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MAS61015 Algebraic Topology 2 hours 30 minutes

Answer four questions. You are advised not to answer more than four questions: if you do,
only your best four will be counted.
This copy also contains solutions.

No auxiliary material is provided.
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1 (a) Define what it means to say that two spaces are homeomorphic. (3 marks)

(b) Define what it means to say that two spaces are homotopy equivalent.
(4 marks)

(c) One of the conditions homeomorphic and homotopy equivalent implies the
other. Prove this, and give a counterexample for the converse, with brief jus-
tification. (6 marks)

(d) Consider the following spaces:

X0 = {(w, x , y, z) ∈ R4 | w2 + x2 + y2 + z2 = 1}

X1 = {(w, x , y, z) ∈ R4 | w2 + x2 = y2 + z2 = 1}

X2 = {(w, x , y, z) ∈ R4 | w2 = x2 = y2 = z2 = 1}

X3 = {(w, x , y, z) ∈ R4 | w2 + x2 + y2 + z2 ≤ 1}

X4 = {(w, x , y, z) ∈ R4 | w2 + x2 + y2 + z2 ≥ 1}.

(i) For which pairs (i, j) is X i homotopy equivalent to X j? Justify your
answer briefly. In cases where X i is homotopy equivalent to X j you
should explain why, and in cases where X i is not homotopy equivalent
to X j, you should explain that as well. (8 marks)

(ii) For which pairs (i, j) is X i homeomorphic to X j? Justify your answer
briefly. In cases where X i is homeomorphic to X j you should explain
why, and in cases where X i is not homeomorphic to X j, you should
explain that as well. (4 marks)

Solution.

(a) Bookwork Let X and Y be topological spaces. A homeomorphism from X to Y is
a bijective map f : X → Y such that both f and the inverse map f −1 : Y → X are
continuous [2] . We say that X and Y are homeomorphic if there exists such a home-
omorphism [1] .

(b) Bookwork Again let X and Y be topological spaces. Given continuous maps
f0, f1 : X → Y , a homotopy from f0 to f1 is a continuous map h: [0, 1]× X → Y with
h(0, x) = f0(x) and h(1, x) = f1(x) for all x ∈ X . We say that f0 and f1 are homotopic
if there exists such a homotopy [2] . We say that X and Y are homotopy equivalent if
there exist maps f : X → Y and g : Y → X such that g f is homotopic to idX and f g
is homotopic to idY [2] .

(c) Bookwork Claim: if spaces X and Y are homeomorphic, then they are homotopy
equivalent [1] . Indeed, if X and Y are homeomorphic, then there exists a homeo-
morphism f : X → Y [1] . The map g = f −1 : Y → X then satisfies g f = idX , so g f
is homotopic to idX by a constant homotopy [1] . Similarly f g is homotopic to idY
by a constant homotopy, so f and g give a homotopy equivalence from X to Y [1] .
However, the spaces {0} and R are homotopy equivalent but not homeomorphic [1]
. To give the details: we can define maps

R
f
−→ {0}

g
−→ R

h
←− [0,1]×R
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1 (continued)

by f (x) = 0 and g(0) = 0 and h(t, x) = t x . Then g f = id and h gives a homotopy
from f g to id, so we have a homotopy equivalence; but clearly no map {0} → R can
be bijective, so {0} is not homeomorphic to R. [1] (Much less than this is required
for a mark)

(d) (i) Similar examples have been seen, but this is a bit harder than most of
them.
The spaces X0 and X4 are homotopy equivalent, but there are no other coin-
cidences. Indeed:

* X0 is the sphere S3 with homology (Z, 0, 0,Z, 0, . . . )

* X1 is the torus S1 × S1 with homology (Z,Z2,Z, 0, . . . )

* X2 is a finite discrete set of size 16 with homology (Z16, 0, 0, . . . )

* X3 is the closed ball B4 and so is contractible, with contracting homo-
topy h: [0,1]× X4→ X4 given by h(t, x) = t x . Thus, the homology is
(Z, 0, 0, . . . ).

