1− t)

= λt+ 2(1− t)[3]

and

det((1− t)I + tA)) = (ta+ 1− t)(td+ 1− t)− t2bc

= (ad− bc)t2 + (a+ d)t(1− t) + (1− t)2

= µt2 + λt(1− t) + (1− t)2.[3]

(iv) Suppose that A ∈ X, so λ, µ > 0, and suppose that t ∈ I. As λ > 0 and 2 > 0, part (a) tells us that
λt + 2(1 − t) > 0, so trace((1 − t)I + tA) > 0. As µ > 0, λ > 0 and 1 > 0, part (b) tells us that
µt2 + λt(1 − t) + (1 − t)2 > 0, so det((1 − t)I + tA) > 0. This shows that (1 − t)I + tA ∈ X, so X is
star-shaped around I, and thus contractible. [5]

(15)

(a) Given metric spaces X,Y and continuous maps f, g : X −→ Y , what does it mean for f and g to be homotopic?
(3 marks)

(b) Show that if Y is contractible, then any two maps f, g : X −→ Y are homotopic. (7 marks)

(c) Show that if X is contractible and Y is path-connected, then any two maps f, g : X −→ Y are homotopic. (10
marks)

(d) Regard S1 as {z ∈ C | |z| = 1}, and put T = S1 × S1. Define f : T −→ T by f(z, w) = (iz,−iw). Prove that f is
homotopic to the identity map. (5 marks)

Solution:
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(a) Maps f, g : X −→ Y are homotopic iff there is a continuous map h : I × X −→ Y such that h(0, x) = f(x) and
h(1, x) = g(x) for all x ∈ X. [3] [bookwork]

(b) Suppose that Y is contractible, so we have a point b ∈ Y and a map m : I × Y −→ Y with m(0, y) = y and
m(1, y) = b for all y ∈ Y [2]. Let cb : X −→ Y be the constant map with value b. Define h : I × X −→ Y by
h(t, x) = m(t, f(x)) [2]. This has h(0, x) = f(x) and h(1, x) = m(1, f(x)) = b = cb(x), showing that f is
homotopic to cb [1]. Similarly, g is homotopic to cb and thus to f [2]. [seen]

(c) Now suppose instead that X is contractible, so we have a point a ∈ X and a map n : I×X −→ X with n(0, x) = x
and n(1, x) = a for all x ∈ X [2]. Given f : X −→ Y we put k(t, x) = f(n(t, x)) [2]. This has k(0, x) = f(x)
and k(1, x) = f(a) = cf(a)(x), showing that f ≃ cf(a) [1]. Similarly g ≃ cg(a) [1]. Finally, as Y is path-
connected, we can choose a path u : I −→ Y with u(0) = f(a) and u(1) = g(a) [2]. Put l(t, x) = u(t); then
l(0, x) = u(0) = f(a) = cf(a)(x) and l(1, x) = u(1) = g(a) = cg(a)(x), so f ≃ cf(a) ≃ cg(a) ≃ g as required. [2]
The case X = I is done in lectures, but otherwise this is unseen.

(d) Define h(t, z, w) = (eiπt/2z, e−iπt/2w). Then h(0, z, w) = (z, w) and

h(1, z, w) = (eiπ/2z, e−iπ/2w) = (iz,−iw) = f(z, w),

showing that f is homotopic to the identity. [5] [similar examples seen]

(16) Let E be the figure eight space, so E = E− ∪ E+ where E± is the circle of radius one centred at (±1, 0).

(a) Prove that E is not homotopy equivalent to the torus. (4 marks)

(b) Put A = {(1, 0), (−1, 0)} and X = R2 \A. Sketch a proof that X is homotopy equivalent to E. (5 marks)

(c) Put B = {(x, y, z) ∈ R3 | x2 = 1 , y = 0} and Y = R3 \ B. Deduce that Y is homotopy equivalent to E. (4
marks)

(d) Put C = {(x, y, z) ∈ R3 | x2 = 1 , y = xz} and Z = R3 \ C. Deduce that Z is homotopy equivalent to E. You
may wish to consider the expression

(x, rotπx/4(y, z)) = (x, cos(πx/4)y − sin(πx/4)z, sin(πx/4)y + cos(πx/4)z).

(12 marks)

Solution:

(a) The torus T has π1(T ) = Z×Z [1], which is abelian [1], but π1(E) is nonabelian [1], so π1(T ) ̸≃ π1(E), so T is
not homotopy equivalent to E [1]. [similar examples seen]

(b) Let g : X −→ E be as illustrated in the following diagram:

C2def.eps[2]

Let f : E −→ X be the inclusion. Then gf = idE [1], and the line joining fg(a) to a lies wholly in X so fg is
linearly homotopic to idX [2]. This shows that X is homotopy equivalent to E. [bookwork]

(c) We observe that B = A× R [2] and so Y = X × R [1], and R is contractible so Y ≃ X [1].

More explicitly, define p : X −→ Y by p(x, y) = (x, y, 0) and q : Y −→ X by q(x, y, z) = (x, y). Then qp = idX and
pq is linearly homotopic to idY , so Y ≃ X ≃ E.

(d) We will show that Z is homeomorphic to Y [2], and so homotopy equivalent to Y ,X and E [1]. We define r : R3 −→
R3 by r(x, y, z) = (x, rotπx/4(y, z)) [1]. This is a homeomorphism, with inverse s(x, y, z) = (x, rot−πx/4(y, z))

[2]. The points in C have the form (1, y, y) or (−1, y,−y) [1]. We have cos(π/4) = sin(π/4) = 1/
√
2, so

r(1, y, y) = (1, 0,
√
2y) ∈ B [1]. Similarly, we have cos(−π/4) = 1/

√
2 and sin(−π/4) = −1/

√
2, so r(−1, y,−y) =

(−1, 0,−
√
2y) ∈ B [1]. Using this, we see that r(C) = B [1]and so r induces a homeomorphism

Z = R3 \ C ≃ R3 \ r(C) = R3 \B = Y

as required [2]. [unseen]
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5 Abelian groups and chain complexes

(17)

(a) In the context of Abelian groups, define the terms

– homomorphism (2 marks)

– subgroup (2 marks)

– kernel (2 marks)

– image. (2 marks)

(b) Let A and B be Abelian groups, and let ϕ : A −→ B be a homomorphism. Prove that

(i) The kernel of ϕ is a subgroup of A (3 marks)

(ii) The kernel of ϕ is a subgroup of the kernel of the homomorphism 2ϕ. (2 marks)

(c) Let ϕ : Z× Z −→ Z× Z/12 be the homomorphism defined by

ϕ(n,m) = (3n, (2n+ 4m mod 12)).

Give an isomorphism ψ : Z −→ ker(ϕ). (6 marks)

(d) Let A be a finite Abelian group, and let B be a free Abelian group. Prove that if ϕ : A −→ B is a homomorphism,
then ϕ = 0. (6 marks)

Solution:

(a) (i) A homomorphism from an Abelian group A to an Abelian group B is a function ϕ : A −→ B such that
ϕ(a+a′) = ϕ(a)+ϕ(a′) for all a, a′ ∈ A [2] (from which it follows that ϕ(0) = 0 and ϕ(a−a′) = ϕ(a)−ϕ(a′)).

(ii) A subgroup of A is a subset C ⊆ A with the property that 0 ∈ C, and −c ∈ C whenever c ∈ C, and
c+ c′ ∈ C whenever c, c′ ∈ C. [2]

(iii) The kernel of a homomorphism ϕ : A −→ B is {a ∈ A | ϕ(a) = 0}. [2]
(iv) The image of a homomorphism ϕ : A −→ B is {ϕ(a) | a ∈ A} = {b ∈ B | b = ϕ(a) for some a ∈ A}. [2]
[bookwork]

(b) (i) First, we have ϕ(0A) = 0B so 0A ∈ ker(ϕ) [1]. Next, suppose we have c ∈ ker(ϕ), so ϕ(c) = 0. We then
have ϕ(−c) = −ϕ(c) = −0 = 0, so −c ∈ ker(ϕ) [1]. Finally, suppose we have another element c′ ∈ ker(ϕ),
so that ϕ(c′) = 0. Then ϕ(c+ c′) = ϕ(c) + ϕ(c′) = 0+ 0 = 0, so c+ c′ ∈ ker(ϕ) [1]. This proves that ker(ϕ)
is a subgroup. [bookwork]

(ii) By the first part we know that ker(ϕ) and ker(2ϕ) are subgroups; we need only check that ker(ϕ) ⊆ ker(2ϕ)
[1]. If a ∈ ker(ϕ) then ϕ(a) = 0 so (2ϕ)(a) = 2ϕ(a) = 2.0 = 0, so a ∈ ker(2ϕ) as required [1].

(c) We have ϕ(n,m) = 0 iff 3n = 0 and 2n+ 4m = 0 (mod 12) [2]. This is clearly equivalent to n = 0 and 4m = 0
(mod 12), which means that n = 0 and m is divisible by 3 [2]. We can thus define an isomorphism f : Z −→ ker(ϕ)
by f(k) = (0, 3k) [2]. [similar examples seen]

(d) Let A be a finite Abelian group, and let B be a free Abelian group, say B = Z[D] for some set D. Suppose that
a ∈ A and ϕ(a) = n1[d1] + . . .+ nr[dr] say, for some integers n1, . . . , nr and distinct elements d1, . . . , dr ∈ D [2].
As A is finite we know that ma = 0 for some m > 0 [1]. We thus have

mn1[d1] + . . .+mnr[dr] = mϕ(a) = ϕ(ma) = ϕ(0) = 0.[1]

As the di are distinct, the only way this can happen is if n1 = . . . = nr = 0, so ϕ(a) = 0 [1]. This holds for all
a ∈ A, so ϕ must be the zero homomorphism as claimed. [1]

(18) 2018-19 Q4: Let U∗
i−→ V∗

p−→W∗ be a short exact sequence of chain complexes and chain maps.

(a) Define what is meant by saying that the above sequence is short exact. (3 marks)
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Now recall that a snake for the above sequence is a system (c, w, v, u, a) such that

� c ∈ Hn(W );

� w ∈ Zn(W ) is a cycle such that c = [w];

� v ∈ Vn is an element with p(v) = w;

� u ∈ Zn−1(U) is a cycle with i(u) = d(v) ∈ Vn−1;

� a = [u] ∈ Hn−1(U).

(b) Prove that for each c ∈ Hn(W ) there is a snake starting with c. (8 marks)

(c) Prove that if two snakes have the same starting point, then they also have the same endpoint. (10 marks)

(d) Suppose that the differential d : Vn+1 → Vn is surjective. Show that any snake starting in Hn(W ) ends with
zero. (4 marks)

Solution:

(a) The map i is injective, the map p is surjective, and the image of i is the same as the kernel of p. [3] [Bookwork]

(b) Consider an element c ∈ Hn(W ). AsHn(W ) = Zn(W )/Bn(W ) by definition, we can certainly choose w ∈ Zn(W )

such that c = [w] [1]. As the sequence U
i−→ V

p−→ W is short exact, we know that p : Vn → Wn is surjective, so
we can choose v ∈ Vn with p(v) = w [1]. As p is a chain map we have p(d(v)) = d(p(v)) = d(w) = 0 (the last
equation because w ∈ Zn(W )) [1]. This means that d(v) ∈ ker(p), but ker(p) = img(i) because the sequence is
exact, so we have u ∈ Un−1 with i(u) = d(v) [2]. Note also that i(d(u)) = d(i(u)) = d(d(v)) = 0 (because i is a
chain map and d2 = 0) [1]. On the other hand, exactness means that i is injective, so the relation i(d(u)) = 0
implies that d(u) = 0 [1]. This shows that u ∈ Zn−1(U), so we can put a = [u] ∈ Hn−1(U) [1]. We now have a
snake (c, w, v, u, a) starting with c as required. [Bookwork]

(c) Suppose we have two snakes that start with c. We can then subtract them to get a snake (0, w, v, u, a) starting
with 0 [1]. It will be enough to show that this ends with 0 as well, or equivalently that a = 0 [1]. The
first snake condition says that [w] = 0, which means that w = d(w′) for some w′ ∈ Wn+1 [1]. Because p is
surjective we can also choose v′ ∈ Vn+1 with w′ = p(v′) [1], and this gives w = d(w′) = d(p(v′)) = p(d(v′))
[1]. The next snake condition says that p(v) = w. We can combine these facts to see that p(v − d(v′)) = 0, so
v − d(v′) ∈ ker(p) = img(i)[1]. We can therefore find u′ ∈ Un with v − d(v′) = i(u′) [1]. We can apply d to this
using d2 = 0 and di = id to get d(v) = i(d(u′)) [1]. On the other hand, the third snake condition tells us that
d(v) = i(u). Subtracting these gives i(u − d(u′)) = 0, but i is injective, so u = d(u′), so u ∈ Bn−1(U) [1]. The
final snake condition now says that a = [u] = u+Bn−1(U), but u ∈ Bn−1(U) so a = [u] = 0 [1]. [Bookwork]

(d) Now suppose that d : Vn+1 → Vn is surjective. As d2 = 0 this means that d : Vn → Vn−1 is zero. Now suppose
we have a snake (c, w, v, u, a) with c ∈ Hn(W ) so v ∈ Vn. The condition i(u) = d(v) now gives i(u) = 0, but i is
injective so u = 0, so a = [u] = 0. [4] [Unseen]

6 Singular chains

(19) Let X be a topological space.

