
Algebraic Topology

(1)

(a) What does it mean to say that a topological space X is Hausdorff ?
(If your definition relies on any other concepts, then you should define them.) (3 marks)

(b) What does it mean to say that a topological space X is compact?
(If your definition relies on any other concepts, then you should define them.) (3 marks)

(c) Put X = {(x, y, z) ∈ R3 : x4+ y4+ z4 = 1}. Prove that X is compact. You may use general theorems provided
that you state them precisely. (5 marks)

(d) Put Y = {(x, y, z) ∈ R3 : x4 + y4 + z4 < 1}. Prove that Y is not compact. Here you should argue directly from
the definitions and not use any theorems. (5 marks)

(e) Let Y and Z be two compact subspaces of a topological space X. Prove that Y ∪Z is also compact. (4 marks)

(f) Let Y and Z be topological spaces such that Z ̸= ∅ and Y × Z is compact. Prove that Y is compact. You may
use standard results so long as you state them clearly and verify carefully that they are applicable. (5 marks)

Solution:

(a) Bookwork Let X be a topological space. Given a, b ∈ X with a ̸= b, a Hausdorff separation for (a, b) is a pair
of open sets U, V ⊆ X with a ∈ U and b ∈ V and U ∩ V = ∅[2]. We say that X is Hausdorff if every pair of
distinct points has a Hausdorff separation [1].

(b) Bookwork Let X be a topological space. An open cover of X is a family (Ui)i∈I of open sets whose union is
all of X [1]. Given such a cover, a finite subcover is a subfamily (Ui)i∈J where J ⊆ I is finite and the union is
still all of X [1]. We say that X is compact if every open cover has a finite subcover [1].

(c) Similar examples seen If (x, y, z) ∈ X then x4 ≤ x4 + y4 + z4 = 1 so |x| ≤ 1. Similarly, we see that |y| ≤ 1
and |z| ≤ 1, which implies that X is bounded [2]. Also, we can define f : R4 → R by f(x, y, z) = x4 + y4 + z4.
This is continuous (because it is polynomial) and {1} is closed in R so the set X = f−1{1} is closed in R4 [2].
Any bounded closed subset of Rn is compact, so we deduce that X is compact as claimed [1].

(d) Similar examples seen For n > 0 put Un = {(x, y, z) ∈ R3 | x4+ y4+ z4 < 1−n−1}, so these sets are form an
open cover of Y [2]. However, Un is not all of Y , because the point ((1− 1/(n+ 1))1/4, 0, 0) lies in Y \ Un [1].
If Y was compact then we would have a finite subcover, say Y = Un1 ∪ · · · ∪ Unp and this would give Y = Un

where n = max(n1, . . . , np), which is a contradiction; so Y is not compact. [2]

(e) Suppose that Y and Z are compact subsets of X; we claim that Y ∪ Z is also compact, To see this, let (Ui)i∈I

be a family of open subsets of X that covers Y ∪ Z; we must show that there is a finite subcover [1]. As
the family covers Y ∪ Z, it certainly covers Y , and Y is compact, so we can choose indices i1, . . . , ip with
Y ⊆ Ui1 ∪ · · · ∪ Uip [1]. Similarly, we can choose indices ip+1, . . . , ip+q such that Z ⊆ Uip+1 ∪ · · · ∪ Uip+q . It
follows that Y ∪ Z ⊆ Ui1 ∪ · · · ∪ Uip+q , so we have the required finite subcover [2].

(f) Let Y and Z be topological spaces such that Z ̸= ∅ (so we can choose z0 ∈ Z). Suppose that Y ×Z is compact;
we claim that Y is also compact. Because π(y, z0) = y, we see that the projection Y ×Z → Y is surjective (and
also continuous, by the definition of the product topology) [2]. A standard theorem says that if f : A → B is
continuous and surjective and A is compact then B is also compact [2]. Using this, we see that Y is compact as
claimed [1]. (It is also not hard to prove this directly by consideration of open covers.)
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(2)

(a) Let X be a topological space. Define the equivalence relation ∼ on X such that π0(X) = X/ ∼, and prove that
it is indeed an equivalence relation. (8 marks)

(b) Let f : X −→ Y be a continuous map. Define the function f∗ : π0(X) −→ π0(Y ), and check that it is well-defined.
(5 marks)

(c) Suppose that Y is path-connected and X is not. Show that there do not exist continuous maps f : X −→ Y and
g : Y −→ X such that gf is homotopic to the identity map idX . (6 marks)

