Algebraic Topology

(1)
(a) What does it mean to say that a topological space X is Hausdorff?
(If your definition relies on any other concepts, then you should define them.) (3 marks)
(b) What does it mean to say that a topological space X is compact?
(If your definition relies on any other concepts, then you should define them.) (3 marks)
(c) Put $X=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{4}+y^{4}+z^{4}=1\right\}$. Prove that X is compact. You may use general theorems provided that you state them precisely. (5 marks)
(d) Put $Y=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{4}+y^{4}+z^{4}<1\right\}$. Prove that Y is not compact. Here you should argue directly from the definitions and not use any theorems. (5 marks)
(e) Let Y and Z be two compact subspaces of a topological space X. Prove that $Y \cup Z$ is also compact. (4 marks)
(f) Let Y and Z be topological spaces such that $Z \neq \emptyset$ and $Y \times Z$ is compact. Prove that Y is compact. You may use standard results so long as you state them clearly and verify carefully that they are applicable. (5 marks)

Solution:

(a) Bookwork Let X be a topological space. Given $a, b \in X$ with $a \neq b$, a Hausdorff separation for (a, b) is a pair of open sets $U, V \subseteq X$ with $a \in U$ and $b \in V$ and $U \cap V=\emptyset[2]$. We say that X is Hausdorff if every pair of distinct points has a Hausdorff separation [1].
(b) Bookwork Let X be a topological space. An open cover of X is a family $\left(U_{i}\right)_{i \in I}$ of open sets whose union is all of X [1]. Given such a cover, a finite subcover is a subfamily $\left(U_{i}\right)_{i \in J}$ where $J \subseteq I$ is finite and the union is still all of X [1]. We say that X is compact if every open cover has a finite subcover [1].
(c) Similar examples seen If $(x, y, z) \in X$ then $x^{4} \leq x^{4}+y^{4}+z^{4}=1$ so $|x| \leq 1$. Similarly, we see that $|y| \leq 1$ and $|z| \leq 1$, which implies that X is bounded [2]. Also, we can define $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ by $f(x, y, z)=x^{4}+y^{4}+z^{4}$. This is continuous (because it is polynomial) and $\{1\}$ is closed in \mathbb{R} so the set $X=f^{-1}\{1\}$ is closed in \mathbb{R}^{4} [2]. Any bounded closed subset of \mathbb{R}^{n} is compact, so we deduce that X is compact as claimed [1].
(d) Similar examples seen For $n>0$ put $U_{n}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{4}+y^{4}+z^{4}<1-n^{-1}\right\}$, so these sets are form an open cover of Y [2]. However, U_{n} is not all of Y, because the point $\left((1-1 /(n+1))^{1 / 4}, 0,0\right)$ lies in $Y \backslash U_{n}$ [1]. If Y was compact then we would have a finite subcover, say $Y=U_{n_{1}} \cup \cdots \cup U_{n_{p}}$ and this would give $Y=U_{n}$ where $n=\max \left(n_{1}, \ldots, n_{p}\right)$, which is a contradiction; so Y is not compact. [2]
(e) Suppose that Y and Z are compact subsets of X; we claim that $Y \cup Z$ is also compact, To see this, let $\left(U_{i}\right)_{i \in I}$ be a family of open subsets of X that covers $Y \cup Z$; we must show that there is a finite subcover [1]. As the family covers $Y \cup Z$, it certainly covers Y, and Y is compact, so we can choose indices i_{1}, \ldots, i_{p} with $Y \subseteq U_{i_{1}} \cup \cdots \cup U_{i_{p}}$ [1]. Similarly, we can choose indices i_{p+1}, \ldots, i_{p+q} such that $Z \subseteq U_{i_{p+1}} \cup \cdots \cup U_{i_{p+q}}$. It follows that $Y \cup Z \subseteq U_{i_{1}} \cup \cdots \cup U_{i_{p+q}}$, so we have the required finite subcover [2].
(f) Let Y and Z be topological spaces such that $Z \neq \emptyset$ (so we can choose $z_{0} \in Z$). Suppose that $Y \times Z$ is compact; we claim that Y is also compact. Because $\pi\left(y, z_{0}\right)=y$, we see that the projection $Y \times Z \rightarrow Y$ is surjective (and also continuous, by the definition of the product topology) [2]. A standard theorem says that if $f: A \rightarrow B$ is continuous and surjective and A is compact then B is also compact [2]. Using this, we see that Y is compact as claimed [1]. (It is also not hard to prove this directly by consideration of open covers.)
(a) Let X be a topological space. Define the equivalence relation \sim on X such that $\pi_{0}(X)=X / \sim$, and prove that it is indeed an equivalence relation. (8 marks)
(b) Let $f: X \rightarrow Y$ be a continuous map. Define the function $f_{*}: \pi_{0}(X) \rightarrow \pi_{0}(Y)$, and check that it is well-defined. (5 marks)
(c) Suppose that Y is path-connected and X is not. Show that there do not exist continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g f$ is homotopic to the identity map id ${ }_{X}$. (6 marks)
(d) Put $X=\left\{A \in M_{2} \mathbb{R} \mid A^{2}=A\right\}$ (where $M_{2} \mathbb{R}$ is the space of 2×2 real matrices). What can you say about $\operatorname{det}(A)$ when $A \in X$? Show that X is not path-connected. (6 marks)