(a) Let c : ∆1 −→ X be a constant path. Prove that c is homologous to 0.

(b) Let s : ∆1 −→ X be a path. Define the reversed path s, and prove that s is homologous to −s.

(c) Let r, s : ∆1 −→ X be paths such that r(e1) = s(e0). Write down a path u : ∆1 −→ X and prove that u is
homologous to r + s.

(d) Let X be the complement of the shaded disc in the diagram below. Write down a path u : ∆1 −→ X such that u
is homologous to 2p− 2q − 2r + s.
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A B

C D

p

r q s

Solution:

(a) As c is constant, there is a point x ∈ X with c(t) = x for all t ∈ ∆1. Define d : ∆2 −→ X by d(t) = x for all
t ∈ ∆2. Then dδ0 = dδ1 = dδ2 = c : ∆1 −→ X, so ∂(d) = c− c+ c = c, so [c] = [0] in H1(X).

(b) First, we put s(t0, t1) = s(t1, t0). Next, we put a = s(1, 0), and we define r : ∆2 −→ X by r(t0, t1, t2) = s(t0+t2, t1).
Then rδ0(t0, t1) = r(0, t0, t1) = s(t1, t0) = s(t0, t1) and rδ1(t0, t1) = r(t0, 0, t1) = s(t0 + t1, 0) = s(1, 0) = a and
rδ2(t0, t1) = r(t0, t1, 0) = s(t0, t1), so ∂(r) = s − ca + s so s + s − ca ∈ B1(X). From (i) we also know that
ca ∈ B1(X) so s+ s ∈ B1(X).

(c) We define a path u = r ∗ s : ∆1 −→ X by

u(t0, t1) =

{
r(t0 − t1, 2t1) if t0 ≥ t1

s(2t0, t1 − t0) if t0 ≤ t1.

This is well-defined and continuous (by closed patching) because r(e1) = s(e0). We also define w : ∆2 −→ X by

w(t0, t1, t2) =

{
r(t0 − t2, t1 + 2t2) if t0 ≥ t2

s(2t0 + t1, t2 − t0) if t0 ≤ t2.

When t0 = t2 the first clause gives r(e1) and the second gives s(e0), and these are the same by assumption,
so w is well-defined and continuous (by closed patching again). Now wδ0(t0, t1) = w(0, t0, t1) = s(t0, t1) and
wδ1(t) = w(t0, 0, t1) = u(t0, t1) and wδ2(t) = w(t0, t1, 0) = r(t0, t1), so ∂(w) = s − u + r, so u + B1(X) =
(r +B1(X)) + (s+B1(X)) as required.

(d) The path s in the diagram is linearly homotopic in X to the constant map with value D. As s(e0) = s(e1) = D
we see that this is a pinned homotopy, so s is homologous to a constant map and thus to 0. As p ends where q
starts, and q ends where r starts, we can join these together to get a path v = (p ∗ q) ∗ r. This has v = p− q− r
(mod B1(X)). It starts and ends at the same place, so we can form u = v∗v, and this has u = 2v = 2p−2q−2r+s
(mod B1(X)) as required.

(20)

(a) Let X be a topological space.

(i) Define the groups Cn(X) for all nonnegative integers n. (2 marks)

(ii) Define the homomorphisms ∂n. (3 marks)

(iii) Prove that ∂1 ◦ ∂2 = 0. (3 marks)

(iv) Define the groups Hn(X). (4 marks)

(b) Describe (without proof, but with careful attention to any special cases) the groups Hn(Rk \ {0}) for all n ≥ 0
and all k ≥ 1. (5 marks)

(c) Let u = n1s1 + . . .+ nksk be an m-cycle in Sn (where m > 0), and suppose that there is a point a ∈ Sn that is
not contained in any of the sets s1(∆m), . . . , sk(∆m). Prove that u is a boundary. (8 marks)
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Solution:

(a) (i) The group Cn(X) is the free Abelian group [1]generated by the set of continuous maps s : ∆n −→ X [1],
where ∆n = {t ∈ Rn+1 | ti ≥ 0,

∑
i ti = 1}. [bookwork]

(ii) We define continuous maps δ0, . . . , δn : ∆n−1 −→ ∆n by

δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1).

For any continuous map s : ∆n −→ X we define

∂n(s) =

n∑
k=0

(−1)k(s ◦ δk) ∈ Cn−1(X)[1].

This can be extended in a unique way to give a homomorphism ∂n : Cn(X) −→ Cn−1(X). [1][bookwork]

(iii) From the definitions, we have

∂1∂2[s] = ∂1([sδ0]− [sδ1] + [sδ2])

= [sδ0δ0]− [sδ0δ1]− [sδ1δ0] + [sδ1δ1] + [sδ2δ0]− [sδ2δ1]

= ([sδ0δ0]− [sδ1δ0])− ([sδ0δ1]− [sδ2δ0]) + ([sδ1δ1]− [sδ2δ1]).[1]

Whenever k ≤ l we have δkδl = δl+1δk; this shows that each of the bracketed terms is zero [1]. Thus ∂2∂1
vanishes on all singular 2-simplices, so it vanishes on all singular 2-chains [1]. [bookwork]

(iv) We define Zn(X) = ker(∂n : Cn(X) −→ Cn−1(X)) [1]and Bn(X) = img(∂n+1 : Cn+1(X) −→ Cn(X)) [1]. We
have ∂n∂n+1 = 0, which implies that Bn(X) ≤ Zn(X) [1], so we can define a quotient group Hn(X) =
Zn(X)/Bn(X) [1]. [bookwork]

(b) As Rk \ {0} is homotopy equivalent to Sk−1, we have

Hn(Rk \ {0}) =


Z2 if n = 0, k = 1[2]

Z if n = 0, k > 1[1] or n = k − 1 > 0[1]

0 otherwise [1].

[bookwork]

(c) The space Sn \ {a} [2] is homeomorphic to Rn [1]by stereographic projection, and thus is contractible [1]. This
implies that Hm(Sn \ {a}) = 0 for m > 0 [1], so every m-cycle in Sn \ {a} is a boundary [1]. We can regard u
as an m-cycle in Sm \ {a}, so it is a boundary in Sn \ {a} [1]and thus in Sn [1], as required. [unseen]

(21)

(a) Let X be a topological space.

(i) Define the groups C0(X) and C1(X), and the homomorphism ∂1 : C1(X) −→ C0(X).

(ii) Define the subdivision homomorphism sd: C1(X) −→ C1(X).

(iii) Prove that ∂1 sd
n(u) = ∂1(u) for all n ≥ 1.

(iv) Prove that if u ∈ B1(X) then sd(u) ∈ B1(X).

(v) Let A and B be points in a vector space V . Give an expression for sd⟨A,B⟩ in terms of paths of the form
⟨C,D⟩.

(b) Describe without proof the groups H1(S
1), H1(S

1 × S1), H1(RP 2) and H1(R3 \ {0}).

(c) For each element u ∈ H1(RP 2), give a path s in RP 2 such that u = [s].

Solution:

(a) (i) C0(X) = Z[X] is the free Abelian group on the set X, or in other words the group of all Z-combinations of
points ofX. We also write S1(X) for the set of paths inX (in other words, continuous maps s : ∆1 −→ X) and
C1(X) = Z[S1X] for the group of 1-chains (in other words, Z-combinations of paths). The homomorphism
∂1 : C1(X) −→ C0(X) is defined by

∂1(s) = s(e1)− s(e0),

extended linearly as usual.
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(ii) Define maps l, r : ∆1 −→ ∆1 by l(1− t, t) = ((1 + t)/2, (1− t)/2) and r(1− t, t) = ((1− t)/2, (1 + t)/2). The
subdivision homomorphism sd: C1(X) −→ C1(X) is defined by sd(s) = s ◦ r − s ◦ l.

(iii) Given any path s : ∆1 −→ X we can define q : ∆2 −→ X by q(t0, t1, t2) = s(t0/2+ t1, t0/2+ t2). This satisfies

(qδ0)(1− t, t) = q(0, 1− t, t) = s(1− t, t)

(qδ1)(1− t, t) = q(1− t, 0, t) = s((1− t)/2, (1 + t)/2) = sr(1− t, t)

(qδ2)(1− t, t) = q(1− t, t, 0) = s((1 + t)/2, (1− t)/2) = sl(1− t, t).

Thus ∂2(q) = s− (s ◦ r) + (s ◦ (l) = s− sd(s), showing that s = sd(s) (mod B1(X)). By linear extension,
we see that u = sd(u) (mod B1(X)) for all u ∈ C1(X).

I claim that in fact u ∼ sdn(u) for all 1-chains u and all n ≥ 0. The case n = 0 is clear because sd0(u) = u,
and we have just done the case n = 1. Assume that the case n = k− 1 holds. For any chain v we can apply
the case n = k − 1 to v to see that v = sdk−1(v) (mod B1(X)), and we can apply the case n = 1 to the
chain u = sdk−1(v) to see that sdk−1(v) = sdk(v) (mod B1(X)), and by putting these together we see that
v = sdk(v) (mod B1(X)). By induction, this holds for all k.

(iv) Suppose that u ∈ B1(X), so u = ∂(a) for some a ∈ C2(X). By part (iii) we have u = sd(u) (mod B1(X)),
in other words sd(u)− u = ∂(b) for some b ∈ C2(X). Thus sd(u) = ∂(a+ b) ∈ B1(X), as required.

(v) Put C = (A+B)/2 (the midpoint of the path ⟨A,B⟩). We have

⟨A,B⟩(l(t)) = ⟨A,B⟩((1 + t)/2, (1− t)/2) = ((1 + t)/2)A+ ((1− t)/2)B = (1− t)(A+B)/2 + tA

⟨A,B⟩(r(t)) = ⟨A,B⟩((1− t)/2, (1 + t)/2) = ((1− t)/2)A+ ((1 + t)/2)B = (1− t)(A+B)/2 + tB,

so ⟨A,B⟩ ◦ l = ⟨C,A⟩) and ⟨A,B⟩ ◦ r = ⟨C,B⟩. Thus

sd⟨A,B⟩ = ⟨C,B⟩ − ⟨C,A⟩.

(b) H1(S
1) ≃ Z; H1(S

1 × S1) ≃ Z× Z; H1(RP 2) ≃ Z/2; H1(R3 \ {0}) ≃ 0.

(c) There are only two elements in H1(RP 2), say 0 and v. For u = 0 we take s to be the constant path s(1− t, t) =
q(1, 0, 0). For u = v we take s(1− t, t) = q(cos(πt), sin(πt), 0).

(22) Consider the following diagram.

A B

CD

A

Let X be the complement in R2 of the shaded disc. Define u, v, w ∈ C1(X) by

u =⟨A,B⟩+ ⟨B,E⟩+ ⟨E,A⟩
v =⟨A,B⟩+ ⟨B,C⟩+ ⟨C,D⟩+ ⟨D,A⟩
w =⟨A,E⟩+ ⟨E,D⟩+ ⟨D,A⟩.