* We have an inclusion i : X0 → X4 given by i(u) = u, and a retraction
r : X4 → X0 given by r(v) = v/∥v∥. These satisfy r ◦ i = idX0

. Next,
we can define h: [0,1]× X4→ R4 by

h(t, v) = ((1− t) + t∥v∥−1)v.

This has ∥h(t, v)∥= (1− t)∥v∥+ t and ∥v∥ ≥ 1 as v ∈ X4 so ∥h(t, v)|=
1 + (1 − t)(∥v∥ − 1) ≥ 1. Thus, we actually have a map h: [0, 1] ×
X4→ X4 which is a homotopy from idX4

to i ◦ r. Thus, X0 and X4 are
homotopy equivalent as claimed.

As homotopy equivalent spaces have isomorphic homology, it follows that
there are no further coincidences. [8]

(ii) Similar examples have been seen.
None of the given spaces is homeomorphic to any of the others. Indeed, home-
omorphism would imply homotopy equivalence (by part (c)), and the only
pair that are homotopy equivalent are X0 and X4, so the only question is
whether X0 is actually homeomorphic to X4. The space X0 is bounded and
closed in R4 and so is compact. The space X4 is unbounded in R4 and so is
not compact and so cannot be homeomorphic to X0. [4]
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2 (a) Let X and Y be topological spaces, and let f , g : X → Y be continuous maps.
We might wish to define h(t, x) = (1− t) f (x)+ t g(x). Under what conditions
is this a valid definition of a homotopy from f to g? (2 marks)

(b) Let X be a topological space. Define the equivalence relation∼ on X such that
π0(X ) = X/∼, and prove that it is indeed an equivalence relation.

(8 marks)

(c) You can assume that any continuous map f : X → Y induces a well-defined
map f∗ : π0(X ) → π0(Y ) with f∗([x]) = [ f (x)] for all x ∈ X . Show that
if f , g : X → Y are continuous maps and f is homotopic to g, then f∗ =
g∗ : π0(X )→ π0(Y ). (5 marks)

(d) Give an example of spaces X and Y , and continuous maps f , g : X → Y , where
f∗ = g∗ : π0(X )→ π0(Y ) but f and g are not homotopic. (5 marks)

(e) Put X = {z ∈ C | |z| ̸∈ Z} and Y = S2 × S3. Show that there do not exist maps

X
f
−→ Y

g
−→ X such that g ◦ f is homotopic to the identity. (5 marks)

Solution.

(a) This point has frequently been ranted about For this definition to be valid:

(a) Y must be a subset of RN or some other vector space, so that the expression
(1− t) f (x) + t g(x) is meaningful.

(b) For each x ∈ X , the line segment from f (x) to g(x)must be wholly contained
in Y . [2]

(b) Bookwork Write x ∼ y iff there is a path in X from x to y , or in other words a
continuous map u: I −→ X such that u(0) = x and u(1) = y [2] . I claim that this is
an equivalence relation. Indeed, given x ∈ X we can define cx : I −→ X by cx(t) = x
for all t. This gives a path from x to itself, showing that ∼ is reflexive [1] . Next,
suppose that x ∼ y , so there exists a path u from x to y in X . We can then define
u(t) = u(1 − t) to get a path from y to x , showing that y ∼ x , showing that ∼ is
symmetric [2] . Finally, suppose we have a path u from x to y , and a path v from y
to z. We then define a map w: I −→ X by

w(t) =

¨

u(2t) if 0≤ t ≤ 1/2

v(2t − 1) if 1/2≤ t ≤ 1.[2]

This is well-defined and continuous because u(1) = y = v(0). We have w(0) = u(0) =
x and w(1) = v(1) = z, so w gives a path from x to z; this proves that ∼ is transitive
[1] .