Solution:

(a) Bookwork Write $x \sim y$ iff there is a path in X from x to $y[1]$, or in other words a continuous map $u: I \rightarrow X$ such that $u(0)=x$ and $u(1)=y$ [1]. I claim that this is an equivalence relation. Indeed, given $x \in X$ we can define $c_{x}: I \rightarrow X$ by $c_{x}(t)=x$ for all t. This gives a path from x to itself, showing that \sim is reflexive [1]. Next, suppose that $x \sim y$, so there exists a path u from x to y in X. We can then define $\bar{u}(t)=u(1-t)$ to get a path from y to x, showing that $y \sim x$, showing that \sim is symmetric [2]. Finally, suppose we have a path u from x to y, and a path v from y to z. We then define a map $w: I \rightarrow X$ by

$$
w(t)= \begin{cases}u(2 t) & \text { if } 0 \leq t \leq 1 / 2 \\ v(2 t-1) & \text { if } 1 / 2 \leq t \leq 1 .[2]\end{cases}
$$

This is well-defined and continuous because $u(1)=y=v(0)$. We have $w(0)=u(0)=x$ and $w(1)=v(1)=z$, so w gives a path from x to z; this proves that \sim is transitive [1].
(b) Bookwork Let $f: X \rightarrow Y$ be a continuous map. We define $f_{*}: \pi_{0}(X) \rightarrow \pi_{0}(Y)$ by $f_{*}([x])=[f(x)][1]$ (where $[x]$ is the equivalence class of x under the relation $\sim)$. To see that this is well-defined, suppose that $\left[x_{0}\right]=\left[x_{1}\right]$ in $\pi_{0}(X)[1]$. This means that $x_{0} \sim x_{1}$, so there is a path $u: I \rightarrow X$ from x_{0} to $x_{1}[1]$. The function $f \circ u: I \rightarrow Y$ gives a path from $f\left(x_{0}\right)$ to $f\left(x_{1}\right)$ in $Y[1]$, so $\left[f\left(x_{0}\right)\right]=\left[f\left(x_{1}\right)\right]$ as required [1].
(c) Slightly disguised bookwork Suppose that Y is path-connected, so $\pi_{0}(Y)$ has only a single element, which we will call b. Then $f_{*}: \pi_{0}(X) \rightarrow \pi_{0}(Y)$ must be the constant map with value b, so $g_{*} f_{*}: \pi_{0}(X) \rightarrow \pi_{0}(X)$ must be the constant map with value $g_{*}(b)$. On the other hand, if $g f \simeq 1$ then $g_{*} f_{*}$ is the identity. Thus, the identity map of $\pi_{0}(X)$ is constant, so $\pi_{0}(X)$ can only have a single element. This means that X is path-connected, contrary to assumption. [6]
(d) Similar examples seen Put $X=\left\{A \in M_{2} \mathbb{R} \mid A^{2}=A\right\}$. For $A \in X$ we have $\operatorname{det}(A)^{2}=\operatorname{det}(A)$ so $\operatorname{det}(A) \in$ $\{0,1\}[2]$. We can thus regard det as a continuous map $X \rightarrow \mathbb{R}$ such that $\operatorname{det}(A) \neq 1 / 2$ for all A. The zero matrix and the identity matrix lie in X, with $\operatorname{det}(0)=0<1 / 2$ and $\operatorname{det}(I)=1>1 / 2$. It follows that 0 cannot be connected to I by a path in X, so X is not path-connected. [4]