(a) Prove that u is a cycle. (2 marks)

(b) Prove that ⟨B,B⟩ is homologous to 0 in X. (3 marks)

(c) Prove that ⟨E,B⟩ is homologous to −⟨B,E⟩ in X. (4 marks)

(d) Prove in detail that u is homologous to v in X, justifying each step. (8 marks)
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(e) Write down a basic 1-chain s that is homologous in X to ⟨A,B⟩+ ⟨B,C⟩ (5 marks)

(f) Is u homologous to w? Give a brief reason for your answer. (3 marks)

Solution:

(a) We have ∂⟨U, V ⟩ = V − U [1], so

∂(u) = B −A+ E −B +A− E = 0, [1]

so u is a cycle. [similar examples seen]

(b) We have ∂⟨U, V,W ⟩ = ⟨V,W ⟩ − ⟨U,W ⟩ + ⟨U, V ⟩ [1], so ∂⟨B,B,B⟩ = ⟨B,B⟩ − ⟨B,B⟩ + ⟨B,B⟩ = ⟨B,B⟩ [1],
which means that ⟨B,B⟩ is homologous to 0 [1]. [bookwork]

(c) We have ∂⟨B,E,B⟩ = ⟨E,B⟩ − ⟨B,B⟩+ ⟨B,E⟩ [2], so (using the previous part) we have

⟨E,B⟩ ∼ ⟨B,B⟩ − ⟨B,E⟩ ∼ −⟨B,E⟩[2].

[similar examples seen]

(d) If we define a = ⟨A,D,E⟩+ ⟨D,C,E⟩+ ⟨C,B,E⟩ [3] we find that

∂(a) =⟨D,E⟩ − ⟨A,E⟩+ ⟨A,D⟩+
⟨C,E⟩ − ⟨D,E⟩+ ⟨D,C⟩+
⟨B,E⟩ − ⟨C,E⟩+ ⟨C,B⟩

=(⟨A,D⟩+ ⟨D,C⟩+ ⟨C,B⟩)−
(⟨A,E⟩ − ⟨B,E⟩).[3]

Using this and part (iii), we see that

v ∼ (⟨A,E⟩ − ⟨B,E⟩) ∼ (⟨A,E⟩+ ⟨E,B⟩) = u.[2]

[similar examples seen]

(e) Define s = σ(A,B) ∗ σ(B,C), so

s(1− t, t) =

{
(1− 2t)A+ 2tB if t ≤ 1

2

(2− 2t)B + (2t− 1)C if t ≥ 1
2 .

Then [s] is homologous to ⟨A,B⟩+ ⟨B,C⟩ in X. [5]

(f) The chain u winds once around the hole, and w does not wind around the hole at all, so u is not homologous to
w. [3]

7 True or false

(23) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems, provided that you state them clearly.

(a) The punctured disc X = {(x, y) ∈ R2 | 0 < x2 + y2 ≤ 1} is compact.

(b) The circle S1 is homeomorphic to S1 × I.

(c) The circle S1 is homotopy equivalent to S1 × I.

(d) C \ S1 is homotopy equivalent to Y = {z ∈ C | z = 0 or |z| = 1}.

(e) Every continuous bijection from [0, 1] ∪ (2, 3] to [0, 1] is a homeomorphism.

Solution:
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(a) False. The space X is not closed in R2, because the sequence (0, 1/n) in X converges in R2 to the point (0, 0),
which does not lie in X. A subspace of Rn is compact iff it is bounded and closed, so X is not compact.

(b) False. Removing any two points disconnects S1, but S1 × I cannot be disconnected by removing any finite set
of points.

(c) True. Define maps as follows:

f : S1 −→ S1 × I f(z) = (z, 0)

g : S1 × I −→ S1 g(z, r) = z

h : I × (S1 × I) −→ S1 × I h(t, (z, r)) = (z, tr).

Then gf = 1: S1 −→ S1 and h is a (linear) homotopy from fg to 1S1×I , so f is a homotopy equivalence with
homotopy inverse g.

(d) True. Define maps as follows:

f : C \ S1 −→ Y f(z) =

{
z/|z| if |z| > 1

0 if |z| < 1

g : Y −→ C \ S1 g(z) = 2z.

Then fg = 1Y and gf is linearly homotopic to 1C\S1 , so f is a homotopy equivalence with homotopy inverse g.

(e) False. Define f : [0, 1] ∪ (2, 3] −→ [0, 1] by

f(t) =

{
t/2 if t ∈ [0, 1]

(t− 1)/2 if t ∈ (2, 3].

Then f is a continuous bijection, but f−1 is not continuous (because 1/2 + 1/2n −→ 1/2 but f−1(1/2 + 1/2n) =
2 + 1/n does not converge to f−1(1/2) = 1), so f is not a homeomorphism.

(24) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems, provided that you state them clearly.

(a) S3 is contractible.

(b) If a space X is the union of two closed, path-connected subspaces A and B, then X is path-connected.

(c) (R× R) \ (R× {0}) is homotopy equivalent to S1.

(d) (R× R2) \ (R× {0}) is homotopy equivalent to S1.

(e) The space C \ {0, 1} is homeomorphic to C \ {i,−i}.

(f) The space C \ {0, 1} is homotopy equivalent to C \ {0, 1, 2}.

Solution:

(a) False. We have H3(S
3) = Z but H3 of a point is zero, so S3 is not homotopy equivalent to a point.

(b) False. Put X = {0, 1} and A = {0} and B = {1}. Then A and B are closed path connected subsets of X with
X = A∪B, but X is not path connected. (You would not be required to say this, but I remark that if X = A∪B
where A and B are path connected (not necessarily closed) and A ∩B ̸= ∅ then X is path connected.)

(c) False. Write
X = (R× R) \ (R× {0}) = {(x, y) ∈ R2 | y ̸= 0}.

We can then define a map f : X −→ R by f(x, y) = y. This is never zero and it is positive at (0, 1) and negative
at (0,−1), so (0, 1) cannot be joined to (0,−1) by a path in X, so X is not path connected. However, S1 is
path connected and anything homotopy equivalent to a path connected space is again path connected so X is
not homotopy equivalent to S1.
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(d) True. Write Y = (R× R2) \ (R× {0}), and define maps as follows

f : Y −→ S1 f(x, y, z) = (y, z)/
√
y2 + z2

g : S1 −→ Y g(y, z) = (0, y, z).

Then gf = 1S1 , and fg is linearly homotopic to 1Y .

(e) True. We can define a homeomorphism f : C \ {0, 1} −→ C \ {i,−i} by f(z) = 2iz − i, with inverse f−1(w) =
(w + i)/2i.

(f) False. We have H1(C \ {0, 1}) ≃ Z2, and this is not isomorphic to H1(C \ {0, 1, 2}) ≃ Z3, so C \ {0, 1} is not
homotopy equivalent to C \ {0, 1, 2}.

(25) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems, provided that you state them clearly.

(a) The identity map of the unit circle is homotopic to the constant map c : S1 −→ S1 defined by c(z) = 1 for all z.

(b) Let fn : S
1 −→ S1 be defined by fn(z) = zn. Then fn is not homotopic to fm when n ̸= m.

(c) R2 is homeomorphic to R3.

(d) If f : X −→ X is a homotopy equivalence, then f∗ : H1(X) −→ H1(X) is the identity map.

Solution:

(a) False. Define s1 : ∆1 −→ S1 by s1(t) = e(t), so that u1 = ([s1] mod B1(S
1)) is the usual generator of H1(S

1).
Then c ◦ s1 : ∆1 −→ S1 is a constant path, so c∗[s1] ∼ 0, so c∗(u1) = 0 in H1(S

1). Thus c∗ is not the identity
map on H1(S

1), so c is not homotopic to the identity map on S1.

(b) True. Define sn = fn ◦ s1 : ∆1 −→ S1, so sn(t) = e(t)n = e(nt), so sn can be unwound to the path s̃n(t) = nt in
R. It follows that the usual isomorphism ϕ : H1(S

1) −→ Z satisfies

ϕ([sn] mod B1(S
1)) = s̃n(1)− s̃n(0) = n = ϕ(nu1),

so fn∗(u1) = nu1. It follows that fn∗ ̸= fm∗ when n ̸= m, so fn is not homotopic to fm when n ̸= m.

(c) False. If f : R2 −→ R3 were a homeomorphism, then it would give a homeomorphism R2 \ {0} −→ R3 \ {f(0)}.
However, R2 \{0} is homotopy equivalent to S1 and R3 \{f(0)} is homeomorphic to R3 \{0} and thus homotopy
equivalent to S2. We know that H1(S

1) ≃ Z and H1(S
2) ≃ 0 so S1 is not homotopy equivalent to S2. It follows

that R2 \ {0} is not homotopy equivalent (and thus certainly not homeomorphic) to R3 \ {f(0)}, so no such map
f can exist.

(d) False. The map f−1 : S
1 −→ S1 is a homeomorphism and thus a homotopy equivalence, and (f−1)∗(u1) = −u1 so

(f−1)∗ is not the identity map.

(26) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems, provided that you state them clearly.

(a) The torus T = S1 × S1 is homotopy equivalent to S2.

(b) There is a map r : B4 −→ S3 such that rj is homotopic to idS3 , where j : S3 −→ B4 is the inclusion map.

(c) R2 is homeomorphic to R3.

(d) Every continuous function f : S2 −→ R3 is homotopic to a constant function.

(e) Let K ⊂ S3 be a trefoil knot. Then S3 \K is homotopy equivalent to RP 2.

Solution:

(a) False. We have H1(T ) ≃ Z2, but H1(S
2) = 0, so T is not homotopy equivalent to S2.
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(b) False. Let u3 be the usual generator of H3S
3. If there were such a map r, we would have r∗j∗ = (rj)∗ =

1∗ = 1: H3S
3 −→ H3S

3, so u3 = r∗(j∗(u3)). This is impossible, because B4 is contractible so H3B
4 = 0 and

j∗(u3) ∈ H3B
4 so j∗(u3) = 0 so r∗(j∗(u3)) = 0.

(c) False. If f : R2 −→ R3 were a homeomorphism, then it would give a homeomorphism R2 \ {0} −→ R3 \ {f(0)}.
However, R2 \{0} is homotopy equivalent to S1 and R3 \{f(0)} is homeomorphic to R3 \{0} and thus homotopy
equivalent to S2. We know that H1(S

1) ≃ Z and H1(S
2) ≃ 0 so S1 is not homotopy equivalent to S2. It follows

that R2 \ {0} is not homotopy equivalent (and thus certainly not homeomorphic) to R3 \ {f(0)}, so no such map
f can exist.

(d) True. We can just define h(t, x) = tf(x); this is a homotopy from the constant map with value 0 to f .

(e) False. We have H1(S
3 \K) ≃ Z by the generalised Jordan Curve Theorem, but H1(RP 2) ≃ Z/2.

(27) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems or calculations of homology groups without proof, provided that you state them clearly. You may give
pictures instead of formulae, provided that they are clearly explained.

(a) RP 1 is homeomorphic to S1.

(b) The Möbius strip is homotopy equivalent to S2.

(c) S2 \ S1 is homotopy equivalent to R \ {0}.

(d) The letter A is homeomorphic to the letter D.

(e) Any compact convex subset of R2 is homeomorphic to B2.

Solution:

(a) True. There is a homeomorphism f : S1 −→ RP 1 given by

f(x, y) =
1

2

(
1 + x y
y 1− x

)
.

(b) This is false, because the Möbius strip M is homotopy equivalent to S1, so π1(M) ≃ π1(S
1) ≃ Z, whereas

π1(S
2) = 0.

(c) This is true because both spaces are homotopy equivalent to the space with two points. Indeed, R \ {0} is
the disjoint union of two contractible spaces (−∞, 0) and (0,∞), each of which is homotopy equivalent to a
point, so R \ {0} is homotopy equivalent to two points. Similarly, S2 \ S1 is the disjoint union of the sets
U+ = {(x, y, z) ∈ S2 | z > 0} and U− = {(x, y, z) ∈ S2 | z < 0}. If we put V = {(x, y) ∈ R2 | x2 + y2 < 1} then

V is contractible and there is a homeomorphism f+ : V −→ U+ given by f(x, y) = (x, y,
√
1− x2 − y2), so U+ is

contractible. Similarly U− is contractible, so S2 \ S1 is again homotopy equivalent to two points.

(d) This is false, because A can be disconnected by removing a point in the middle of one of the legs, but D cannot
be disconnected by removing a single point.

(e) This is false: the closed line segment from (−1, 0) to (1, 0) is compact and convex but not homeomorphic to B2.
(The theorem states that if X ⊆ R2 is compact and convex and contains an open ball then X is homeomorphic
to B2.)

(28) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems or calculations of homology groups without proof, provided that you state them clearly. You may give
pictures instead of formulae, provided that they are clearly explained.

(a) RP 1 is homeomorphic to S1.