(c) Bookwork Let f , g : X −→ Y be continuous maps which are homotopic. We can then
choose a continuous map h: [0,1]× X → Y as in (b). For each x ∈ X we then have
f∗([x]) = [ f (x)] and g∗([x]) = [g(x)] in π0(Y ). We can define a path vx : [0,1]→ Y
by vx(t) = h(t, x). This has vx(0) = f (x) and vx(1) = g(x), so f (x) ∼ g(x), so
[ f (x)] = [g(x)], i.e. f∗([x]) = g∗([x]). This proves that f∗ = g∗ as required [5] .

(d) Unseen Define f , g : S1→ S1 by f (z) = z and g(z) = 1. As π0(S1) is a set of size one,
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2 (continued)
it is automatic that f∗ = g∗ : π0(S1)→ π0(S1). However, on the group H1(S1) = Zu1
we have f∗(u1) = u1 and g∗(u1) = 0 so f and g cannot be homotopic [5] .

(e) Similar examples seen Suppose (for a contradiction) that we have maps X
f
−→ Y

g
−→ X

as described. As g ◦ f is homotopic to the identity, we see that the composite

π0(X )
f∗−→ π0(Y )

g∗−→ π0(X )

is the same as (g ◦ f )∗ and so is the identity. This in particular means that f∗ is
injective. However, the space Y is path connected and X is not, so |π0(X )| > 1 and
|π0(Y )|= 1, so it is impossible for f∗ to be injective [5] .

3 (a) Define what is meant by a chain complex, a chain map, and the homology of a
chain complex. (6 marks)

(b) Let f : U∗→ V∗ be a chain map between chain complexes. Define the resulting
map between homology groups, and prove that what you have written is a
valid, unambiguous definition. (6 marks)

(c) Let A and B be finite abelian groups such that |A| and |B| are coprime, and let
α: A→ B be a homomorphism. By considering |ker(α)| and | img(α)| show
that α= 0. (5 marks)

(d) Suppose we have a short exact sequence U∗
i
−→ V∗

p
−→ W∗ of chain complexes

and chain maps, such that

– Uk = 0 when k is odd, and Uk = Z/100 when k is even.

– Wk = 0 when k is even, and Wk = Z/99 when k is odd.

Find the homology groups of U∗, V∗ and W∗. (8 marks)

Solution.

(a) Bookwork

(1) A chain complex is a sequence of abelian groups Un (for n ∈ Z) together with
homomorphisms dn : Un→ Un−1 such that dn ◦ dn+1 = 0 for all n. [2]

(2) Let U∗ and V∗ be chain complexes. A chain map from U∗ to V∗ is a sequence
of homomorphisms fn : Un → Vn such that dn ◦ fn = fn−1 ◦ dn : Un → Vn−1 for
all n. [2]

(3) For a chain complex U∗ we define the homology group Hn(U) to be

Hn(U) = ker(dn : Un→ Un−1)/ img(dn+1 : Un+1→ Un).

(This is meaningful, because the condition dn ◦ dn+1 = 0 ensures that
img(dn+1)≤ ker(dn).) [2]
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3 (continued)

(b) Bookwork Suppose we have a chain maps f : U∗ → V∗. Consider an element a ∈
Hn(U). This can be represented as a = [z] = z + img(dU

n+1) for some z ∈ ker(dU
n ),

so dU
n (z) = 0. As f is a chain map we have dV

n ( f (z)) = f (dU
n (z)) = f (0) = 0, so

f (z) ∈ ker(dV
n ), so we have an element [ f (z)] ∈ Hn(V ) [2] . Any other choice of z has

the form z′ = z+dU
n+1(x) for some x ∈ Un+1, which gives f (z′) = f (z)+ f (dU

n+1(x)) =
f (z) + dV

n+1( f (x)), showing that [ f (z′)] = [ f (z)] in Hn(V ) [2] . We therefore have
a well-defined map f∗ : Hn(U)→ Hn(V ) given by f∗(a) = [ f (z)] for any choice of z
representing a [2] .

(c) Unseen Let A and B be finite abelian groups such that |A| and |B| are coprime, and
let α: A → B be a homomorphism. Then img(α) is a subgroup of B, so | img(α)|
divides |B| [2] . Similarly |ker(α)| divides |A| and | img(α)|= |A|/|ker(α)| by the First
Isomorphism Theorem, so | img(α)| also divides |A| [2] . As |A| and |B| are coprime,
it follows that | img(α)|= 1, so img(α) is the trivial group, so α= 0 [1] .

