
Algebraic Topology

(1)

(a) Explain the terms homeomorphism and homeomorphic. (3 marks)

(b) Explain the terms homotopy, homotopic and homotopy equivalent, distinguishing carefully between them. (5
marks)

(c) Consider the following spaces:

X0 = {z ∈ C | Re(z) ̸∈ Z}
X1 = {z ∈ C | Im(z) ∈ Z}
X2 = {z ∈ C | z ̸∈ Z}
X3 = {z ∈ R | z ̸∈ Z}
X4 = {z ∈ C | |z| ∈ Z}.

(i) Sketch all these spaces. (5 marks)

(ii) For which pairs (i, j) is Xi homotopy equivalent to Xj? Justify your answer briefly. In cases where Xi is
homotopy equivalent to Xj you should explain why, and in cases where Xi is not homotopy equivalent to
Xj , you should explain that as well. (6 marks)

(iii) For which pairs (i, j) is Xi homeomorphic to Xj? Justify your answer briefly. In cases where Xi is
homeomorphic to Xj you should explain why, and in cases where Xi is not homeomorphic to Xj , you
should explain that as well. (6 marks)

Solution:

(a) Bookwork Let X and Y be topological spaces. A homeomorphism from X to Y is a bijective map f : X → Y
such that both f and the inverse map f−1 : Y → X are continuous [2]. We say that X and Y are homeomorphic
if there exists such a homeomorphism [1].

(b) Bookwork Again let X and Y be topological spaces. Given continuous maps f0, f1 : X → Y , a homotopy from
f0 to f1 is a continuous map h : [0, 1] × X → Y with h(0, x) = f0(x) and h(1, x) = f1(x) for all x ∈ X [2].
We say that f0 and f1 are homotopic if there exists such a homotopy [1]. We say that X and Y are homotopy
equivalent if there exist maps f : X → Y and g : Y → X such that gf is homotopic to idX and fg is homotopic
to idY [2].

(c) (i) Similar examples seen The spaces Xi can be sketched as follows [5]:
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X0 X1 X2

X3 X4

(ii) Similar examples have been seen, but this is a bit harder than most of them.
The spaces X0, X1 and X3 are all homotopy equivalent to Z and thus to each other. [1]Indeed, we can

define maps Z fi−→ Xi
gi−→ Z by

f0(n) = n+ 1
2 g0(z) = ⌊Re(z)⌋

f1(n) = in g1(z) = Im(z)

f3(n) = n+ 1
2 g3(z) = ⌊z⌋.

These are all continuous, because the floor function is continuous away from integer arguments. In each
case we have gifi = id and figi is homotopic to the identity by a linear homotopy [2]. The spaces X2

and X4 have nontrivial H1 and so cannot be homotopy equivalent to X0, X1 and X3 [2]. The space X2 is
path-connected but X4 is not, so X2 is not homotopy equivalent to X4 [1].

(iii) Similar examples have been seen, but this is a bit harder than most of them.
If we remove a point fromX0 we obtain a space with nontrivialH1 but the same path components. However,
if we remove a point from X1 or X3, we obtain a space with trivial H1 and an extra path component. It
follows that X0 is not homeomorphic to X1 or X3 [2]. However, X1 is a disjoint union of countably many
copies of R, and X3 is a disjoint union of countably many copies of (0, 1), and R is homeomorphic to
(0, 1), so X1 is homeomorphic to X3 [2]. Explicitly, we can define a homeomorphism f : X1 → X3 by
f(x+ni) = n+ 1

2 +x/(2
√
1 + x2). As homeomorphism implies homotopy equivalence, part (ii) implies that

there can be no further homeomorphisms. [2]

(2)

(a) What does it mean to say that a topological space X is compact? If your explanation relies on any auxiliary
terms, then you should define them. (3 marks)

(b) Let X be compact topological space, and let Y be a closed subset of X.

(i) Define the subspace topology on Y . (2 marks)

(ii) Prove that when equipped with the subspace topology, Y is again compact. (5 marks)

(iii) Give an example of a compact space X and a compact subpace Y such that Y is not closed in X. (3
marks)

(iv) Explain a commonly-satisfied condition on X that guarantees that compact subspaces are closed. If your
explanation relies on any auxiliary terms, then you should define them. However, you need not prove
anything. (3 marks)
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(c) Put X = Z× Z and Y = {(x, y) ∈ R2 | 100 < x2 + y2 < 10000}, considered as subspaces of the plane R2.

