Algebraic Topology

(1)

- (a) What does it mean to say that a topological space X is *Hausdorff*?(If your definition relies on any other concepts, then you should define them.) (3 marks)
- (b) What does it mean to say that a topological space X is *compact*?(If your definition relies on any other concepts, then you should define them.) (3 marks)
- (c) Put $X = \{(x, y, z) \in \mathbb{R}^3 : x^4 + y^4 + z^4 = 1\}$. Prove that X is compact. You may use general theorems provided that you state them precisely. (5 marks)
- (d) Put $Y = \{(x, y, z) \in \mathbb{R}^3 : x^4 + y^4 + z^4 < 1\}$. Prove that Y is not compact. Here you should argue directly from the definitions and not use any theorems. (5 marks)
- (e) Let Y and Z be two compact subspaces of a topological space X. Prove that $Y \cup Z$ is also compact. (4 marks)
- (f) Let Y and Z be topological spaces such that $Z \neq \emptyset$ and $Y \times Z$ is compact. Prove that Y is compact. You may use standard results so long as you state them clearly and verify carefully that they are applicable. (5 marks)

Solution:

- (a) **Bookwork** Let X be a topological space. Given $a, b \in X$ with $a \neq b$, a Hausdorff separation for (a, b) is a pair of open sets $U, V \subseteq X$ with $a \in U$ and $b \in V$ and $U \cap V = \emptyset[2]$. We say that X is Hausdorff if every pair of distinct points has a Hausdorff separation [1].
- (b) **Bookwork** Let X be a topological space. An open cover of X is a family $(U_i)_{i \in I}$ of open sets whose union is all of X [1]. Given such a cover, a *finite subcover* is a subfamily $(U_i)_{i \in J}$ where $J \subseteq I$ is finite and the union is still all of X [1]. We say that X is compact if every open cover has a finite subcover [1].
- (c) Similar examples seen If $(x, y, z) \in X$ then $x^4 \le x^4 + y^4 + z^4 = 1$ so $|x| \le 1$. Similarly, we see that $|y| \le 1$ and $|z| \le 1$, which implies that X is bounded [2]. Also, we can define $f \colon \mathbb{R}^4 \to \mathbb{R}$ by $f(x, y, z) = x^4 + y^4 + z^4$. This is continuous (because it is polynomial) and $\{1\}$ is closed in \mathbb{R} so the set $X = f^{-1}\{1\}$ is closed in \mathbb{R}^4 [2]. Any bounded closed subset of \mathbb{R}^n is compact, so we deduce that X is compact as claimed [1].
- (d) Similar examples seen For n > 0 put $U_n = \{(x, y, z) \in \mathbb{R}^3 \mid x^4 + y^4 + z^4 < 1 n^{-1}\}$, so these sets are form an open cover of Y [2]. However, U_n is not all of Y, because the point $((1 1/(n+1))^{1/4}, 0, 0)$ lies in $Y \setminus U_n$ [1]. If Y was compact then we would have a finite subcover, say $Y = U_{n_1} \cup \cdots \cup U_{n_p}$ and this would give $Y = U_n$ where $n = \max(n_1, \ldots, n_p)$, which is a contradiction; so Y is not compact. [2]
- (e) Suppose that Y and Z are compact subsets of X; we claim that $Y \cup Z$ is also compact, To see this, let $(U_i)_{i \in I}$ be a family of open subsets of X that covers $Y \cup Z$; we must show that there is a finite subcover [1]. As the family covers $Y \cup Z$, it certainly covers Y, and Y is compact, so we can choose indices i_1, \ldots, i_p with $Y \subseteq U_{i_1} \cup \cdots \cup U_{i_p}$ [1]. Similarly, we can choose indices i_{p+1}, \ldots, i_{p+q} such that $Z \subseteq U_{i_{p+1}} \cup \cdots \cup U_{i_{p+q}}$. It follows that $Y \cup Z \subseteq U_{i_1} \cup \cdots \cup U_{i_{p+q}}$, so we have the required finite subcover [2].
- (f) Let Y and Z be topological spaces such that $Z \neq \emptyset$ (so we can choose $z_0 \in Z$). Suppose that $Y \times Z$ is compact; we claim that Y is also compact. Because $\pi(y, z_0) = y$, we see that the projection $Y \times Z \to Y$ is surjective (and also continuous, by the definition of the product topology) [2]. A standard theorem says that if $f: A \to B$ is continuous and surjective and A is compact then B is also compact [2]. Using this, we see that Y is compact as claimed [1]. (It is also not hard to prove this directly by consideration of open covers.)