(b) The Möbius strip is homotopy equivalent to S2.

(c) SO(3) is homeomorphic to RP 3.

(d) S2 \ S1 is homotopy equivalent to R \ {0}.
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(e) The letter A is homeomorphic to the letter D.

(f) Any compact convex subset of R2 is homeomorphic to B2.

Solution:

(a) True. If we regard S1 as the unit circle in the complex plane then we have z ∼ w iff z2 = w2, so there is a
well-defined function f : RP 1 −→ S1 given by f(q(z)) = z2, and this is a homeomorphism.

(b) This is false, because the Möbius strip M is homotopy equivalent to S1, so H1(M) ≃ H1(S
1) ≃ Z, whereas

H1(S
2) = 0.

(c) This is true by a formula given in the notes, but it turns out that I won’t have time to explain this properly.

(d) This is true because both spaces are homotopy equivalent to the space with two points. Indeed, R \ {0} is
the disjoint union of two contractible spaces (−∞, 0) and (0,∞), each of which is homotopy equivalent to a
point, so R \ {0} is homotopy equivalent to two points. Similarly, S2 \ S1 is the disjoint union of the sets
U+ = {(x, y, z) ∈ S2 | z > 0} and U− = {(x, y, z) ∈ S2 | z < 0}. If we put V = {(x, y) ∈ R2 | x2 + y2 < 1} then

V is contractible and there is a homeomorphism f+ : V −→ U+ given by f(x, y) = (x, y,
√
1− x2 − y2), so U+ is

contractible. Similarly U− is contractible, so S2 \ S1 is again homotopy equivalent to two points.

(e) This is false, because A can be disconnected by removing a point in the middle of one of the legs, but D cannot
be disconnected by removing a single point.

(f) This is false: the closed line segment from (−1, 0) to (1, 0) is compact and convex but not homeomorphic to B2.
(The theorem states that if X ⊆ R2 is compact and convex and contains an open ball then X is homeomorphic
to B2.)

(29) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems or calculations of homology groups without proof, provided that you state them clearly. You may give
pictures instead of formulae, provided that they are clearly explained.

(a) S1 is homotopy equivalent to S2. (3 marks)

(b) S1 is homotopy equivalent to the Möbius strip. (4 marks)

(c) S1 is homeomorphic to the Möbius strip. (4 marks)

(d) RP 2 is homeomorphic to S1 × S1. (4 marks)

(e) SU(2) \ {I} is homeomorphic to R3. (5 marks)

(f) ∆n ×∆m is homeomorphic to ∆n+m. (5 marks)

Solution:

(a) False. We have H1(S
1) ≃ Z [1]but H1(S

2) = 0 [1]. If X is homotopy equivalent to Y , then Hn(X) ≃ HnY for
all n [1], so we conclude that S1 ̸≃ S2. [seen]

(b) True. The Möbius strip M is the quotient of R× [−1, 1] by the equivalence relation

(x, y) ∼ (x′, y′) iff (x− x′ ∈ Z and y = (−1)x−x′
y′).

The circle can be thought of as the quotient of R by the equivalence relation

x ∼ x′ iff x− x′ ∈ Z.

We thus have a map j : S1 −→ M defined by j⟨x⟩ = ⟨x, 0⟩ [1], and a map q : M −→ S1 defined by q⟨x, y⟩ = ⟨x⟩
[1]; these clearly satisfy qj = 1. We also have a map h : I ×M −→ M defined by h(t, ⟨x, y⟩) = ⟨x, ty⟩ [1]. This
has h(1, ⟨x, y⟩) = ⟨x, y⟩, and h(0, ⟨x, y⟩) = ⟨x, 0⟩ = jq⟨x, y⟩, so that jq ≃ 1. [1][seen]

(c) False. If we remove any two distinct points from S1 it becomes disconnected, but this is clearly not true for M .
[4] [similar examples seen]
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(d) We calculated in lectures that H1(RP 2) ≃ Z/2 [1], whereas H1(S
1 × S1) ≃ Z× Z [2]. It follows as in (a) that

RP 2 is not homotopy equivalent (and so not homeomorphic [1]) to S1 × S1. [similar examples seen]

(e) True. There is a homeomorphism f : S3 −→ SU(2) given by

f(a, b, c, d) =

(
a+ ib c+ id
c− id a− ib

)
.[2]

If we define P = (1, 0, 0, 0) then f(P ) = I, so f induces a homeomorphism S3 \ {P} −→ SU(2) \ {I}. On the
other hand, stereographic projection gives a homeomorphism g : S3 \ {P} −→ R3. Explicitly, we have

g(a, b, c, d) = (b/(1− a), c/(1− a), d/(1− a)).[3]

(f) True. We proved in lectures that if X ⊆ Rk is bounded, closed and convex and contains an open ball, then X
is homeomorphic to Bk [3]. This applies to both the sets ∆n ×∆m and ∆n+m, so ∆n ×∆m ≃ Bn+m ≃ ∆n+m

[2]. [similar examples seen]

(30) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems without proof, provided that you state them clearly. You may give pictures instead of formulae, provided
that they are clearly explained.

(a) There is a continuous surjective map from S1 × S1 to R

(b) C \ {2} is homotopy equivalent to S1

(c) C \ {−1, 1} is homotopy equivalent to S1

(d) S2 \ {the north pole} is homeomorphic to C.

(e) The letter X (considered as a subspace of R2) is homeomorphic to the letter Y .

(f) The letter X (considered as a subspace of R2) is homotopy equivalent to the letter Y .

Solution:

(a) False. The space S1 × S1 is compact, and R is not compact, so there can be no continuous surjection from
S1 × S1 to R.

(b) True. The map f : C \ {2} −→ S1 given by f(z) = (z − 2)/|z − 2| is a homotopy equivalence.

(c) False. The space C \ {−1, 1} is homotopy equivalent to the figure eight, so its fundamental group is nonabelian,
whereas π1(S

1) is isomorphic to Z and thus is abelian. This shows that the two spaces have non-isomorphic
fundamental groups, so they cannot be homotopy equivalent.

(d) True. The space S2 \ {the north pole} is homeomorphic to R2 by stereographic projection, and of course R2 is
homeomorphic to C by the correspondence (x, y) ↔ x+ iy.

(e) False. We can remove the central point from the letter X and the resulting space has four path components;
but if we remove a point from the letter Y , the remaining space has at most three path components. This shows
that X is not homeomorphic to Y .

(f) True. The letter X is star-shaped around its central point, so it is contractible, and the same applies to Y .
Thus, they are both homotopy equivalent to a point and hence to each other.

(31) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems without proof, provided that you state them clearly. You may give pictures instead of formulae, provided
that they are clearly explained.

(a) There is a continuous surjective map from R× R to R \ {0} (5 marks)

(b) S2 \ S1 is homeomorphic to R2 (5 marks)

(c) SO(2) is homotopy equivalent to the Möbius strip (5 marks)
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(d) SO(3) is homotopy equivalent to the torus (5 marks)

(e) The space X = S1 ∪ {(x, 0) | x ∈ R} is homeomorphic to Y = S1 ∪ {(x, 1) | x ∈ R}. (5 marks)

Solution: In each part, two marks will be awarded for a correct true/false answer with no justification,
and up to three (or exceptionally four) marks may be awarded for a reasonable line of argument leading
to the wrong answer.

(a) False. The space R2 is path-connected and R \ {0} is not, so there cannot be a continuous surjective map from
R2 to R \ {0}. [5] [similar examples seen]

(b) False. The space S2 \S1 is homotopy equivalent to S0, and thus is not path-connected; but R2 is evidently path-
connected, by linear paths. [5] [seen]The homotopy equivalence Sn \ Sm ≃ Sn−m−1 is in the summary,
so I expect that the students will use it. There are of course more direct proofs that S2 \ S1 is
disconnected; they are also acceptable.

(c) True. SO(2) is homeomorphic to S1 [seen], and the Möbius strip M is homotopy equivalent to the circle
running along the middle of the strip [seen], so SO(2) is homotopy equivalent to M . [5] The summary
contains various lists of spaces that are all homotopy equivalent to each other; one such list
contains S1, SO(2) and the Möbius strip.

(d) False. We know that SO(3) is homeomorphic to RP 3, so H1(SO(3)) has order two. On the other hand,
H1(T ) ≃ Z×Z is infinite, and thus not isomorphic to H1(SO(3)), so T is not homotopy equivalent to SO(3). [5]
[similar examples seen]The facts that SO(3) ≃ RP 3, that H1(RP 3) = Z/2, and that H1(T ) = Z×Z are
all in the summary. It is mentioned explicitly in the notes that H1(SO(3)) = Z/2. Many examples
are given where we use H1 to show that two spaces are not homotopy equivalent.

(e) False. The picture is as follows:

A

BX

C

Y

The points A and B can be removed from X without disconnecting it; but removing any two points from Y
disconnects it. (Note in particular that removing C already disconnects Y ). [5] [similar examples seen]

(32) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general
theorems without proof, provided that you state them clearly. You may give pictures instead of formulae, provided
that they are clearly explained.

(a) If X and Y are both path-connected subsets of R2, then X ∩ Y is also path-connected. (5 marks)

(b) The torus is homotopy equivalent to S2. (5 marks)

(c) If f : X −→ Y and g : Y −→ X are continuous, based maps and gf = idX then π1(X) ≃ π1(Y ). (5 marks)

(d) If two letters of the alphabet, considered as subspaces of R2, both have infinite H1, then they are homotopy
equivalent. (5 marks)

(e) The space GL3(R) is path-connected. (5 marks)

Solution: In each part, two marks will be awarded for a correct true/false answer with no justification,
and up to three (or exceptionally four) marks may be awarded for a reasonable line of argument leading
to the wrong answer.

(a) False. If X = {(x, y) ∈ S1 | y ≥ 0} and Y = {(x, y) ∈ S1 | y ≤ 0} then X and Y are path-connected but X ∩ Y
is not.
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(b) False. We have π1(T ) = Z× Z and π1(S
2) = 0 so T cannot be homotopy equivalent to S2.

(c) False. Take X = {0}, Y = S1, f(0) = 1 and g(x, y) = 0. Then gf = idX but π1(X) = 0 whereas π1(Y ) = Z.

(d) False. The letter O has H1(O) = Z, whereas B has H1(B) = Z2. These two homology groups are both infinite
but are not isomorphic, so the spaces are not homotopy equivalent.

(e) False. The determinant gives a continuous map det : GL3(R) −→ R \ {0}, which takes a positive value at I and a
negative value at −I, so there can be no path from I to −I in GL3(R).

(33) 2018-19 Q2: Are the following true or false? Justify your answers.

(a) S5 is a Hausdorff space. (4 marks)

(b) The Klein bottle is a retract of S1 × S1 × S1. (4 marks)

(c) There is a connected space X with π1(X) ≃ Z/2 and H1(X) ≃ Z. (4 marks)

(d) There is a short exact sequence Z/9 → Z/99 → Z/11. (4 marks)

(e) If K is a simplicial complex and L is a subcomplex and H3(K) = 0 then H3(L) = 0. (4 marks)

(f) If K and L are simplicial complexes and f : |K| → |L| is a continuous map then there is a simplicial map
s : K → L such that f is homotopic to |s|. (5 marks)

Solution:

(a) This is true [1], because the standard topology on S5 comes from the Euclidean metric on R6, and metric spaces
are always Hausdorff. [3] [It was proved in lectures that metric spaces are Hausdorff.]

(b) This is false [1]. Let X be the Klein bottle. If this was a retract of (S1)3, then π1(X) would be a retract of the
group π1((S

1)3) = Z3, so in particular it would be a subgroup of Z3 and so would be abelian. However, it is
standard that π1(X) is nonabelian, so this is a contradiction. [3] [Similar examples have been seen.]

(c) This is false [1]. For a connected space X, the group H1(X) is always the abelianisation of π1(X). Thus, if
π1(X) is Z/2 then H1(X) must also be Z/2. [3] [Unseen]

(d) This is true [1]: there is a short exact sequence Z/9 i−→ Z/99 p−→ Z/11 given by i(a (mod 9)) = 11a (mod 99)
and p(b (mod 99)) = b (mod 11). [3] Alternatively, as 9 and 11 are coprime we can use the Chinese Remainder

Theorem to identify Z/99 with Z/9 × Z/11. We then have a short exact sequence Z/9 j−→ Z/9 × Z/11 q−→ Z/11
given by j(x) = (x, 0) and q(x, y) = y. [Similar examples have been seen.]