(d) Put X = {A ∈ M2R | A2 = A} (where M2R is the space of 2× 2 real matrices). What can you say about det(A)
when A ∈ X? Show that X is not path-connected. (6 marks)

Solution:

(a) Bookwork Write x ∼ y iff there is a path in X from x to y [1], or in other words a continuous map u : I −→ X
such that u(0) = x and u(1) = y [1]. I claim that this is an equivalence relation. Indeed, given x ∈ X we can
define cx : I −→ X by cx(t) = x for all t. This gives a path from x to itself, showing that ∼ is reflexive [1]. Next,
suppose that x ∼ y, so there exists a path u from x to y in X. We can then define u(t) = u(1− t) to get a path
from y to x, showing that y ∼ x, showing that ∼ is symmetric [2]. Finally, suppose we have a path u from x to
y, and a path v from y to z. We then define a map w : I −→ X by

w(t) =

{
u(2t) if 0 ≤ t ≤ 1/2

v(2t− 1) if 1/2 ≤ t ≤ 1.[2]

This is well-defined and continuous because u(1) = y = v(0). We have w(0) = u(0) = x and w(1) = v(1) = z, so
w gives a path from x to z; this proves that ∼ is transitive [1].

(b) Bookwork Let f : X −→ Y be a continuous map. We define f∗ : π0(X) −→ π0(Y ) by f∗([x]) = [f(x)] [1](where
[x] is the equivalence class of x under the relation ∼). To see that this is well-defined, suppose that [x0] = [x1] in
π0(X) [1]. This means that x0 ∼ x1, so there is a path u : I −→ X from x0 to x1 [1]. The function f ◦ u : I −→ Y
gives a path from f(x0) to f(x1) in Y [1], so [f(x0)] = [f(x1)] as required [1].

(c) Slightly disguised bookwork Suppose that Y is path-connected, so π0(Y ) has only a single element, which
we will call b. Then f∗ : π0(X) −→ π0(Y ) must be the constant map with value b, so g∗f∗ : π0(X) −→ π0(X) must
be the constant map with value g∗(b). On the other hand, if gf ≃ 1 then g∗f∗ is the identity. Thus, the identity
map of π0(X) is constant, so π0(X) can only have a single element. This means that X is path-connected,
contrary to assumption. [6]

(d) Similar examples seen Put X = {A ∈ M2R | A2 = A}. For A ∈ X we have det(A)2 = det(A) so det(A) ∈
{0, 1} [2]. We can thus regard det as a continuous map X −→ R such that det(A) ̸= 1/2 for all A. The zero
matrix and the identity matrix lie in X, with det(0) = 0 < 1/2 and det(I) = 1 > 1/2. It follows that 0 cannot
be connected to I by a path in X, so X is not path-connected. [4]
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(3)

(a) Define the terms chain map, chain homotopy, chain homotopic and chain homotopy equivalence. (8 marks)

(b) Show that if f, g : U∗ → V∗ are chain maps that are chain homotopic to each other, then f∗ = g∗ : H∗(U) →
H∗(V ). (5 marks)

(c) Consider the chain complex T∗ with Ti = Z2 for all i and di(x, y) = (y, 0) for all (x, y) ∈ Ti. Show that T∗ is
chain homotopy equivalent to the zero complex. (4 marks)

(d) Suppose we have a short exact sequence A∗
i−→ B∗

p−→ C∗ of chain complexes and chain maps. Suppose that for
all k ∈ Z we have Hk(B) = 0. Suppose also that Hk(A) = Z/2k for k ≥ 0 and Hk(A) = 0 for k < 0. Determine
the homology groups of C∗. (3 marks)

(e) Let U∗ be a chain complex in which Uk = 0 for k < 0 and |Uk| = 2k for k ≥ 0 and d2i : U2i → U2i−1 is surjective
for all i. Find the homology groups of U∗. (5 marks)

Solution:

(a) Bookwork

(1) Let U∗ and V∗ be chain complexes. A chain map from U∗ to V∗ is a sequence of homomorphisms fi : Ui → Vi

[1]such that di ◦ fi = fi−1 ◦ di : Ui → Vi−1 for all i ∈ Z (or more briefly, df = fd) [1].

(2) Let f, g : U∗ → V∗ be chain maps [1]. A chain homotopy between f and g is a sequence of homomorphisms
si : Ui → Vi+1 [1]with ds+ sd = g − f [1].