(i) Is X compact? (1 marks)

(ii) Is Y compact? (1 marks)

(iii) Is X ∩ Y compact? (2 marks)

Justify your answers.

(d) Let X be a metric space such that X \ {x} is compact for all x ∈ X. Prove that X is finite. (5 marks)

Solution:

(a) Bookwork Let X be a topological space. By an open cover of X we mean a family (Ui)i∈I of open subsets of
X, such that each point x ∈ X lies in Ui for at least one index i [1]. A finite subcover of such a cover is a finite
subset J = {j1, . . . , jn} ⊆ I such that (Uj)j∈J is still a cover, or equivalently X = Uj1 ∪ · · · ∪ Ujn [1]. We say
that X is compact if every open cover has a finite subcover [1].

(b) (i) Bookwork For the subspace topology on Y , we declare that a subset V ⊆ Y is open iff there exists an
open subset U of X such that V = U ∩ Y [2].

(ii) Bookwork Suppose that X is compact, and that Y is closed in X, which means that the set U∗ = X \ Y
is open in X.

Let (Vi)i∈I be a family of subsets of Y that are open with respect to the subspace topology; we must show
that this has a finite subcover [1]. As each Vi is open in the subspace topology, we can choose an open
subset Ui of X such that Vi = Ui∩Y [1]. We find that the sets Ui together with U∗ cover all of the compact
space X [1], so there must be a finite subcover [1]. This means that there exists a finite subset J ⊆ I such
that X = U∗ ∪

⋃
j∈J Uj . In particular, for y ∈ Y we note that y cannot lie in U∗ so it must lie in one of the

sets Uj with j ∈ J , but that means that y ∈ Y ∩ Uj = Vj . This shows that Y =
⋃

j∈J Vj as required [1].

(iii) Unseen Take X = {0, 1} with the indiscrete topology, and Y = {0}. Then Y is compact (as it is finite)
but not closed. [3]

(iv) Bookwork A space X is said to be Hausdorff if for all x, y ∈ X with x ̸= y, there exist open sets U, V ⊆ X
with x ∈ U and y ∈ V and U ∩ V = ∅ [1]. If X is Hausdorff, then any compact subset of X is closed [2].

(c) Similar problems seen We use the standard fact that a subset of R2 is compact iff it is bounded and closed.

(i) The set X is unbounded and thus not compact. [1]

(ii) The set Y is not closed, and thus is not compact. [1]

(iii) For (x, y) ∈ X ∩Y we have x, y ∈ Z with x2+ y2 < 10000 so x, y ∈ {−99,−98, . . . , 98, 99}. This shows that
X ∩ Y is finite and so is compact. [2]

(d) Unseen Let X be a metric space, so X is Hausdorff [1]. Suppose that for each x ∈ X, the set X \ {x} is
compact. As in (b)(iv) this means that X \ {x} is closed, so {x} is open in X [2]. If X is empty then it is
certainly finite. Otherwise we can choose a ∈ X. By hypothesis the set X \ {a} is compact, so the open cover
by sets {x} with x ̸= a must have a finite subscover [1]. This forces the set X \ {a} to be finite, and it follows
that X is finite as well [1].

(3) Let U∗
i−→ V∗

p−→ W∗ be a short exact sequence of chain complexes and chain maps.

(a) Define what is meant by saying that the above sequence is short exact. (3 marks)

Now recall that a snake for the above sequence is a system (c, w, v, u, a) such that

� c ∈ Hn(W );

� w ∈ Zn(W ) is a cycle such that c = [w];

� v ∈ Vn is an element with p(v) = w;

� u ∈ Zn−1(U) is a cycle with i(u) = d(v) ∈ Vn−1;

� a = [u] ∈ Hn−1(U).
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(b) Prove that for each c ∈ Hn(W ) there is a snake starting with c. (7 marks)

(c) Explain how the connecting homomorphism δ : Hn(W ) → Hn−1(U) is defined in terms of snakes. If any further
lemmas are needed to ensure that your definition is meaningful, then you should state those lemmas carefully,
but you need not prove them. (4 marks)

(d) Consider the following example. For each k ∈ Z we have

Uk = Z/24 = Z/(23 × 3) dU (x) = 12x = 22 × 3× x

Vk = Z/1296 = Z/(24 × 34) dV (x) = 36x = 22 × 32 × x

Wk = Z/54 = Z/(2× 33) dW (x) = −18x = −2× 32 × x.