(2)

- (a) Let X be a topological space. Define the equivalence relation ~ on X such that $\pi_0(X) = X/\sim$, and prove that it is indeed an equivalence relation. (8 marks)
- (b) Let $f: X \to Y$ be a continuous map. Define the function $f_*: \pi_0(X) \to \pi_0(Y)$, and check that it is well-defined. (5 marks)
- (c) Suppose that Y is path-connected and X is not. Show that there do not exist continuous maps $f: X \to Y$ and $g: Y \to X$ such that gf is homotopic to the identity map id_X . (6 marks)
- (d) Put $X = \{A \in M_2 \mathbb{R} \mid A^2 = A\}$ (where $M_2 \mathbb{R}$ is the space of 2×2 real matrices). What can you say about det(A) when $A \in X$? Show that X is not path-connected. (6 marks)

Solution:

(a) **Bookwork** Write $x \sim y$ iff there is a path in X from x to y [1], or in other words a continuous map $u: I \to X$ such that u(0) = x and u(1) = y [1]. I claim that this is an equivalence relation. Indeed, given $x \in X$ we can define $c_x: I \to X$ by $c_x(t) = x$ for all t. This gives a path from x to itself, showing that \sim is reflexive [1]. Next, suppose that $x \sim y$, so there exists a path u from x to y in X. We can then define $\overline{u}(t) = u(1-t)$ to get a path from y to x, showing that $y \sim x$, showing that \sim is symmetric [2]. Finally, suppose we have a path u from x to y, and a path v from y to z. We then define a map $w: I \to X$ by

$$w(t) = \begin{cases} u(2t) & \text{if } 0 \le t \le 1/2\\ v(2t-1) & \text{if } 1/2 \le t \le 1. [2] \end{cases}$$

This is well-defined and continuous because u(1) = y = v(0). We have w(0) = u(0) = x and w(1) = v(1) = z, so w gives a path from x to z; this proves that \sim is transitive [1].

- (b) **Bookwork** Let $f: X \to Y$ be a continuous map. We define $f_*: \pi_0(X) \to \pi_0(Y)$ by $f_*([x]) = [f(x)]$ [1](where [x] is the equivalence class of x under the relation \sim). To see that this is well-defined, suppose that $[x_0] = [x_1]$ in $\pi_0(X)$ [1]. This means that $x_0 \sim x_1$, so there is a path $u: I \to X$ from x_0 to x_1 [1]. The function $f \circ u: I \to Y$ gives a path from $f(x_0)$ to $f(x_1)$ in Y [1], so $[f(x_0)] = [f(x_1)]$ as required [1].
- (c) Slightly disguised bookwork Suppose that Y is path-connected, so $\pi_0(Y)$ has only a single element, which we will call b. Then $f_*: \pi_0(X) \to \pi_0(Y)$ must be the constant map with value b, so $g_*f_*: \pi_0(X) \to \pi_0(X)$ must be the constant map with value $g_*(b)$. On the other hand, if $gf \simeq 1$ then g_*f_* is the identity. Thus, the identity map of $\pi_0(X)$ is constant, so $\pi_0(X)$ can only have a single element. This means that X is path-connected, contrary to assumption. [6]
- (d) Similar examples seen Put $X = \{A \in M_2 \mathbb{R} \mid A^2 = A\}$. For $A \in X$ we have $\det(A)^2 = \det(A)$ so $\det(A) \in \{0,1\}$ [2]. We can thus regard det as a continuous map $X \to \mathbb{R}$ such that $\det(A) \neq 1/2$ for all A. The zero matrix and the identity matrix lie in X, with $\det(0) = 0 < 1/2$ and $\det(I) = 1 > 1/2$. It follows that 0 cannot be connected to I by a path in X, so X is not path-connected. [4]

(3)