(e) This is false [1]. For example, if K = ∆4 and L = ∂∆4 ⊂ K then H3(K) = 0 but H3(L) = Z. [3] [Seen]

(f) This is false. [1]For example, K and L could be as follows:

K = L =

If s : K → L is a simplicial map, it is easy to see that the image can only be a single point or a single edge
of L, and thus that |s| is homotopic to a constant map. However, it is easy to produce a homeomorphism
f : |K| → |L| and then f is not homotopic to a constant, so it cannot be homotopic to |s| for any s. [4] (By
the Simplicial Approximation Theorem, for any f : |K| → |L| we can find a corresponding map s : K(r) → L for
sufficiently large r; but that is not relevant here, because the question specifies that s should be defined on K
itself.) [Similar examples have been seen.]
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8 Examples

(34) Give examples of the following things, with careful justification.

(a) A noncompact metric space X with a sequence of compact subspaces Y1 ⊂ Y2 ⊂ . . . such that the union of all
the sets Yn is equal to X.

(b) A metric space X with two noncompact subsets Y,Z such that Y ∪ Z is compact.

(c) A sequence in R with no convergent subsequence.

(d) A non-surjective map f : X −→ Y such that f∗ : π0(X) −→ π0(Y ) is surjective.

(e) An injective map f : X −→ Y such that f∗ : π0(X) −→ π0(Y ) is not injective.

Solution:

(a) Take X = R, Yn = [−n, n]. The sequence (1, 2, 3, . . .) in R has no convergent subsequence, so R is noncompact.
Moreover, Yn is a bounded closed subspace of R and thus is compact. For any x ∈ R we can choose an integer
n > |x| and then x ∈ Yn, which shows that X = Y1 ∪ Y2 ∪ . . . .

(b) Put X = [0, 1] and Y = (0, 1] and Z = [0, 1). Then Y ∪ Z = [0, 1] which is compact. The sequence (1/n) in
Y has n subsequence that converges in Y , so Y is noncompact. Similarly, the sequence (1 − 1/n) in Z has no
subsequence that converges in Z, so Z is noncompact.

(c) The sequence 1, 2, 3, . . . in R has no convergent subsequence, because any two distict terms have distance at least
one apart so no subsequence can be Cauchy.

(d) Let X = {0} and Y = [0, 1] and define f : X −→ Y by f(0) = 0. Then X and Y are both path-connected, so
π0(X) and π0(Y ) have only one point each. The map f∗ : π0(X) −→ π0(Y ) sends the only point in π0(X) to the
only point in π0(Y ), so f∗ is a bijection and in particular is surjective. However f is obviously not surjective, as
1 does not lie in the image of f for example.

(e) Put X = {0, 1} and Y = [0, 1] and let f : X −→ Y be the inclusion map, which is clearly injective. If we write
a for the component of 0 in X and b for the component of 1 in X and c for the component of 0 in Y then
π0(X) = {a, b} and π0(Y ) = {c} and f∗(a) = f∗(b) = c, so f∗ is not injective.

(35) Give examples of the following things, with careful justification.

(a) A continuous bijection that is not a homeomorphism. (3 marks)

(b) An infinite sequence of open sets whose intersection is not open. (3 marks)

(c) Two metric spaces X,Y such that X is bounded, Y is unbounded, and X is homeomorphic to Y . (4 marks)

(d) A sequence in (0, 1) such that no subsequence converges in (0, 1). (5 marks)

(e) Two contractible subsets of R2 whose intersection is not contractible. (5 marks)

(f) Two metric spaces X,Y and points x ∈ X, y ∈ Y such that X is homotopy equivalent to Y but X \ {x} is not
homotopy equivalent to Y \ {y}. (5 marks)

Solution:

(a) Put X = ([−1, 0]×{0})∪((0, 1]×{1}) ⊂ R2, and Y = [−1, 1] ⊂ R [1]. The map q : X −→ Y defined by q(x, y) = x
[1]is a continuous bijection, but not a homeomorphism (because Y is sequentially compact and X is not, for
example) [1]. [seen]

(b) Put Un = (−1/n, 1/n) [2], which is open in R. The intersection of all the sets Un is the one-point set {0},
[1]which is not open in R. [seen]

(c) Put X = (0, 1) and Y = (1,∞), so clearly X is bounded and Y is not. Define f : X −→ Y by f(x) = 1/x. This
is a homeomorphism, with f−1(y) = 1/y. [4] [seen]
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(d) Put xn = 1/n [2]. This converges in R to 0, so any subsequence converges in R to 0 [2], so it has no limit in
(0, 1). [1][seen]

(e) Put
X+ = {(x, y) ∈ R2 | x2 + y2 = 1 and y ≥ 0}

X− = {(x, y) ∈ R2 | x2 + y2 = 1 and y ≤ 0}.[2]

Then X+ and X− are homeomorphic to I and thus are contractible [1], but X+ ∩X− = {(−1, 0), (1, 0)} is not
path-connected [1]and thus certainly not contractible [1]. [unseen]

(f) Take X = Y = I and x = 0 and y = 1/2 [3]. Then X and Y are contractible, and thus certainly homotopy
equivalent to each other [1]. However, X \ {x} is path-connected and Y \ {y} is not, so X \ {x} is not homotopy
equivalent to Y \ {y} [1]. [unseen]

(36) Give examples of the following things, with justification.

(a) Connected sets X,Y ⊆ R2 such that X ∩ Y is not connected.

(b) A sequence of open sets Un ⊆ R such that the set X = U1 ∩ U2 ∩ . . . =
⋂

n Un is not open.

(c) A surjective map f : X −→ Y of topological spaces such that the homomorphism f∗ : H1(X) −→ H1(Y ) is not
surjective.

(d) A path connected space X that is homotopy equivalent to X ×X.

(e) A path connected space X that is not homotopy equivalent to X ×X.

Solution:

(a) Put

X = the upper half of the unit circle

= {(x, y) ∈ R2 | x2 + y2 = 1 , y ≥ 0}
Y = the lower half of the unit circle

= {(x, y) ∈ R2 | x2 + y2 = 1 , y ≤ 0}

Then X and Y are both connected, but X ∩ Y = {(−1, 0), (1, 0)}, which is disconnected.

(b) Put Un = {x ∈ R | |x| < 1/n} = (−1/n, 1/n). Then Un is open in R, but⋂
n

Un = {x ∈ R | |x| < 1/n for all n}

= {x ∈ R | |x| = 0}
= {0},

which is not open.

(c) Define η : R −→ S1 by η(t) = exp(2πit), which gives a surjective, continuous map. As H1(R) = {e} and H1(S
1)

is infinite, it is clear that η∗ : H1(R) −→ H1(S
1) cannot be surjective.

(d) The spaces I and I× I are both homotopy equivalent to a point, and thus to each other. (For a more degenerate
example, one could just take X to be a point.)

(e) The space S1 is not homotopy equivalent to S1 × S1 (because H1(S
1) = Z is not isomorphic to H1(S

1 × S1) =
Z× Z).

(37) Give examples of the following things.

(a) A space X and a point x ∈ X such that X is not contractible but X \ {x} is contractible. (3 marks)

(b) A subspace X ⊆ R2 that is homotopy equivalent to S4 \ S2. (You need not give a proof.) (4 marks)
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(c) Spaces X and Y , a discontinuous map f : X −→ Y , and an open subset V ⊆ Y such that f−1V is not open in X.
(You should justify your answer carefully.) (6 marks)

(d) A space X and a point x ∈ X such that π1(X) is abelian and π1(X \{x}) is nonabelian. (You should state what
π1(X) and π1(X \ {x}) are, but no further justification is required.) (6 marks)

(e) A space X such that a(X) = 2 and b(X) = 2, where as usual

a(X) = max{|S| | S is a finite subset of X and X \ S is path-connected }
= the largest number of points that can be

removed from X without disconnecting it

b(X) = min{|S| | S is a finite subset of X and X \ S is not path-connected }
= the smallest number of points that have to be

removed from X to disconnect it

(You should justify your answer, but complete rigour is not required.) (6 marks)

Solution:

(a) S1 is not contractible (because H1(S
1) = Z is nontrivial) but S1 \ {1} is homeomorphic to R and thus is

contractible. [3] [seen]These facts are in the summary.

(b) In general, Sn\Sm is homotopy equivalent to Sn−m−1. In particular, the space S4\S2 is homotopy equivalent to
S1, which is a subset of R2 [4]. [seen]The homotopy equivalence Sn \ Sm ≃ Sn−m−1 is in the summary.

(c) Define f : R −→ R by f(x) = 0 for x ≤ 0 and f(x) = 1 for x > 0. [1]This is discontinuous at x = 0, [1]because
1/n −→ 0 but f(1/n) = 1 ̸−→ 0 = f(0) [1]. If we put V = (−1, 1) ⊂ R [1]then f−1V = (−∞, 0] [1]. Thus V is
open but f−1V is not [1]. [seen]

(d) Put X = T = S1 × S1 and x = (1, 1) [2]. Then π1(X) = Z × Z [1], which is abelian. However, X \ {x} is
homotopy equivalent to a figure eight [1], so π1(X \ {x}) is the free group on two generators [1], which is not
abelian [1]. [seen]These facts are in the summary. The only spaces ever mentioned with nonabelian
fundamental group are the figure eight, the torus with one puncture, and the plane with two
punctures. The fact that these three spaces are homotopy equivalent is also in the summary.

(e) We can take X to be the letter B, or the following space, which is homeomorphic to the letter B: [3]

AA
B

C

It is clear that X \ {A,C} is connected (so a(X) ≥ 2) and X \ {A,B} is not (so b(X) ≤ 2). By inspection, if
we remove any one point, then X remains connected, so b(X) = 2. Also, if we remove any three points, then
X becomes disconnected, so a(X) = 2. [3] [seen]The calculation of a(letter B) and b(letter B) has been
seen (and similarly for various other letters, and some other spaces). However, the students have
not previously been asked to find a space with prescribed values of a(X) and b(X).

(38) Give one example of each of the following things, with justification.

(a) A path connected space X with H1(X) = Z⊕ (Z/2). (4 marks)

(b) A path-connected space X and points a, b, c ∈ X such that X \ {a, b, c} is still path-connected. (3 marks)

(c) A path-connected space X and a point a ∈ X such that H1(X) and H1(X \ {a}) are both trivial. (5 marks)

(d) A continuous, surjective map f : X −→ Y , where Y is compact but X is not. (3 marks)

(e) A space X and points a, b ∈ X such that π1(X) is nonabelian but the space Y = X \ {a, b} is simply connected.
(5 marks)
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(f) A continuous bijection that is not a homeomorphism. (5 marks)

Solution:

(a) For path connected spaces Y and Z, the product Y × Z is also path connected and has H1(Y × Z) = H1(Y )⊕
H1(Z). The spaces S1 and RP 2 are path connected with H1(S

1) = Z [1]and H1(RP 2) = Z/2 [2] so H1(S
1 ×

RP 2) = Z⊕ (Z/2) [1].

(b) The simplest example is X = R2, a = (−1, 0), b = (0, 0), c = (1, 0). It is also easy to exhibit one-
dimensional examples (eg the wedge of three circles), and this may well be the most popular type of answer. [3]
[similar examples seen]

(c) Take X = S2, and let a be any point in X. Then π1(X) = 0. Moreover, X \ {a} is homeomorphic to R2, which
is contractible, so π1(X \ {a}) is again trivial. [5] The individual facts mentioned are in the summary.

(d) Take X = R, Y = {0}, f(x) = 0. I expect that students will generally give more complicated examples. [3]
[unseen]

(e) Let X be the figure eight [2], or in other words the union of the circles of radius one centred at (1, 0) and
(−1, 0), so π1(X) is nonabelian [1]. Put a = (−2, 0) and b = (2, 0), so X \ {a, b} is homeomorphic to the union
of two lines meeting at a point. This means that X \ {a, b} is contractible, and thus simply connected [2]. The
space X is mentioned repeatedly as an example with nonabelian fundamental group, and no other
examples are given.

(f) Define e : [0, 2π) −→ S1 by e(t) = exp(iθ) [1]. Every point z ∈ S1 can be written as z = exp(iθ) for a unique
angle θ in the range 0 ≤ θ < 2π, so e is a bijection [1]. It is well-known to be continuous [1], but e−1 is not
continuous [1] because exp(−i/n) −→ 1 in S1 but e−1(exp(−i/n)) = 2π − 1/n ̸−→ 0 [1]. [bookwork]

(39) 2020-21 Q1: Give examples as follows, justifying your answers.