(a) Define the terms chain map, chain homotopy, chain homotopic and chain homotopy equivalence. (8 marks)
(b) Show that if $f, g: U_{*} \rightarrow V_{*}$ are chain maps that are chain homotopic to each other, then $f_{*}=g_{*}: H_{*}(U) \rightarrow$ $H_{*}(V)$. (5 marks)
(c) Consider the chain complex T_{*} with $T_{i}=\mathbb{Z}^{2}$ for all i and $d_{i}(x, y)=(y, 0)$ for all $(x, y) \in T_{i}$. Show that T_{*} is chain homotopy equivalent to the zero complex. (4 marks)
(d) Suppose we have a short exact sequence $A_{*} \xrightarrow{i} B_{*} \xrightarrow{p} C_{*}$ of chain complexes and chain maps. Suppose that for all $k \in \mathbb{Z}$ we have $H_{k}(B)=0$. Suppose also that $H_{k}(A)=\mathbb{Z} / 2^{k}$ for $k \geq 0$ and $H_{k}(A)=0$ for $k<0$. Determine the homology groups of C_{*}. (3 marks)
(e) Let U_{*} be a chain complex in which $U_{k}=0$ for $k<0$ and $\left|U_{k}\right|=2^{k}$ for $k \geq 0$ and $d_{2 i}: U_{2 i} \rightarrow U_{2 i-1}$ is surjective for all i. Find the homology groups of U_{*}. (5 marks)

Solution:

(a) Bookwork

(1) Let U_{*} and V_{*} be chain complexes. A chain map from U_{*} to V_{*} is a sequence of homomorphisms $f_{i}: U_{i} \rightarrow V_{i}$ [1] such that $d_{i} \circ f_{i}=f_{i-1} \circ d_{i}: U_{i} \rightarrow V_{i-1}$ for all $i \in \mathbb{Z}$ (or more briefly, $d f=f d$) [1].
(2) Let $f, g: U_{*} \rightarrow V_{*}$ be chain maps [1]. A chain homotopy between f and g is a sequence of homomorphisms $s_{i}: U_{i} \rightarrow V_{i+1}[\mathbf{1}]$ with $d s+s d=g-f[1]$.
(3) We say that chain maps $f, g: U_{*} \rightarrow V_{*}$ are chain homotopic if there exists a chain homotopy as in (2). [1]
(4) A chain map $f: U_{*} \rightarrow V_{*}$ is a chain homotopy equivalence if there is a chain map $g: V_{*} \rightarrow U_{*}$ [1] such that $g \circ f: U_{*} \rightarrow U_{*}$ and $f \circ g: V_{*} \rightarrow V_{*}$ are chain homotopic to the corresponding identity maps [1].
(b) Bookwork Suppose we have chain maps $f, g: U_{*} \rightarrow V_{*}$ and a chain homotopy s as above. Consider an element $u \in H_{n}(U)$, so $u=[z]$ for some cycle $z \in U_{n}$ with $d(z)=0[1]$. As s is a chain homotopy from f to g, we have $g(z)-f(z)=d(s(z))+s(d(z))$ [1]. As $d(z)=0$ this becomes $g(z)-f(z)=d(s(z)) \in \operatorname{img}(d)_{n}=B_{n}(V)$ [1], so the cosets $[g(z)]=g(z)+B_{n}(V)$ and $[f(z)]=f(z)+B_{n}(V)$ are the same [1], or in other words $g_{*}(u)=f_{*}(u)$ as required [1].
(c) Unseen Let $i: 0 \rightarrow T_{*}$ and $r: T_{*} \rightarrow 0$ be the zero maps, so $r \circ i: 0 \rightarrow 0$ is the identity, and $i \circ r=0: T_{*} \rightarrow T_{*}$. Define $s_{k}: T_{k} \rightarrow T_{k+1}$ by $s_{k}(x, y)=(0, x)$ [2]. Then