(e) Partially similar examples have been seen Suppose we have a short exact sequence
U∗→ V∗→W∗ as described. We claim that

Hi(U) =

¨

Z/100 if i is even

0 if i is odd

Hi(V ) =

¨

Z/100 if i is even

Z/99 if i is odd

Hi(W ) =

¨

0 if i is even

Z/99 if i is odd .

Indeed, for each differential di : Ui → Ui−1 either i or i−1 is odd so either Ui or Ui−1
is zero so di = 0. As all differentials are zero we have Hi(U) = Ui which agrees with
the above table. Essentially the same argument gives Hi(W ) = Wi [3] . Next, the
Snake Lemma gives exact sequences

H2k+1U
i∗−→ H2k+1V

p∗−→ H2k+1(W )
δ
−→ H2k(U)

i∗−→ H2kV
p∗−→ H2kW.[2]

After filling in the known groups, this becomes

0 −→ H2k+1V
p∗−→ Z/99

δ
−→ Z/100

i∗−→ H2kV −→ 0.[1]

Part (d) shows that δ = 0. Exactness then implies that the above maps p∗ and i∗ are
isomorphisms, so H∗V is as claimed [2] .
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4 For each of the following, either give an example (with justification) or prove that
no example can exist. You can use results that are proved in the notes provided that
you state them clearly.

(a) A space X where |H1(X )|= 4. (5 marks)

(b) A contractible space X and a continuous map f : X → {0,1} which is not
constant. (5 marks)

(c) A pair of bounded, closed subsets X , Y ⊆ R10 and a continuous map f : X → Y
such that the inverse map f −1 : Y → X exists but is not continuous.

(5 marks)

(d) Spaces X and Y with H1(X )≃ Z and H1(Y )≃ Z2, and maps X
f
−→ Y

g
−→ X such

that g ◦ f is homotopic to the identity. (5 marks)

(e) Spaces X and Y with H1(X )≃ Z2 and H1(Y )≃ Z, and maps X
f
−→ Y

g
−→ X such

that g ◦ f is homotopic to the identity. (5 marks)

Solution. Similar examples have been seen

(a) Take X = RP2⨿RP2. It is a standard calculation that H1(RP2)≃ Z/2 and a standard
fact that H1(Y ⨿ Z) = H1(Y )⊕H1(Z) so H1(X )≃ Z/2⊕Z/2 and |H1(X )|= 4. [5]

(b) This is not possible. Suppose that X is contractible and that f : X → {0, 1} is continu-
ous. Then X is path-connected (by a theorem in the notes), so the image f (X ) is also
path connected (by another theorem in the notes). The only path-connected subsets
of {0,1} are singletons, so f is constant. [5]

(c) This is not possible. As X and Y are assumed to be bounded and closed in R10, they
are both compact and Hausdorff. As f −1 is assumed to exist, the map f must be a
bijection, and it is also assumed to be continuous. A theorem in the notes says that any
continuous bijection from a compact space to a Hausdorff space is a homeomorphism,
so the inverse is continuous. [5]

(d) We can take X = S1 and Y = S1 × S1 and f (x) = (x , x) and g(x , y) = x . Here g ◦ f
is equal to the identity and so is certainly homotopic to the identity. [5]

(e) This is not possible. If we had spaces and maps as specified then we would have
homomorphism

H1(X ) = Z2 f∗−→ H1(Y ) = Z
g∗−→ H1(X ) = Z2

with g∗◦ f∗ = id. This would imply that f∗ : Z2→ Zwas injective, and that g∗ : Z→ Z2

was surjective, but both of these are impossible. [5]
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5 (a) Describe the homology groups H∗(Sn) for all n, without any proofs but with
careful attention to any special cases. (4 marks)

(b) Suppose that n, m≥ 0 and that Rn is homeomorphic to Rm. Prove that n= m.
You should again pay careful attention to any special cases. (6 marks)

(c) State and prove the Brouwer Fixed Point Theorem. Your proof will probably
involve the construction of a certain auxiliary map. You need to give a clear
and correct definition of this map, but you need not prove that it is continuous.
In this part of the question, you can also ignore low-dimensional special cases.