(a) Topological spaces X and Y , together with injective functions f : X → Y and g : Y → X such that f , f ◦ g and
g ◦ f are all continuous, but g is not continuous. (4 marks)

(b) A compact, path-connected space X together with a continuous map f : X → X with no fixed points. (4 marks)

(c) A space X such that H1(X) is not a free abelian group. (Note here that the zero group is free abelian with no
generators, so in particular H1(X) must be nonzero.) (4 marks)

(d) A space X together with points a, b, c ∈ X such that |Π(X; a, b)| ≠ |Π(X; b, c)|. (4 marks)

(e) A space X such that π1(X) is a free group with 3 generators, and H2(X) = Z. (4 marks)

Solution: In each case, two marks will be awarded for a correct example, and two further marks for justifying it.
Up to two marks may also be awarded for intelligent discussion of an incorrect example. Note that in addition to the
main lecture notes, students have access to a two-page summary of examples.

(a) We can use the standard example of a continuous bijection that is not a homeomorphism (Example 4.8):

X = (−∞, 0] ∪ (1,∞) Y = R

f(x) =

{
x if x ≤ 0

x− 1 if x > 1
g(y) =

{
y if y ≤ 0

y + 1 if y > 0.

Here f is continuous because the domains of the two clauses are both open in X, and f ◦ g and g ◦ f are identity
maps so they are certainly continuous, but g is discontinuous at y = 0. [4]

(b) We can take X = Sn for any n > 0, and f(x) = −x. (Example 9.15 mentions that Sn is compact, as an easy
application of Proposition 9.14. It is path-connected by Proposition 5.11. This example of a fixed-point-free
endomorphism is mentioned in the solution to Exercise 3 of Problem Sheet 9.) [4]

(c) We can takeX = RP 2, thenH1(X) = Z/2, which is not free abelian. (Example 12.15 shows that π1(RP 2) = Z/2,
and Theorem 18.18 shows that H1(RP 2) is the abelianisation of this, which is Z/2 again.) [4]

(d) We can take X = {0} ⨿ RP 2, with a = 0 and b = c = basepoint of RP 2. Then Π(X; a, b) = ∅ and Π(X; b, c) =
π1(RP 2, b) = C2 so |Π(X; a, b)| = 0 but |Π(X; b, c)| = 2. [4]
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(e) We can take X = S1 ∨ S1 ∨ S1 ∨ S2. Using Corollary 15.20 (a special case of the van Kampen Theorem) we see
that π1(X) is the free product of three copies of π1(S

1) = Z together with one copy of π1(S
2) = 1, so it is free

on three generators. Similarly, we can use Lemma 21.4 (a special case of the Mayer-Vietoris Theorem) to show
that H2(X) = 0⊕ 0⊕ 0⊕ Z = Z as required. [4]

Feedback: For part (a), another good answer (given by several students) is to define f : [0, 2π) → S1 by f(x) = eix,
note that this is bijective, and take g = f−1. Most people answered (b) correctly, using the same example as in the
solution above. Some people gave answers for (c) where they claimed that H1(X) was not abelian, but homology
groups are always abelian. Most people answered (d) correctly (but sometimes with inadequate justification); correct
answers for (e) were rare.

9 Real projective space

In the current version of the course, in the Introduction we define RPn = Sn/(x ∼ −x) and

Pn = {A ∈Mn+1(R) | A2 = AT = A, trace(A) = 1},

and we mention that RPn is homeomorphic to Pn. A proof is given in Problem Sheet 5. In some earlier versions of
the course, RPn was just defined to be the same as Pn. Problems in this section should be approached from that
point of view.

(40)

(a) Define the set RP 2 and the map q : S2 −→ RP 2.

(b) Define the usual metric on RP 2, and prove that it is a metric.

(c) Define the space ∆2, and prove carefully that there is a surjective continuous map f : RP 2 −→ ∆2 satisfying
fq(u, v, w) = (u2, u2 + v2) for all (u, v, w) ∈ ∆2. You may use general theorems provided that you state them
precisely.

Solution:

(a) We can define an equivalence relation ∼ on S2 by x ∼ y iff (x = y or x = −y). The set RP 2 is the set of
equivalence classes for this relation. The map q : S2 −→ RP 2 is defined by q(x) = ⟨x⟩, the equivalence class of x.

(b) We define e : RP 2×RP 2 −→ R by e(x, y) = min(∥x− y∥, ∥x+ y∥). This is clearly nonegative and symmetric, and
we have e(x, y) = 0 iff one of ∥x− y∥ and ∥x+ y∥ is zero, iff either x = −y or x = y, or in other words iff x ∼ y.
Clearly also

e(x, y) = e(−x, y) = e(x,−y) = e(−x,−y),
and it follows that there is a well-defined function d : RP 2 × RP 2 −→ R such that d(q(x), q(y)) = e(x, y). It
is clear that d(u, v) ≥ 0, with equality iff u = v, and that d(u, v) = d(v, u). All that is left is to check the
triangle inequality. Suppose we have u, v, w ∈ RP 2. Choose x ∈ S2 such that u = q(x). Next, choose y ∈ S2

such that q(y) = v. After replacing y by −y if necessary, we may assume that ∥x − y∥ ≤ ∥x + y∥, so that
d(u, v) = ∥x− y∥. Next, choose z ∈ S2 such that q(z) = w. After replacing z by −z if necessary, we may assume
that ∥y − z∥ ≤ ∥y + z∥, so that d(v, w) = ∥y − z∥. We then have

d(u,w) = min(∥x− z∥, ∥x+ z∥)
≤ ∥z − x∥
≤ ∥y − x∥+ ∥z − y∥
= d(u, v) + d(v, w),

as required.

(c) The space ∆2 is {(t1, t2) ∈ R2 | 0 ≤ t1 ≤ t2 ≤ 1}. Given a point a = (u, v, w) ∈ S2 we have u2, v2, w2 ≥ 0
so 0 ≤ u2 ≤ u2 + v2 ≤ 1 = u2 + v2 + w2, so (u2, u2 + v2) ∈ ∆2. We can thus define a map g : S2 −→ ∆2

by g(u, v, w) = (u2, u2 + v2). The components of g are polynomial functions, so g is continuous. Moreover,
g(−u,−v,−w) = g(u, v, w), or in other words g(−a) = g(a), or in other words g(a) = g(b) whenever a ∼ b.
Thus, there is a well-defined function f : RP 2 −→ ∆2 defined by f(q(a)) = g(a). Any function h : RP 2 −→ Y is
continuous iff hq : S2 −→ Y is continuous. We have seen that g = fq is continuous, so f is continuous. Moreover,
for any (t1, t2) ∈ ∆2 we have (

√
t1,

√
t2 − t1,

√
1− t2) ∈ S2 and fq(

√
t1,

√
t2 − t1,

√
1− t2) = (t1, t2), so f is

surjective.
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(41)

(a) Define the set RPn, and write down a metric on it, proving that your formula is well-defined. (You need not
show that it is a metric.) (6 marks)

(b) Define what it means for a metric space X to be sequentially compact. (3 marks)

(c) Define the set π0(X), and say what it means for X to be path-connected. (6 marks)

(d) Prove that the space RPn is sequentially compact and path-connected. State clearly any general theorems or
results that you use. (10 marks)

Solution:

(a) The set RPn is the quotient of Sn by the equivalence relation ∼, where x ∼ y iff (x = y or x = −y); we write q
for the obvious map Sn −→ RPn. We can define a function e : Sn × Sn −→ [0,∞) by

e(x, y) = min(∥x− y∥2, ∥x+ y∥2) = min(d2(x, y), d2(x,−y)).[2]

It is easy to see that
e(x, y) = e(−x, y) = e(x,−y) = e(−x,−y).[2]

Now suppose we have a, b ∈ RPn. We can choose x, y ∈ Sn such that q(x) = a and q(y) = b; these elements are
unique up to sign. It follows from the above equation that the value of e(x, y) is independent of the signs, so we
may define d(a, b) = e(x, y). This gives a metric on RPn. [2] [bookwork]

(b) A space X is sequentially compact if every sequence in X has a convergent subsequence. [3] [bookwork]

(c) We define a relation on X by x ∼ y iff there is a path in X joining x to y, in other words a continuous map
s : I −→ X with s(0) = x and s(1) = y [2]. Using constant paths we see that this is reflexive, using path reversal
we see that it is symmetric, and using path join we see that it is transitive. It is thus an equivalence relation
[1], so we can define a quotient set X/ ∼; this is called π0(X) [1].

We say that X is path-connected if π0(X) is a one-point set, or equivalently if x ∼ y for all x, y ∈ X. [2]
[bookwork]

(d) We have a surjective [1]continuous [1]map q : Sn −→ RPn. The set Sn is bounded and closed in Rn+1, so it
is sequentially compact [2]. A continuous image of a sequentially compact set is sequentially compact [1], so
RPn is sequentially compact [1]. Also, the space Sn is path-connected (by using great circles, say) [2] and a
continuous image of a path-connected set is path-connected [1], so RPn is path-connected [1]. [unseen]

10 Multipart questions

(42)

(a) What is a metric space? What is a continuous function?

(b) Define the discrete metric on a set X.

(c) LetX be a space with a discrete metric. Show that any path s : ∆1 −→ X is constant, and deduce that π0(X) = X.

(d) Consider the space Y = {(x, y) ∈ R2 | xy ̸= 0} and show that π0(Y ) has precisely four elements. If f : Y −→ Y
denotes reflection in the line x = y, describe the map f∗ : π0(Y ) −→ π0(Y ). Is f homotopic to the identity map?

Solution:

(a) A metric space is a set X equipped with a metric, ie a function d : X ×X −→ R such that

– d(x, y) ≥ 0 for all x, y ∈ X, with equality iff x = y.

– d(x, y) = d(y, x) for all x, y ∈ X.

– d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A function f : X −→ Y between metric spaces is continuous if for each sequence (xn) in X that converges to a
point x ∈ X, the resulting sequence (f(xn)) in Y converges to the point f(x).
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(b) The discrete metric on a set X is defined by

d(x, y) =

{
0 if x = y

1 if x ̸= y.

(c) Let s : ∆1 −→ X be a path. Define f : ∆1 −→ R by f(t) = d(s(t), s(0)), so f is continuous and f(0) = 0. As d
can only take the values 0 and 1, we see that f can only take the vales 0 and 1, so by the Intermediate Value
Theorem it must be constant. As f(0) = 0 we see that f(t) = 0 for all t. As d(s(0), s(t)) = 0 we see that
s(t) = s(0) for all t, in other words s is constant.

As usual we write x ∼ y if x can be connected to y by a path, so ∼ is an equivalence relation and π0(X) = X/ ∼.
As the only paths are constant, if x ∼ y we must have x = y. Thus, each equivalence class consists of just a
single point, so π0(X) can be identified with X.

(d) Define

Y1 = 1st quadrant = {(x, y) | x > 0, y > 0}
Y2 = 2nd quadrant = {(x, y) | x < 0, y > 0}
Y3 = 3rd quadrant = {(x, y) | x < 0, y < 0}
Y4 = 4th quadrant = {(x, y) | x > 0, y < 0}.

These are all nonempty convex sets and thus path-connected, and clearly they are open and disjoint. If (x, y) ∈ Y
then xy ̸= 0 so x ̸= 0 and y ̸= 0 so x < 0 or x > 0 and y < 0 or y > 0. It follows that (x, y) lies in one of the
sets Yi, so Y = Y1 ∪ Y2 ∪ Y3 ∪ Y4. A path in Y has the form s(t) = (u(t), v(t)), where for all t we have u(t) ̸= 0
and v(t) ̸= 0. By the intermediate value theorem, we see that u(0) has the same sign as u(1), and v(0) has the
same sign as v(1), so if s(0) ∈ Yi then s(1) ∈ Yi also. It follows that the sets Yi are the path components of Y ,
so π0(Y ) = {Y1, Y2, Y3, Y4}. The formula for the map f is f(x, y) = (y, x), and it follows easily that

f∗(Y1) = Y1 f∗(Y2) = Y4 f∗(Y3) = Y3 f∗(Y4) = Y2.

Y1Y2

Y3 Y4

x = y

As f∗ is not the identity map, we see that f is not homotopic to the identity.