The maps

Uk
i−→ Vk

p−→ Wk

are i(a (mod 24)) = 54a (mod 1296) and p(b (mod 1296)) = b (mod 54).

(i) Check that i and p are chain maps. (You may assume that they give a short exact sequence.) (3 marks)

(ii) Calculate the groups Hk(U), Hk(V ) and Hk(W ). (5 marks)

(iii) By finding an appropriate snake, calculate the homomorphism δ : Hk(W ) → Hk−1(U). (3 marks)

Solution:

(a) Bookwork For each n, the map in : Un → Vn is injective, the map pn : Vn → Wn is surjective, and the image of
in is the same as the kernel of pn. [3]

(b) Bookwork Consider an element c ∈ Hn(W ). AsHn(W ) = Zn(W )/Bn(W ) by definition, we can certainly choose

w ∈ Zn(W ) such that c = [w] [1]. As the sequence U
i−→ V

p−→ W is short exact, we know that p : Vn → Wn is
surjective, so we can choose v ∈ Vn with p(v) = w [1]. As p is a chain map we have p(d(v)) = d(p(v)) = d(w) = 0
(the last equation because w ∈ Zn(W )) [1]. This means that d(v) ∈ ker(p), but ker(p) = img(i) because the
sequence is exact, so we have u ∈ Un−1 with i(u) = d(v) [1]. Note also that i(d(u)) = d(i(u)) = d(d(v)) = 0
(because i is a chain map and d2 = 0) [1]. On the other hand, exactness means that i is injective, so the relation
i(d(u)) = 0 implies that d(u) = 0 [1]. This shows that u ∈ Zn−1(U), so we can put a = [u] ∈ Hn−1(U) [1]. We
now have a snake (c, w, v, u, a) starting with c as required.

(c) Bookwork In addition to (b), we need the following lemma: given any two snakes (c, w, v, u, a) and (c, w′, v′, u′, a′)
that both start with c, the endpoints a and a′ are also the same [2]. This makes it possible to define
δ : Hn(W ) → Hn−1(U) by the following rule: for any element c ∈ Hn(W ), we define δ(c) to be the endpoint of
any snake that starts with c [2].

(d) Similar examples seen

(i) To show that i is a chain map, we must show that dV (i(x)) = i(dU (x)) in Z/1296 for all x ∈ Z/24, or
equivalently that 54×12×k = 36×54×k (mod 1296) for all k ∈ Z. This holds because (36×54)−(54×12) =
54× 24 = 2× 33 × 23 × 3 = 1296 [2]. Similarly, to show that p is a chain map we just need to check that
36 = −18 (mod 54), which is clear [1].

(ii) For Hn(U) we note that 12k is divisible by 24 iff k is divisible by 2, so Zn(U) = {0, 2, 4, . . . , 22} ≃ Z/12,
but Bn(U) = {0, 12} so Hn(U) ≃ Z/6, with generator a = [2]. [2]
For Hn(V ) we note that 36k is divisible by 1296 = 362 iff k is divisible by 36, so Zn(V ) = Bn(V ) = 36Vn

and Hn(V ) = 0. [1]
ForHn(W ) we note that −18k is divisible by 54 = 3×18 iff k is divisible by 3, so Zn(W ) = {0, 3, 6, . . . , 51} ≃
Z/18. On the other hand, Bn(W ) = {0, 18, 36} ≃ Z/3, so Hn(W ) ≃ Z/6 with generator c = [3]. [2]

(iii) The sequence
(c, 3 (mod 54), 3 (mod 1296), 108 (mod 1296), 2 (mod 24), a)

is a snake, proving that δ(c) = a. Thus, the homomorphism δ : (Z/6).c → (Z/6).a is just given by δ(kc) = ka.
[3]

(4) For each of the following, either give an example (with justification) or prove that no example can exist.
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(a) A topological space X with two noncompact subsets Y,Z such that Y ∪ Z is compact. (5 marks)

(b) Subsets A,B,C ⊆ R2 such that A, B, C, A ∪ B, A ∪ C and B ∪ C are all contractible, but A ∪ B ∪ C is not
contractible. (5 marks)

(c) A topological space X with two open subsets U and V such that U , V and U ∩ V are all homotopy equivalent
to S1, and X = U ∪ V , and X is homotopy equivalent to S4. (5 marks)

(d) A path connected space X such that H∗(X) is not isomorphic to H∗(X ×X). (5 marks)