(3) We say that chain maps f, g : U∗ → V∗ are chain homotopic if there exists a chain homotopy as in (2). [1]

(4) A chain map f : U∗ → V∗ is a chain homotopy equivalence if there is a chain map g : V∗ → U∗ [1]such that
g ◦ f : U∗ → U∗ and f ◦ g : V∗ → V∗ are chain homotopic to the corresponding identity maps [1].

(b) Bookwork Suppose we have chain maps f, g : U∗ → V∗ and a chain homotopy s as above. Consider an element
u ∈ Hn(U), so u = [z] for some cycle z ∈ Un with d(z) = 0 [1]. As s is a chain homotopy from f to g, we have
g(z)− f(z) = d(s(z)) + s(d(z)) [1]. As d(z) = 0 this becomes g(z)− f(z) = d(s(z)) ∈ img(d)n = Bn(V ) [1], so
the cosets [g(z)] = g(z) + Bn(V ) and [f(z)] = f(z) + Bn(V ) are the same [1], or in other words g∗(u) = f∗(u)
as required [1].

(c) Unseen Let i : 0 → T∗ and r : T∗ → 0 be the zero maps, so r ◦ i : 0 → 0 is the identity, and i ◦ r = 0: T∗ → T∗.
Define sk : Tk → Tk+1 by sk(x, y) = (0, x) [2]. Then

(ds+ sd)(x, y) = d(0, x) + s(y, 0) = (x, 0) + (0, y) = (x, y),

so ds+ ds = 1 = 1− 0 = 1− i ◦ r, so i ◦ r is chain homotopic to the identity. This means that i and r are chain
homotopy equivalences [2].

(d) Unseen Let A∗
i−→ B∗

p−→ C∗ be as described. The Snake Lemma then gives exact sequences

0 = Hk(B) → Hk(C)
δ−→ Hk−1(A) → Hk−1(B) = 0,

which means that the map δ is an isomorphism [2]. It follows that when k > 0 we have Hk(C) ≃ Hk−1(A) ≃
Z/2k−1 and when k ≤ 0 we have Hk(C) = 0 [1].

(e) Unseen Let U∗ be a chain complex as described. As d2i : U2i → U2i−1 is surjective, we see that B2i−1(U) =
U2i−1. This means that every element u ∈ U2i−1 can be expressed as u = d(u′) for some u′, so d(u) = d2(u′) = 0.
Thus, the homomorphism d2i−1 : U2i−1 → U2i−2 is zero [2]. We now have Z2i−1(U) = B2i−1(U) = U2i−1, so
H2i−1(U) = U2i−1/U2i−1 = 0. We also have B2i(U) = 0 and so H2i(U) ≃ Z2i(U) = ker(d2i : U2i → U2i−1) [1].
As d2i is surjective with |U2i| = 22i and |U2i−1| = 22i−1 we see that | ker(d2i)| = 2 and so ker(d2i) ≃ Z/2. In
summary, we have

Hk(U) =

{
Z/2 if k is even and k > 0

0 otherwise. [2]
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(4)

(a) Let X be a topological space.

(i) Define the groups Cn(X) for all nonnegative integers n. (2 marks)

(ii) Define the homomorphisms ∂n : Cn(X) → Cn−1(X). (3 marks)

(iii) Prove that ∂1 ◦ ∂2 = 0. (3 marks)

(iv) Define the groups Hn(X). (4 marks)

(b) Describe (without proof, but with careful attention to any special cases) the groups Hn(Rk \ {0}) for all n ≥ 0
and all k ≥ 1. (5 marks)

(c) Let u = n1s1 + . . . + nksk be an element of Zm(Sn) (where m > 0), and suppose that there is a point a ∈ Sn

that is not contained in any of the sets s1(∆m), . . . , sk(∆m). Prove that u is a boundary. (You may assume
standard results and calculations from the course so long as you state them carefully.) (8 marks)

Solution:

(a) (i) Bookwork The group Cn(X) is the free Abelian group [1]generated by the set of continuous maps s : ∆n −→
X [1], where ∆n = {t ∈ Rn+1 | ti ≥ 0,

∑
i ti = 1}.

(ii) Bookwork We define continuous maps δ0, . . . , δn : ∆n−1 −→ ∆n by

δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)[1].

For any continuous map s : ∆n −→ X we define

∂n(s) =

n∑
k=0

(−1)k(s ◦ δk) ∈ Cn−1(X)[1].