(43) 2018-19 Q1:

(a) Given a topological space X, define the set π0(X). You should include a proof that the relevant equivalence
relation is in fact an equivalence relation. (8 marks)

(b) Consider [0, 1] as a based space with 0 as the basepoint. For n ≥ 3 we define Xn = {z ∈ C | zn ∈ [0, 1]}:

X7 X8 X9
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(i) For which n and m (with n,m ≥ 3) is Xn homotopy equivalent to Xm? (3 marks)

(ii) For which n and m (with n,m ≥ 3) is Xn homeomorphic to Xm? (4 marks)

Justify your answers carefully.

(c) Give examples as follows, with justification:

(1) A based space W with |π1(W )| = 8. (3 marks)

(2) A space X with two points a, b ∈ X such that π1(X, a) is not isomorphic to π1(X, b). (3 marks)

(3) A space Y such that H0(Y ) ≃ H2(Y ) ≃ H4(Y ) ≃ H6(Y ) ≃ Z and all other homology groups are trivial. (4
marks)

Solution:

(a) We define a relation on X by declaring that x ∼ y if there is a continuous path u : [0, 1] → X with u(0) = x and
u(1) = y. [1]

– For any x ∈ X we can define c : [0, 1] → X by c(t) = x for all t. Using this we see that x ∼ x, so or relation
is reflexive. [1]

– Suppose that x ∼ y, as witnessed by a path u from x to y. The reversed path u(t) = u(1 − t) is also
continuous, with u(0) = y and u(1) = x, which shows that y ∼ x. This shows that our relation is
symmetric. [2]

– Suppose that x ∼ y and y ∼ z, as witnessed by a path u from x to y and a path v from y to z. We can
define the concatenated path u∗v : [0, 1] → X by (u∗v)(t) = u(2t) for 0 ≤ t ≤ 1/2 and (u∗v)(t) = v(2t−1)
for 1/2 ≤ t ≤ 1 [2] (so in particular (u ∗ v)(1/2) = y = u(1) = v(0)). This is continuous on the closed
sets [0, 1/2] and [1/2, 1], which cover [0, 1], so it is continuous on [0, 1]. As (u ∗ v)(0) = u(0) = x and
(u ∗ v)(1) = v(1) = z we see that x ∼ z. This shows that our relation is transitive. [1]

We now see that we have an equivalence relation, so we can define π0(X) = X/ ∼. [1][All bookwork]

(b) (i) For any n we have a contraction of Xn to 0 given by h(t, z) = tz for 0 ≤ t ≤ 1. Thus, all the spaces Xn are
homotopy equivalent to a point and thus to each other. [3] [Unseen but easy]

(ii) Note that |π0(Xn \ {a})| is 2 for most values of a, but it is n if a = 0, and 1 if |a| = 1. If we have a
homeomorphism f : Xn → Xm then we get a homeomorphism Xn \ {0} → Xm \ {f(0)} so

n = |π0(Xn \ {0})| = |π0(Xm \ {f(0})| ∈ {1, 2,m}.

As n,m ≥ 3 this can only occur if n = m. Thus, no two of the spaces Xn are homeomorphic. [4] [Unseen,
but the general technique has been seen.]

(c) (1) We can take W = (RP 2)3 [2], so π1(W ) = π1(RP 2)3 = (Z/2)3, so |π1(W )| = 8. [1][Unseen, but RP 2 is
a standard example.]

(2) We can take X = S1 ∪ {0} ⊂ C and a = 0 and b = 1, so π1(X, a) = 0 and π1(X, b) = Z. [3] [Unseen]

(3) We can take Y = S2 ∨ S4 ∨ S6. This is connected, so H0(Y ) = Z. For i > 0 we have Hi(Y ) = Hi(S
2) ⊕

Hi(S
4)⊕Hi(S

6). We also have Hi(S
i) = Z, and Hi(S

j) = 0 for j ̸= i; it follows that H∗(Y ) is as required.
[4] Alternatively, we can take Y = CP 3. [Similar examples have been seen.]

(44) 2018-19 Q3: Let K and L be abstract simplicial complexes.

(a) Define what is meant by a simplicial map from K to L. (3 marks)

(b) Let s, t : K → L be simplicial maps. Define what it means for s and t to be directly contiguous. (3 marks)

(c) Prove that if s and t are directly contiguous, then the resulting maps |s|, |t| : |K| → |L| are homotopic. (3
marks)

(d) Prove that if s and t are directly contiguous, then the resulting maps s∗, t∗ : H∗(K) → H∗(L) are the same. (You
can prove the main formula just for n = 3 rather than general n.) (9 marks)

(e) How many injective simplicial maps are there from ∂∆2 to itself? Show that no two of them are directly
contiguous. (7 marks)
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Solution:

(a) A simplicial map from K to L is a function s : vert(K) → vert(L) such that whenever σ = {v0, . . . , vn} is a
simplex of K, the image s(σ) = {σ(v0), . . . , σ(vn)} is a simplex of L. [3]

(b) We say that s and t are directly contiguous if whenever σ = {v0, . . . , vn} is a simplex of K, the set

s(σ) ∪ t(σ) = {s(v0), . . . , s(vn), t(v0), . . . , t(vn)}

is a simplex of L. [3] [Bookwork]

(c) Suppose that s and t are directly contiguous. Consider a point x ∈ |K|, so x ∈ |σ| for some σ ∈ simp(K). Put
τ = s(σ)∪t(σ), which is a simplex of L because of the contiguity condition. Both |s|(x) and |t|(x) lie in |τ |, so the
whole line segment from |s|(x) to |t|(x) lies in |τ |. We can therefore define a linear homotopy h : [0, 1]×|K| → |L|
from |s| to |t| by h(r, x) = (1− r)|s|(x) + r |t|(x). [3] [Bookwork]

(d) Suppose again that s and t are directly contiguous. Define u : CnK → Cn+1L by

u⟨v0, . . . , vn⟩ =
n∑

i=0

(−1)i⟨s(v0), . . . , s(vi), t(vi), . . . , t(vn)⟩.[2]

We claim that du+ ud = t# − s# [1]. We will prove this for a generator x = ⟨v0, v1, v2, v3⟩ ∈ C3(K), using the
abbreviated notation i for vi or s(vi), and i for t(vi). We have

u(x) = +00123 −01123 +01223 −01233

du(x) = +0123 −1123 +1223 −1233

−0123 +0123 −0223 +0233

+0023 −0123 +0123 −0133

−0013 +0113 −0123 +0123

+0012 −0112 +0122 −0123

d(x) = +123 −023 +013 −012

ud(x) = +1123 −1223 +1233

−0023 +0223 −0233

+0013 −0113 +0133

−0012 +0112 −0122

Most terms cancel in the indicated groups, leaving du(x) + ud(x) = 0123 − 0123. In the original notation, this
says that

(du+ ud)(x) = ⟨t(v0), t(v1), t(v2), t(v3)⟩ − ⟨s(v0), s(v1), s(v2), s(v3)⟩ = t#(x)− s#(x),

which means that u is a chain homotopy between s# and t# [5]. As these maps are chain-homotopic, they
induce the same homomorphism between homology groups. [1][Bookwork]

(f) The injective simplicial maps from ∂∆2 to itself are just given by permuting the three vertices, so there are 3! = 6
such maps [2]. Suppose that f and g are permutations that are contiguous. Then the set f({0, 1}) ∪ g({0, 1})
must be a simplex, so it has size at most two. However, f({0, 1}) and g({0, 1}) both have size two already, so this
is only possible if f({0, 1}) = g({0, 1}). As f and g are permutations, it follows that f(2) = g(2). By applying
the same logic to {0, 2} and then {1, 2}, we also see that f(1) = g(1) and f(0) = g(0). Thus, we actually have
f = g [5]. [Unseen]

(45) 2018-19 Q5: Consider a simplicial complex K with subcomplexes L and M such that K = L ∪M . Use the
following notation for the inclusion maps:

L ∩M L

M K.

i

j f

g

(a) State the Seifert-van Kampen Theorem (in a form applicable to simplicial complexes and subcomplexes as above).
(4 marks)
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(b) State the Mayer-Vietoris Theorem. (5 marks)

(c) State a theorem about the relationship between π1 and H1. (3 marks)

(d) Suppose that |L|, |M | and |L∩M | are all homotopy equivalent to S1. Suppose that the maps i and j both have
degree two.

(1) Find a presentation for π1(|K|). (3 marks)

(2) Find H∗(K). In particular, you should express each nonzero group as a direct sum of terms like Z or Z/n.
(10 marks)

Solution:

(a) Suppose that |L ∩M | is connected and that we have presentations

π1(|L|) = ⟨x1, . . . , xp | u1 = · · · = uk = 1⟩
π1(|M |) = ⟨y1, . . . , yq | v1 = · · · = vl = 1⟩

π1(|L ∩M |) = ⟨z1, . . . , zr | w1 = · · · = wm = 1⟩.

Then we have a presentation of π1(|K|) with generators x1, . . . , xp, y1, . . . , yq and relations u1 = · · · = ur = v1 =
· · · = vl = 1 and i∗(zt) = j∗(zt) for all t. [4] [Bookwork]

(b) There is a natural map δ : Hn(K) = Hn(L ∪M) → Hn−1(L ∩M) such that the resulting sequence

Hn+1(L ∪M)
δ−→ Hn(L ∩M)

[
i∗
−j∗

]
−−−−→ Hn(L)⊕Hn(M)

[ f∗ g∗ ]−−−−−→ Hn(L ∪M)
δ−→ Hn−1(L ∩M)

is exact for all n [5]. [Bookwork]

(c) If |K| is connected [1], then H1(K) is naturally isomorphic to the abelianisation of π1(|K|) [2]. [Bookwork]

(d) (1) As |L ∩M | ≃ S1, we can choose a generator z for π1(|L ∩M |). As i has degree two we see that there is a
generator x of π1(|L|) with i∗(z) = x2. As j has degree two we see that there is a generator y of π1(|M |)
with j∗(z) = y2. The Seifert-van Kampen Theorem now gives π1(|K|) = ⟨x, y | x2 = y2⟩. [3] [Similar
examples have been seen.]

(2) We have a Mayer-Vietoris sequence as follows:

H2(L ∩M) H2(L)⊕H2(M) H2(K)

H1(L ∩M) H1(L)⊕H1(M) H1(K)

H0(L ∩M) H0(L)⊕H0(M) H0(K).[3]

[
i∗
−j∗

]
[ f∗ g∗ ]

[
i∗
−j∗

]
[ f∗ g∗ ]

[
i∗
−j∗

]
[ f∗ g∗ ]

The spaces |L∩M |, |L| and |M | are all homotopy equivalent to S1 and so have H0 = H1 = Z and all other
homology groups are zero. We also know that i∗ and j∗ act as the identity on H0, and as multiplication by
2 on H1. The sequence therefore has the following form:

0 0 H2(K)

Z Z⊕ Z H1(K)

Z Z⊕ Z H0(K).[3]

0 0

[
2
−2

]
[ f∗ g∗ ]

[
1
−1

]
[ f∗ g∗ ]
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From this we can read off that H2(K) = 0 and H0(K) = Z [1]and that H1(K) = Z2/Z.(2,−2) [1]. If
we use the basis {(1, 0), (1,−1)} for Z2 we get H1(K) ≃ Z ⊕ Z/2 [1]. By extending the sequence further
upwards, it is also clear that Hn(K) = 0 for n > 2 [1]. [Similar examples have been seen.]

(46) 2019-20 Q1: Consider the following spaces:

X0 X1 X2

X3 X4 X5

X6 = (S1 × S1) \ {(1, 1)} X7 = GL2(R) = {A ∈M2(R) | det(A) ̸= 0}
X8 = R X9 = {(u, v) ∈ C2 | 1 ≤ |u| ≤ 2 ≤ |v| ≤ 3}.

(Here X3 and X4 are closed orientable surfaces, and X5 is the union of X4 with a line segment with one endpoint
lying on X4. Everything else should be clear.)

(a) These 10 spaces can be grouped into 5 pairs {Xi, Xj} such that Xi is homotopy equivalent to Xj . Find these
pairs, and justify your answers. In each case you should prove that Xi is homotopy equivalent to Xj , and also
that it is not homotopy equivalent to any of the other spaces. (25 marks)

(b) For each pair {Xi, Xj} as in (a), prove that Xi is not homeomorphic to Xj . (In one case you may need to appeal
to some geometric intuition, but you should be able to give a more formal proof in the other four cases.) (15
marks)

Solution:

(a) This will need to be marked as a whole. There will be 5 marks for correct identification of the
pairs, 10 marks for justifying why they are homotopy equivalent, and a further 10 marks for
explaining why there are no further equivalences. [15]

– X0 consists of two circles meeting at a single point and so is homeomorphic to the figure eight. This is in
turn homotopy equivalent to the punctured torus X6, as explained in Example 15.26 and the associated
interactive demonstration.