$$
(d s+s d)(x, y)=d(0, x)+s(y, 0)=(x, 0)+(0, y)=(x, y)
$$

so $d s+d s=1=1-0=1-i \circ r$, so $i \circ r$ is chain homotopic to the identity. This means that i and r are chain homotopy equivalences [2].
(d) Unseen Let $A_{*} \xrightarrow{i} B_{*} \xrightarrow{p} C_{*}$ be as described. The Snake Lemma then gives exact sequences

$$
0=H_{k}(B) \rightarrow H_{k}(C) \xrightarrow{\delta} H_{k-1}(A) \rightarrow H_{k-1}(B)=0,
$$

which means that the map δ is an isomorphism [2]. It follows that when $k>0$ we have $H_{k}(C) \simeq H_{k-1}(A) \simeq$ $\mathbb{Z} / 2^{k-1}$ and when $k \leq 0$ we have $H_{k}(C)=0[1]$.
(e) Unseen Let U_{*} be a chain complex as described. As $d_{2 i}: U_{2 i} \rightarrow U_{2 i-1}$ is surjective, we see that $B_{2 i-1}(U)=$ $U_{2 i-1}$. This means that every element $u \in U_{2 i-1}$ can be expressed as $u=d\left(u^{\prime}\right)$ for some u^{\prime}, so $d(u)=d^{2}\left(u^{\prime}\right)=0$. Thus, the homomorphism $d_{2 i-1}: U_{2 i-1} \rightarrow U_{2 i-2}$ is zero [2]. We now have $Z_{2 i-1}(U)=B_{2 i-1}(U)=U_{2 i-1}$, so $H_{2 i-1}(U)=U_{2 i-1} / U_{2 i-1}=0$. We also have $B_{2 i}(U)=0$ and so $H_{2 i}(U) \simeq Z_{2 i}(U)=\operatorname{ker}\left(d_{2 i}: U_{2 i} \rightarrow U_{2 i-1}\right)$ [1]. As $d_{2 i}$ is surjective with $\left|U_{2 i}\right|=2^{2 i}$ and $\left|U_{2 i-1}\right|=2^{2 i-1}$ we see that $\left|\operatorname{ker}\left(d_{2 i}\right)\right|=2$ and so $\operatorname{ker}\left(d_{2 i}\right) \simeq \mathbb{Z} / 2$. In summary, we have

$$
H_{k}(U)= \begin{cases}\mathbb{Z} / 2 & \text { if } k \text { is even and } k>0 \\ 0 & \text { otherwise. [2] }\end{cases}
$$

(a) Let X be a topological space.
(i) Define the groups $C_{n}(X)$ for all nonnegative integers n. (2 marks)
(ii) Define the homomorphisms $\partial_{n}: C_{n}(X) \rightarrow C_{n-1}(X)$. (3 marks)
(iii) Prove that $\partial_{1} \circ \partial_{2}=0$. (3 marks)
(iv) Define the groups $H_{n}(X)$. (4 marks)
(b) Describe (without proof, but with careful attention to any special cases) the groups $H_{n}\left(\mathbb{R}^{k} \backslash\{0\}\right)$ for all $n \geq 0$ and all $k \geq 1$. (5 marks)
(c) Let $u=n_{1} s_{1}+\ldots+n_{k} s_{k}$ be an element of $Z_{m}\left(S^{n}\right)$ (where $m>0$), and suppose that there is a point $a \in S^{n}$ that is not contained in any of the sets $s_{1}\left(\Delta_{m}\right), \ldots, s_{k}\left(\Delta_{m}\right)$. Prove that u is a boundary. (You may assume standard results and calculations from the course so long as you state them carefully.) (8 marks)