This can be extended in a unique way to give a homomorphism ∂n : Cn(X) −→ Cn−1(X). [1]

(iii) Bookwork From the definitions, we have

∂1∂2[s] = ∂1([sδ0]− [sδ1] + [sδ2])

= [sδ0δ0]− [sδ0δ1]− [sδ1δ0] + [sδ1δ1] + [sδ2δ0]− [sδ2δ1]

= ([sδ0δ0]− [sδ1δ0])− ([sδ0δ1]− [sδ2δ0]) + ([sδ1δ1]− [sδ2δ1]).[1]

Whenever k ≤ l we have δkδl = δl+1δk; this shows that each of the bracketed terms is zero [1]. Thus ∂2∂1
vanishes on all singular 2-simplices, so it vanishes on all singular 2-chains [1].

(iv) Bookwork We define Zn(X) = ker(∂n : Cn(X) −→ Cn−1(X)) [1]and Bn(X) = img(∂n+1 : Cn+1(X) −→
Cn(X)) [1]. We have ∂n∂n+1 = 0, which implies that Bn(X) ≤ Zn(X) [1], so we can define a quotient
group Hn(X) = Zn(X)/Bn(X) [1].

(b) Bookwork As Rk \ {0} is homotopy equivalent to Sk−1, we have

Hn(Rk \ {0}) =


Z2 if n = 0, k = 1[2]

Z if n = 0, k > 1[1] or n = k − 1 > 0[1]

0 otherwise [1].

(c) Unseen The space Sn \ {a} [2] is homeomorphic to Rn [1]by stereographic projection, and thus is contractible
[1]. This implies that Hm(Sn \ {a}) = 0 for m > 0 [1], so every m-cycle in Sn \ {a} is a boundary [1]. We can
regard u as an m-cycle in Sm \ {a}, so it is a boundary in Sn \ {a} [1]and thus in Sn [1], as required.
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(5) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general theorems
and calculations, provided that you state them clearly.

(a) S3 is contractible. (3 marks)

(b) RP 3 is a homotopy retract of S3. (3 marks)

(c) If a space X is the union of two closed, path-connected subspaces A and B, then X is path-connected. (3
marks)

(d) (R× R) \ (R× {0}) is homotopy equivalent to S1. (4 marks)

(e) (R× R2) \ (R× {0}) is homotopy equivalent to S1. (4 marks)

(f) The space C \ {0, 1} is homeomorphic to C \ {i,−i}. (4 marks)

(g) The space C \ {0, 1} is homotopy equivalent to C \ {0, 1, 2}. (4 marks)

Solution:

(a) False [1]. We have H3(S
3) = Z but H3 of a point is zero, so S3 is not homotopy equivalent to a point [2].

(b) False [1]. If RP 3 was a homotopy retract of S3 then the group H1(RP 3) = Z/2 would be isomorphic to a
subgroup of the group H1(S

3) = 0, which is clearly not true [2].

(c) False [1]. Put X = {0, 1} and A = {0} and B = {1}. Then A and B are closed path connected subsets of X
with X = A ∪B, but X is not path connected [2]. (You would not be required to say this, but I remark that if
X = A∪B where A and B are path connected (not necessarily closed) and A∩B ̸= ∅ then X is path connected.)

(d) False [1]. Write
X = (R× R) \ (R× {0}) = {(x, y) ∈ R2 | y ̸= 0}.

We can then define a map f : X −→ R by f(x, y) = y. This is never zero and it is positive at (0, 1) and negative
at (0,−1), so (0, 1) cannot be joined to (0,−1) by a path in X, so X is not path connected [1]. However, S1 is
path connected [1]and anything homotopy equivalent to a path connected space is again path connected so X
is not homotopy equivalent to S1 [1].

(e) True [1]. Write Y = (R× R2) \ (R× {0}), and define maps as follows

f : Y −→ S1 f(x, y, z) = (y, z)/
√
y2 + z2[1]

g : S1 −→ Y g(y, z) = (0, y, z)[1].

Then fg = 1S1 , and gf is linearly homotopic to 1Y [1].

(f) True [1]. We can define a homeomorphism f : C \ {0, 1} −→ C \ {i,−i} by f(z) = 2iz − i, with inverse f−1(w) =
(w + i)/2i [3].

(g) False [1]. We have H1(C \ {0, 1}) ≃ Z2, and this is not isomorphic to H1(C \ {0, 1, 2}) ≃ Z3, so C \ {0, 1} is not
homotopy equivalent to C \ {0, 1, 2} [3].
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