– X1 is homeomorphic to the union of two disjoint circles. On the other hand, Example 4.9 shows that the
space X7 = GL2(R) is homeomorphic to R3 × S1 × {1,−1}, so it is homotopy equivalent to S1 × {1,−1},
which is again a union of two disjoint circles. Thus, X1 is homotopy equivalent to X7.

– X2 and X8 are both contractible and so are homotopy equivalent to each other.

– X3 is just the torus S1 × S1. There is a homeomorphism

p : [0, 1]2 ×X3 = [0, 1]2 × S1 × S1 → X9

given by p(s, t, u, v) = ((1 + s)u, (2 + t)v), and [0, 1]2 is contractible, so X3 is homotopy equivalent to X9.
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– The spaces X4 and X5 are homotopy equivalent. Indeed, the extra interval in X5 can be parametrised as
{u(t) | 0 ≤ t ≤ 1}, with u(0) being the end lying in X4. We have an evident inclusion i : X4 → X5 and
a retraction r : X5 → X4 given by r(u(t)) = u(0) and r(x) = x for all x ∈ X4. Then r ◦ i is equal to the
identity. We can also define h : [0, 1]×X5 → X5 by h(s, u(t)) = u(st) and h(s, x) = x for all x ∈ X4. This
gives a homotopy i ◦ r ≃ id, so we have a homotopy equivalence as claimed.

If two spaces are homotopy equivalent, then they have isomorphic homology. We can tabulate the homology
groups of the Xi as follows:

H0 H1 H2

X0, X6 Z Z2 0

X1, X7 Z2 Z2 0

X2, X8 Z 0 0

X3, X9 Z Z2 Z
X4, X5 Z Z4 Z

As all the lines are different, there are no additional homotopy equivalences [10]. There are also valid
approaches using π0 and π1. They are less clear and efficient, but can also be given full marks if
done correctly.

(b) The space X0 is compact but X6 is not, so X0 is not homeomorphic to X6 [3]. Similarly X1 is compact but X7

is not [3], and X2 is compact but X8 is not [3]. Next, X5 can be disconnected by removing a single point, but
X4 cannot, so X4 and X5 are not homeomorphic [3]. Finally X3 and X9 are not homeomorphic because X3 is
2-dimensional and X9 is 4-dimensional [3]. (This is not quite a complete proof, because we have not given a
formal definition of dimensionality. The Invariance of Domain Theorem does most of what we need, but a bit
more discussion would be required.)

(47) 2019-20 Q2:

(a) Let A and B be finite abelian groups such that |A| and |B| are coprime.

(i) What can you say about homomorphisms from A to B? (10 marks)

(ii) Now suppose we have a short exact sequence A→ U → B of abelian groups. By considering the classification
of finite abelian groups, or otherwise, what can you say about U? (15 marks)

(b) Let X be a topological space, with open subspaces U and V such that X = U ∪ V . Suppose that U , V , X
and U ∩ V are all path-connected, and that for all k > 0 we have Hk(U ∩ V ) = Z/2k and Hk(U) = Z/3k and
Hk(V ) = Z/5k. Calculate H∗(X). (15 marks)

Solution:

(a) (i) The only homomorphism from A to B is the zero homomorphism [3]. Indeed, if ϕ : A → B is a homo-
morphism then ϕ(A) is a subgroup of B and so has order dividing |B|. On the other hand, the First
Isomorphism Theorem says that |ϕ(A)| = |A|/| ker(ϕ)|, and this is a divisor of |A|. As |A| and |B| are
coprime, we conclude that |ϕ(A)| = 1, so ϕ(A) = {0}, so ϕ = 0. [7]

(ii) If A
f−→ U

g−→ B is a short exact sequence, we claim that U ≃ A⊕B [3]. Indeed, we have |U | = |A|.|B|. We
can write U as a direct sum of groups of the form Z/pk. As |U | = |A|.|B| with |A| and |B| coprime, we see
that p must divide |A| or |B| but not both. Let A′ be the sum of all the factors where p divides |A|, and let
B′ be the sum of all the factors where p divides |B|, so U = A′ ⊕B′. The homomorphism f : A→ A′ ⊕B′

can be decomposed into a pair of homomorphisms f0 : A → A′ and f1 : A → B′. The homomorphism
g : A′ ⊕ B′ → B can be decomposed into a pair of homomorphisms g0 : A

′ → B and g1 : B
′ → B. Here f1

and g0 are zero by part (i). As f1 = 0 we have img(f) ≤ A′, and as g0 = 0 we have ker(g) ≥ A′. As the
sequence is exact we have img(f) = ker(g), so this group must be equal to A′. Also, as f is injective we
see that f0 is injective, and as g is surjective we see that g1 is surjective. It now follows that f0 and g1 are
isomorphisms, and thus that U = A′ ⊕B;≃ A⊕B as claimed. [12]

(b) The connectivity assumptions mean that H0(X) = Z and that we have a truncated Mayer-Vietoris sequence [2].
For k > 1 this takes the form

Z/2k e−→ Z/3k ⊕ Z/5k f−→ Hk(X)
g−→ Z/2k−1 e−→ Z/3k−1 ⊕ Z/5k−1.[3]
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The maps marked e are zero by (a)(i) [2], so f is injective and g is surjective by exactness [4], which means that
the middle three terms form a short exact sequence. Thus, (a)(ii) tells us that

Hk(X) = Z/3k ⊕ Z/5k ⊕ Z/2k−1 = Z/(30k/2)[4]

(where we have used the Chinese Remainder Theorem to tidy up the final answer a little). This formula remains
valid for k = 1, although the argument is a tiny bit different.

(48) 2020-21 Q2: Fix n ≥ 2. Define an equivalence relation on the disc B2 = {z ∈ C | |z| ≤ 1} by z0 ∼ z1 iff z0 = z1,
or (|z0| = |z1| = 1 and zn0 = zn1 ). Put X = B2/ ∼ and

Y = {(u, v) ∈ C2 | |u| ≤ 1, vn = (1− |u|)nu}.

Note that when n = 2 we just have X = RP 2; this should guide your thinking about the general case.

(a) Show carefully that there is a homeomorphism f : X → Y such that f([z]) = (zn, (1 − |z|n)z) for all z ∈ B2.
You should prove in particular that f is well-defined, injective and surjective, and that both f and f−1 are
continuous. You may assume that polynomials and the absolute value function are continuous, but beyond that
you should not assume any properties of the given formula without proof. (13 marks)

(b) For the boundary S1 ⊂ B2, explain briefly why S1/ ∼ is homeomorphic to S1 again. (3 marks)

(c) By adapting the method used for RP 2, calculate H∗(X). (14 marks)

Solution:

(a) Suppose that z ∈ B2 (so |z| ≤ 1) and put u = zn and v = (1− |z|n)z = (1− |u|)z. We then have |u| = |z|n ≤ 1
and vn = (1 − |u|)nzn = (1 − |u|)nu, so (u, v) ∈ Y [1]. We can thus define a continuous map f0 : B

2 → Y by
f0(z) = (zn, (1 − |z|n)z). Now suppose we have z0, z1 ∈ B2 with z0 ∼ z1; we claim that f(z0) = f(z1) [1]. If
z0 = z1 then this is clear. Otherwise, we must have |z0| = |z1| = 1 (which means that f0(zi) = (zni , 0)) and
zn0 = zn1 , so f0(z0) = f0(z1) as required [1]. By the universal property of quotients (Corollary 8.20) there is a
unique continuous map f : X → Y such that f([z]) = f0(z) for all z [1].

Now suppose we have (u, v) ∈ Y , so vn = (1−|u|)nu. If |u| ≠ 1 then 0 < 1−|u| ≤ 1 and we put z = v/(1−|u|) ∈ C.
The relation vn = (1 − |u|)nu becomes zn = u. It follows that |z|n = |u| < 1 so |z| < 1 so z ∈ B2, and we find
that f([z]) = f0(z) = u. On the other hand, if |u| = 1 then the relation vn = (1 − |u|)nu gives v = 0. We can
let z be any one of the n’th roots of u and we get |z| = 1 and f([z]) = f0(z) = (u, 0). This shows that f is
surjective. [3]

Now suppose we have z0, z1 ∈ B2 with f([z0]) = f([z1]), or in other words zn0 = zn1 and (1 − |z0|n)z0 =
(1− |z1|n)z1. Put r = |z0| ∈ [0, 1]. Using zn0 = zn1 we get rn = |z1|n so |z1| is also equal to r. Thus, the equation
(1−|z0|n)z0 = (1−|z1|n)z1 becomes (1−rn)(z0−z1) = 0. If r < 1 this gives z0 = z1, so certainly [z0] = [z1]. On
the other hand, if r = 1 then the relation zn0 = zn1 gives z0 ∼ z1 (from the definition of the equivalence relation)
and so [z0] = [z1]. Either way, we have [z0] = [z1], so we conclude that f is injective. [3]

Note also that X is a quotient of the compact space B2, so it is again compact. Moreover, Y is a metric space and
so is Hausdorff. As f is a continuous bijection from a compact space to a Hausdorff space, it is a homeomorphism
by Proposition 9.28. [3]

(b) For z ∈ S1 we have (1−|z|n)z = 0, so f restricts to give a homeomorphism S1/ ∼→ S1×{0} ≃ S1. Alternatively,
on S1 the equivalence relation is just z0 ∼ z1 ⇐⇒ zn0 = zn1 , so the map [z] 7→ zn gives the required
homeomorphism. [3]

(c) Put Ũ = B2 \ {0} and Ṽ = B2 \ S1 = OB2. Let U and V be the images of Ũ and Ṽ in X. These are open sets
which cover X, so they give a Mayer-Vietoris sequence. [3]

The equivalence relation does not do anything to Ṽ , so V is just an open disc, which is contractible. Thus, the
only nontrivial homology group is H0(V ) = Z [2]. Next, we can deform Ũ radially outward onto S1, and this
is compatible with the equivalence relation, so U is homotopy equivalent to S1/ ∼, which is homeomorphic to
S1 by (b). Thus, we have H0(U) = H1(U) = Z and all other homology groups are zero [2]. Also, U ∩ V is an
annulus so H0(U ∩ V ) = H1(U ∩ V ) = Z and again all other homology groups are zero [1]. As U , V and U ∩ V
are connected we can use the truncated version of the Mayer-Vietoris sequence:

H2(U)⊕H2(V ) → H2(X) → H1(U ∩ V ) → H1(U)⊕H1(V ) → H1(X) → H1(U ∩ V ) → 0.[2]
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Using the above determination of the homology groups, this becomes

0 → H2(X) → Z i∗−→ Z −→ H1(X) → 0.[1]

The standard circle in the annulus U ∩ V gets wrapped n times around the boundary circle S1/ ∼, so i∗ is
multiplication by n, which is injective [1]. It follows that H2(X) = 0 and H1(X) = Z/n. As X is connected, we
have H0(X) = Z [1]. For k > 2 is is clear from the Mayer-Vietoris sequence that Hk(X) = 0. [1]

Feedback:

(a) Very few people checked that (zn, (1−|z|n)z) ∈ Y , despite my ranting about this sort of thing in connection with
Problem Sheet 10. Very few people distinguished clearly between f0 and f ; in particular, many people claimed
to be proving that f is continuous, but actually proved that f0 is continuous. Attempts to prove that f is
well-defined and injective were of variable quality. For surjectivity, many people claimed that f([u1/n]) = (u, v)
for all (u, v) ∈ Y . Here everything is complex so we usually have n different choices of z with zn = u, i.e. n
different possible values of u1/n. If you choose the right one then you will get f([z]) = (u, v), but if you choose
the wrong one then you will instead get f([z]) = (u, e2πik/nv) for some k ̸= 0. Thus, a more detailed argument
needs to be given. These issues also mean that f−1 is not given by a simple and well-defined formula, so the
only reasonable way to prove that f−1 is continuous is to use Proposition 9.28. This is all similar to Examples
8.24, 8.26, 9.29 and 9.30 in the notes.

(b) Most people gave answers that were along the right lines.

(c) Most people who made a serious attempt at this got it roughly right; but some people gave up.
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