Solution:

(a) (i) Bookwork The group $C_{n}(X)$ is the free Abelian group [1]generated by the set of continuous maps $s: \Delta_{n} \rightarrow$ $X[1]$, where $\Delta_{n}=\left\{t \in \mathbb{R}^{n+1} \mid t_{i} \geq 0, \sum_{i} t_{i}=1\right\}$.
(ii) Bookwork We define continuous maps $\delta_{0}, \ldots, \delta_{n}: \Delta_{n-1} \rightarrow \Delta_{n}$ by

$$
\delta_{i}\left(t_{0}, \ldots, t_{n-1}\right)=\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n-1}\right)[1] .
$$

For any continuous map $s: \Delta_{n} \rightarrow X$ we define

$$
\partial_{n}(s)=\sum_{k=0}^{n}(-1)^{k}\left(s \circ \delta_{k}\right) \in C_{n-1}(X)[1] .
$$

This can be extended in a unique way to give a homomorphism $\partial_{n}: C_{n}(X) \rightarrow C_{n-1}(X)$. [1]
(iii) Bookwork From the definitions, we have

$$
\begin{aligned}
\partial_{1} \partial_{2}[s] & =\partial_{1}\left(\left[s \delta_{0}\right]-\left[s \delta_{1}\right]+\left[s \delta_{2}\right]\right) \\
& =\left[s \delta_{0} \delta_{0}\right]-\left[s \delta_{0} \delta_{1}\right]-\left[s \delta_{1} \delta_{0}\right]+\left[s \delta_{1} \delta_{1}\right]+\left[s \delta_{2} \delta_{0}\right]-\left[s \delta_{2} \delta_{1}\right] \\
& =\left(\left[s \delta_{0} \delta_{0}\right]-\left[s \delta_{1} \delta_{0}\right]\right)-\left(\left[s \delta_{0} \delta_{1}\right]-\left[s \delta_{2} \delta_{0}\right]\right)+\left(\left[s \delta_{1} \delta_{1}\right]-\left[s \delta_{2} \delta_{1}\right]\right) \cdot[1]
\end{aligned}
$$

Whenever $k \leq l$ we have $\delta_{k} \delta_{l}=\delta_{l+1} \delta_{k}$; this shows that each of the bracketed terms is zero [1]. Thus $\partial_{2} \partial_{1}$ vanishes on all singular 2-simplices, so it vanishes on all singular 2-chains [1].
(iv) Bookwork We define $Z_{n}(X)=\operatorname{ker}\left(\partial_{n}: C_{n}(X) \rightarrow C_{n-1}(X)\right)$ [1] and $B_{n}(X)=\operatorname{img}\left(\partial_{n+1}: C_{n+1}(X) \rightarrow\right.$ $C_{n}(X)$) [1]. We have $\partial_{n} \partial_{n+1}=0$, which implies that $B_{n}(X) \leq Z_{n}(X)$ [1], so we can define a quotient group $H_{n}(X)=Z_{n}(X) / B_{n}(X)[1]$.
(b) Bookwork As $\mathbb{R}^{k} \backslash\{0\}$ is homotopy equivalent to S^{k-1}, we have

$$
H_{n}\left(\mathbb{R}^{k} \backslash\{0\}\right)= \begin{cases}\mathbb{Z}^{2} & \text { if } n=0, k=1[2] \\ \mathbb{Z} & \text { if } n=0, k>1[1] \text { or } n=k-1>0[1] \\ 0 & \text { otherwise [1]. }\end{cases}
$$