- (a) Define the terms chain map, chain homotopy, chain homotopic and chain homotopy equivalence. (8 marks)
- (b) Show that if $f, g: U_* \to V_*$ are chain maps that are chain homotopic to each other, then $f_* = g_*: H_*(U) \to H_*(V)$. (5 marks)
- (c) Consider the chain complex T_* with $T_i = \mathbb{Z}^2$ for all i and $d_i(x, y) = (y, 0)$ for all $(x, y) \in T_i$. Show that T_* is chain homotopy equivalent to the zero complex. (4 marks)
- (d) Suppose we have a short exact sequence $A_* \xrightarrow{i} B_* \xrightarrow{p} C_*$ of chain complexes and chain maps. Suppose that for all $k \in \mathbb{Z}$ we have $H_k(B) = 0$. Suppose also that $H_k(A) = \mathbb{Z}/2^k$ for $k \ge 0$ and $H_k(A) = 0$ for k < 0. Determine the homology groups of C_* . (3 marks)
- (e) Let U_* be a chain complex in which $U_k = 0$ for k < 0 and $|U_k| = 2^k$ for $k \ge 0$ and $d_{2i}: U_{2i} \to U_{2i-1}$ is surjective for all *i*. Find the homology groups of U_* . (5 marks)

Solution:

(a) **Bookwork**

- (1) Let U_* and V_* be chain complexes. A chain map from U_* to V_* is a sequence of homomorphisms $f_i: U_i \to V_i$ [1]such that $d_i \circ f_i = f_{i-1} \circ d_i: U_i \to V_{i-1}$ for all $i \in \mathbb{Z}$ (or more briefly, df = fd) [1].
- (2) Let $f, g: U_* \to V_*$ be chain maps [1]. A chain homotopy between f and g is a sequence of homomorphisms $s_i: U_i \to V_{i+1}$ [1] with ds + sd = g f [1].
- (3) We say that chain maps $f, g: U_* \to V_*$ are *chain homotopic* if there exists a chain homotopy as in (2). [1]
- (4) A chain map $f: U_* \to V_*$ is a *chain homotopy equivalence* if there is a chain map $g: V_* \to U_*$ [1] such that $g \circ f: U_* \to U_*$ and $f \circ g: V_* \to V_*$ are chain homotopic to the corresponding identity maps [1].
- (b) Bookwork Suppose we have chain maps f, g: U_{*} → V_{*} and a chain homotopy s as above. Consider an element u ∈ H_n(U), so u = [z] for some cycle z ∈ U_n with d(z) = 0 [1]. As s is a chain homotopy from f to g, we have g(z) f(z) = d(s(z)) + s(d(z)) [1]. As d(z) = 0 this becomes g(z) f(z) = d(s(z)) ∈ img(d)_n = B_n(V) [1], so the cosets [g(z)] = g(z) + B_n(V) and [f(z)] = f(z) + B_n(V) are the same [1], or in other words g_{*}(u) = f_{*}(u) as required [1].
- (c) **Unseen** Let $i: 0 \to T_*$ and $r: T_* \to 0$ be the zero maps, so $r \circ i: 0 \to 0$ is the identity, and $i \circ r = 0: T_* \to T_*$. Define $s_k: T_k \to T_{k+1}$ by $s_k(x, y) = (0, x)$ [2]. Then

$$(ds + sd)(x, y) = d(0, x) + s(y, 0) = (x, 0) + (0, y) = (x, y)$$

so $ds + ds = 1 = 1 - 0 = 1 - i \circ r$, so $i \circ r$ is chain homotopic to the identity. This means that i and r are chain homotopy equivalences [2].

(d) **Unseen** Let $A_* \xrightarrow{i} B_* \xrightarrow{p} C_*$ be as described. The Snake Lemma then gives exact sequences

$$0 = H_k(B) \to H_k(C) \xrightarrow{\delta} H_{k-1}(A) \to H_{k-1}(B) = 0,$$

which means that the map δ is an isomorphism [2]. It follows that when k > 0 we have $H_k(C) \simeq H_{k-1}(A) \simeq \mathbb{Z}/2^{k-1}$ and when $k \leq 0$ we have $H_k(C) = 0$ [1].

(e) **Unseen** Let U_* be a chain complex as described. As $d_{2i}: U_{2i} \to U_{2i-1}$ is surjective, we see that $B_{2i-1}(U) = U_{2i-1}$. This means that every element $u \in U_{2i-1}$ can be expressed as u = d(u') for some u', so $d(u) = d^2(u') = 0$. Thus, the homomorphism $d_{2i-1}: U_{2i-1} \to U_{2i-2}$ is zero [2]. We now have $Z_{2i-1}(U) = B_{2i-1}(U) = U_{2i-1}$, so $H_{2i-1}(U) = U_{2i-1}/U_{2i-1} = 0$. We also have $B_{2i}(U) = 0$ and so $H_{2i}(U) \simeq Z_{2i}(U) = \ker(d_{2i}: U_{2i} \to U_{2i-1})$ [1]. As d_{2i} is surjective with $|U_{2i}| = 2^{2i}$ and $|U_{2i-1}| = 2^{2i-1}$ we see that $|\ker(d_{2i})| = 2$ and so $\ker(d_{2i}) \simeq \mathbb{Z}/2$. In summary, we have

$$H_k(U) = \begin{cases} \mathbb{Z}/2 & \text{if } k \text{ is even and } k > 0\\ 0 & \text{otherwise. } [2] \end{cases}$$