(7 marks)

(d) Suppose that X is homeomorphic to Bn for some n, and that f : X → X is
continuous. Deduce that there is a point x ∈ X with f (x) = x . (4 marks)

(e) Give examples of

(i) A compact path-connected space Y and a continuous map p : Y → Y
with no fixed points. (2 marks)

(ii) A contractible space Z and a continuous map q : Z → Z with no fixed
points. (2 marks)

Solution.

(a) Bookwork For n = 0 we have H0(S0) ≃ Z2 and Hi(S0) = 0 for i ̸= 0 [2] . For n > 0
we have Hi(Sn)≃ Z for i ∈ {0, n} and Hi(Sn) = 0 for i ̸∈ {0, n} [2] .

(b) Bookwork Suppose we have a homeomorphism f : Rn → Rm. We can then define
g : Rn→ Rm by g(x) = f (x)− f (0), and note that this is again a homeomorphism with
g−1(y) = f −1(y + f (0)). We have g(0) = 0 so g restricts to give a homeomorphism
Rn \ {0} → Rm \ {0} [1] .

If n = 0 then Rn \ {0} is empty so we have a homeomorphism g : ∅ → Rm \ {0} so
Rm \ {0} is empty so m = 0 = n. By applying the same logic to g−1 we see that if
m = 0 then n = 0. We can therefore assume that n, m > 0 for the rest of the proof
[2] .

It is now standard that Rn \ {0} and Rm \ {0} are homotopy equivalent to Sn−1 and
Sm−1, so we deduce that Sn−1 is homotopy equivalent to Sm−1 [1] , so Hk(Sn−1) ≃
Hk(Sm−1) for all k [1] . The largest k where Hk(Sn−1) ̸= 0 is n− 1, and the largest k
where Hk(Sm−1) ̸= 0 is m− 1, so we must have n− 1= m− 1 and so n= m [1] .

(c) Bookwork The Brouwer Fixed Point Theorem states that if f : Bn → Bn is continu-
ous then there exists x ∈ Bn with f (x) = x [2] . To prove this, we suppose (for a
contradiction) that we have a continuous map f : Bn → Bn with f (x) ̸= x for all x
[1] . For each x ∈ Bn we can then draw a line segment from f (x) to x and extend
it until it meets the boundary Sn−1 at a point r(x) ∈ Sn−1 say. This defines a map
r : Bn→ Sn−1, and one can check that this is continuous [2] . It is clear by construc-
tion that if x itself lies in Sn−1 then r(x) = x . In other words, if we let i : Sn−1→ Bn

denote the inclusion, we have r ◦ i = id [1] . This means that the composite

Z= Hn−1(S
n−1)

i∗−→ 0= Hn−1(B
n)

r∗−→ Hn−1(S
n−1) = Z
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5 (continued)

is the identity, which is clearly impossible. (This needs minor modification for the
cases n = 0 and n = 1, but we will not worry about that.) Thus, no such map f can
exist [1] .

(d) Unseen Suppose we have a homeomorphism p : Bn → X . Given a continuous map
f : X → X , we have a continuous map g = p−1 f p : Bn → Bn. By the Brouwer Fixed
Point Theorem, there is a point u ∈ Bn with g(u) = u, or equivalently p−1( f (p(u))) =
u, or equivalently f (p(u)) = p(u). Thus, the point x = p(u) ∈ X has f (x) = x as
required. [4]

(e) Seen

(i) The space Y = S1 is compact and path connected, and the map p : S1 → S1

given by p(z) = −z has no fixed points. [2]

(ii) The space Z = R is contractible, and the map q : R→ R given by q(t) = t + 1
has no fixed points. [2]

End of Question Paper

Total question marks: 125
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