(c) Unseen The space $S^{n} \backslash\{a\}$ [2] is homeomorphic to \mathbb{R}^{n} [1]by stereographic projection, and thus is contractible [1]. This implies that $H_{m}\left(S^{n} \backslash\{a\}\right)=0$ for $m>0$ [1], so every m-cycle in $S^{n} \backslash\{a\}$ is a boundary [1]. We can regard u as an m-cycle in $S^{m} \backslash\{a\}$, so it is a boundary in $S^{n} \backslash\{a\}$ [1] and thus in S^{n} [1], as required.
(5) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general theorems and calculations, provided that you state them clearly.
(a) S^{3} is contractible. (3 marks)
(b) $\mathbb{R} P^{3}$ is a homotopy retract of S^{3}. (3 marks)
(c) If a space X is the union of two closed, path-connected subspaces A and B, then X is path-connected. (3 marks)
(d) $(\mathbb{R} \times \mathbb{R}) \backslash(\mathbb{R} \times\{0\})$ is homotopy equivalent to S^{1}. (4 marks)
(e) $\left(\mathbb{R} \times \mathbb{R}^{2}\right) \backslash(\mathbb{R} \times\{0\})$ is homotopy equivalent to S^{1}. (4 marks)
(f) The space $\mathbb{C} \backslash\{0,1\}$ is homeomorphic to $\mathbb{C} \backslash\{i,-i\}$. (4 marks)
(g) The space $\mathbb{C} \backslash\{0,1\}$ is homotopy equivalent to $\mathbb{C} \backslash\{0,1,2\}$. (4 marks)

Solution:

(a) False [1]. We have $H_{3}\left(S^{3}\right)=\mathbb{Z}$ but H_{3} of a point is zero, so S^{3} is not homotopy equivalent to a point [2].
(b) False [1]. If $\mathbb{R} P^{3}$ was a homotopy retract of S^{3} then the group $H_{1}\left(\mathbb{R} P^{3}\right)=\mathbb{Z} / 2$ would be isomorphic to a subgroup of the group $H_{1}\left(S^{3}\right)=0$, which is clearly not true [2].
(c) False [1]. Put $X=\{0,1\}$ and $A=\{0\}$ and $B=\{1\}$. Then A and B are closed path connected subsets of X with $X=A \cup B$, but X is not path connected [2]. (You would not be required to say this, but I remark that if $X=A \cup B$ where A and B are path connected (not necessarily closed) and $A \cap B \neq \emptyset$ then X is path connected.)
(d) False [1]. Write

$$
X=(\mathbb{R} \times \mathbb{R}) \backslash(\mathbb{R} \times\{0\})=\left\{(x, y) \in \mathbb{R}^{2} \mid y \neq 0\right\}
$$

We can then define a map $f: X \rightarrow \mathbb{R}$ by $f(x, y)=y$. This is never zero and it is positive at $(0,1)$ and negative at $(0,-1)$, so $(0,1)$ cannot be joined to $(0,-1)$ by a path in X, so X is not path connected [1]. However, S^{1} is path connected [1] and anything homotopy equivalent to a path connected space is again path connected so X is not homotopy equivalent to S^{1} [1].
(e) True [1]. Write $Y=\left(\mathbb{R} \times \mathbb{R}^{2}\right) \backslash(\mathbb{R} \times\{0\})$, and define maps as follows

$$
\begin{array}{lr}
f: Y \rightarrow S^{1} & f(x, y, z)=(y, z) / \sqrt{y^{2}+z^{2}}[1] \\
g: S^{1} \rightarrow Y & g(y, z)=(0, y, z)[1] .
\end{array}
$$

Then $f g=1_{S^{1}}$, and $g f$ is linearly homotopic to $1_{Y}[1]$.
(f) True [1]. We can define a homeomorphism $f: \mathbb{C} \backslash\{0,1\} \rightarrow \mathbb{C} \backslash\{i,-i\}$ by $f(z)=2 i z-i$, with inverse $f^{-1}(w)=$ $(w+i) / 2 i[3]$.
(g) False [1]. We have $H_{1}(\mathbb{C} \backslash\{0,1\}) \simeq \mathbb{Z}^{2}$, and this is not isomorphic to $H_{1}(\mathbb{C} \backslash\{0,1,2\}) \simeq \mathbb{Z}^{3}$, so $\mathbb{C} \backslash\{0,1\}$ is not homotopy equivalent to $\mathbb{C} \backslash\{0,1,2\}$ [3].