(4)

- (a) Let X be a topological space.
 - (i) Define the groups $C_n(X)$ for all nonnegative integers n. (2 marks)
 - (ii) Define the homomorphisms $\partial_n \colon C_n(X) \to C_{n-1}(X)$. (3 marks)
 - (iii) Prove that $\partial_1 \circ \partial_2 = 0$. (3 marks)
 - (iv) Define the groups $H_n(X)$. (4 marks)
- (b) Describe (without proof, but with careful attention to any special cases) the groups $H_n(\mathbb{R}^k \setminus \{0\})$ for all $n \ge 0$ and all $k \ge 1$. (5 marks)
- (c) Let $u = n_1 s_1 + \ldots + n_k s_k$ be an element of $Z_m(S^n)$ (where m > 0), and suppose that there is a point $a \in S^n$ that is not contained in any of the sets $s_1(\Delta_m), \ldots, s_k(\Delta_m)$. Prove that u is a boundary. (You may assume standard results and calculations from the course so long as you state them carefully.) (8 marks)

Solution:

- (a) (i) **Bookwork** The group $C_n(X)$ is the free Abelian group [1]generated by the set of continuous maps $s: \Delta_n \to X$ [1], where $\Delta_n = \{t \in \mathbb{R}^{n+1} \mid t_i \ge 0, \sum_i t_i = 1\}.$
 - (ii) **Bookwork** We define continuous maps $\delta_0, \ldots, \delta_n \colon \Delta_{n-1} \to \Delta_n$ by

$$\delta_i(t_0,\ldots,t_{n-1}) = (t_0,\ldots,t_{i-1},0,t_i,\ldots,t_{n-1})[\mathbf{1}].$$

For any continuous map $s: \Delta_n \to X$ we define

$$\partial_n(s) = \sum_{k=0}^n (-1)^k (s \circ \delta_k) \in C_{n-1}(X)$$
[1].

This can be extended in a unique way to give a homomorphism $\partial_n : C_n(X) \to C_{n-1}(X)$. [1]

(iii) **Bookwork** From the definitions, we have

$$\begin{aligned} \partial_1 \partial_2 [s] &= \partial_1 ([s\delta_0] - [s\delta_1] + [s\delta_2]) \\ &= [s\delta_0 \delta_0] - [s\delta_0 \delta_1] - [s\delta_1 \delta_0] + [s\delta_1 \delta_1] + [s\delta_2 \delta_0] - [s\delta_2 \delta_1] \\ &= ([s\delta_0 \delta_0] - [s\delta_1 \delta_0]) - ([s\delta_0 \delta_1] - [s\delta_2 \delta_0]) + ([s\delta_1 \delta_1] - [s\delta_2 \delta_1]). \end{aligned}$$

Whenever $k \leq l$ we have $\delta_k \delta_l = \delta_{l+1} \delta_k$; this shows that each of the bracketed terms is zero [1]. Thus $\partial_2 \partial_1$ vanishes on all singular 2-simplices, so it vanishes on all singular 2-chains [1].

- (iv) **Bookwork** We define $Z_n(X) = \ker(\partial_n : C_n(X) \to C_{n-1}(X))$ [1] and $B_n(X) = \operatorname{img}(\partial_{n+1} : C_{n+1}(X) \to C_n(X))$ [1]. We have $\partial_n \partial_{n+1} = 0$, which implies that $B_n(X) \leq Z_n(X)$ [1], so we can define a quotient group $H_n(X) = Z_n(X)/B_n(X)$ [1].
- (b) **Bookwork** As $\mathbb{R}^k \setminus \{0\}$ is homotopy equivalent to S^{k-1} , we have

$$H_n(\mathbb{R}^k \setminus \{0\}) = \begin{cases} \mathbb{Z}^2 & \text{if } n = 0, k = 1[2] \\ \mathbb{Z} & \text{if } n = 0, k > 1[1] \text{ or } n = k - 1 > 0[1] \\ 0 & \text{otherwise } [1]. \end{cases}$$

(c) Unseen The space Sⁿ \ {a} [2] is homeomorphic to ℝⁿ [1] by stereographic projection, and thus is contractible [1]. This implies that H_m(Sⁿ \ {a}) = 0 for m > 0 [1], so every m-cycle in Sⁿ \ {a} is a boundary [1]. We can regard u as an m-cycle in S^m \ {a}, so it is a boundary in Sⁿ \ {a} [1] and thus in Sⁿ [1], as required.

(5) Are the following statements true or false? Give proof or disproof as appropriate. You may quote general theorems and calculations, provided that you state them clearly.

- (a) S^3 is contractible. (3 marks)
- (b) $\mathbb{R}P^3$ is a homotopy retract of S^3 . (3 marks)
- (c) If a space X is the union of two closed, path-connected subspaces A and B, then X is path-connected. (3 marks)
- (d) $(\mathbb{R} \times \mathbb{R}) \setminus (\mathbb{R} \times \{0\})$ is homotopy equivalent to S^1 . (4 marks)
- (e) $(\mathbb{R} \times \mathbb{R}^2) \setminus (\mathbb{R} \times \{0\})$ is homotopy equivalent to S^1 . (4 marks)
- (f) The space $\mathbb{C} \setminus \{0, 1\}$ is homeomorphic to $\mathbb{C} \setminus \{i, -i\}$. (4 marks)
- (g) The space $\mathbb{C} \setminus \{0, 1\}$ is homotopy equivalent to $\mathbb{C} \setminus \{0, 1, 2\}$. (4 marks)

Solution:

- (a) False [1]. We have $H_3(S^3) = \mathbb{Z}$ but H_3 of a point is zero, so S^3 is not homotopy equivalent to a point [2].
- (b) False [1]. If $\mathbb{R}P^3$ was a homotopy retract of S^3 then the group $H_1(\mathbb{R}P^3) = \mathbb{Z}/2$ would be isomorphic to a subgroup of the group $H_1(S^3) = 0$, which is clearly not true [2].
- (c) False [1]. Put $X = \{0, 1\}$ and $A = \{0\}$ and $B = \{1\}$. Then A and B are closed path connected subsets of X with $X = A \cup B$, but X is not path connected [2]. (You would not be required to say this, but I remark that if $X = A \cup B$ where A and B are path connected (not necessarily closed) and $A \cap B \neq \emptyset$ then X is path connected.)
- (d) False [1]. Write

$$X = (\mathbb{R} \times \mathbb{R}) \setminus (\mathbb{R} \times \{0\}) = \{(x, y) \in \mathbb{R}^2 \mid y \neq 0\}$$

We can then define a map $f: X \to \mathbb{R}$ by f(x, y) = y. This is never zero and it is positive at (0, 1) and negative at (0, -1), so (0, 1) cannot be joined to (0, -1) by a path in X, so X is not path connected [1]. However, S^1 is path connected [1] and anything homotopy equivalent to a path connected space is again path connected so X is not homotopy equivalent to S^1 [1].

(e) True [1]. Write $Y = (\mathbb{R} \times \mathbb{R}^2) \setminus (\mathbb{R} \times \{0\})$, and define maps as follows

$$\begin{split} f \colon Y \to S^1 & f(x,y,z) = (y,z)/\sqrt{y^2 + z^2} \\ g \colon S^1 \to Y & g(y,z) = (0,y,z) \\ \end{bmatrix} . \end{split}$$

Then $fg = 1_{S^1}$, and gf is linearly homotopic to 1_Y [1].

- (f) True [1]. We can define a homeomorphism $f: \mathbb{C} \setminus \{0,1\} \to \mathbb{C} \setminus \{i,-i\}$ by f(z) = 2iz i, with inverse $f^{-1}(w) = (w+i)/2i$ [3].
- (g) False [1]. We have $H_1(\mathbb{C} \setminus \{0,1\}) \simeq \mathbb{Z}^2$, and this is not isomorphic to $H_1(\mathbb{C} \setminus \{0,1,2\}) \simeq \mathbb{Z}^3$, so $\mathbb{C} \setminus \{0,1\}$ is not homotopy equivalent to $\mathbb{C} \setminus \{0,1,2\}$ [3].