(e) Spaces X and Y such that X is path connected, Y is not path connected, and Hk(X) ≃ Hk(Y ) for all k. (5
marks)

Solution:

(a) Take X = S1 ⊂ C and Y = X \ {−1} and Z = X \ {1}. Then neither Y nor Z is closed in C, so they are both
noncompact. However, Y ∪ Z = X, and this is bounded and closed in C and is therefore compact. [5]

(b) Take A, B and C as follows:

A = {e2πit/3 | 0 ≤ t ≤ 1} B = {e2πit/3 | 1 ≤ t ≤ 2} C = {e2πit/3 | 2 ≤ t ≤ 3}

These are clearly contractible, as are the unions A ∪B, B ∪ C and C ∪A:

A ∪B B ∪ C C ∪A

However, A ∪B ∪ C is the full circle S1, which is not contractible. [5]

(c) This is not possible. If X, U and V were as specified, we would have H4(U) ≃ H4(V ) ≃ H4(S
1) = 0 and

H3(U ∩V ) ≃ H3(S
1) ≃ 0, whereas H4(X) ≃ H4(S

4) ≃ Z. Thus, the Mayer-Vietoris sequence H4(U)⊕H4(V ) →
H4(X) → H3(U ∩ V ) would have the form 0 → Z → 0, which is not exact. [5]

(d) Take X = S1, so X×X is a torus. It is clear that X is path connected, and standard calculations give H1(X) ≃ Z
and H1(X ×X) ≃ Z2, so H∗(X) is not isomorphic to H∗(X ×X). [5]

(e) This is not possible. For any space Z we know that H0(Z) is the free abelian group generated by π0(Z), so
H0(Z) ≃ Z iff Z is path connected. Thus if X is path connected and Y is not, we cannot have H0(X) ≃ H0(Y ).
[5]

(5) Consider S1 as the unit circle in R2 as usual. Let X be a path connected space, and put

U = {(t, x) ∈ S1 ×X | t ̸= (0, 1)}
V = {(t, x) ∈ S1 ×X | t ̸= (0,−1)}.

We use the usual notation for inclusion maps:

U ∩ V U

V S1 ×X.

i

j k

l
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(a) Define maps f, g : X → U ∩ V such that f gives a homotopy equivalence from X to one path component of
U ∩ V , and g gives a homotopy equivalence from X to the other path component of U ∩ V . (4 marks)

(b) Prove that the map i′ = i ◦ f : X → U is homotopic to i ◦ g, and also that i′ is a homotopy equivalence. (You
can then assume without further argument that the map j′ = j ◦ f : X → V is homotopic to j ◦ g, and that j′ is
a homotopy equivalence.) (6 marks)

(c) Deduce descriptions (in terms of H∗(X)) of the homology groups Hp(U ∩ V ), Hp(U) and Hp(V ), and the
homomorphism

α =

[
i∗
−j∗

]
: Hp(U ∩ V ) → Hp(U)⊕Hp(V ).

Find the kernel and image of α. (8 marks)

(d) Show that every element of Hp(U) ⊕ Hp(V ) can be written as (i′∗(a), 0) + α(b) for a unique pair (a, b) ∈
Hp(X)⊕Hp(X). (3 marks)

(e) Deduce that there is a short exact sequence Hp(X) → Hp(S
1 ×X) → Hp−1(X). (4 marks)

Solution:

(a) The path components of S1 \ {(0, 1), (0,−1)} are A = [(−1, 0)] = {(x, y) ∈ S1 | x < 0} and B = [(+1, 0)] =
{(x, y) ∈ S1 | x > 0}, so the path components of U ∩ V are A ×X and B ×X [2]. Here A is contractible and
contains (−1, 0) so the map f(x) = ((−1, 0), x) gives a homotopy equivalence from X to A ×X. Similarly, the
map g(x) = ((1, 0), x) gives a homotopy equivalence from X to B ×X [2].

(b) We can define h(t, x) = ((− cos(πt),− sin(πt)), x) for 0 ≤ t ≤ 1. As (− cos(πt),− sin(πt)) lies on the bottom
half of S1, this does not pass through (0, 1) × X and so gives a continuous map [0, 1] × X → U . It satisfies
h(0, x) = ((−1, 0), x) = i(f(x)) = i′(x) and h(1, x) = ((1, 0), x) = i(g(x)), so this gives a homotopy between i′

and i ◦ g [3]. We can also define r : U → X by r(t, x) = x. Then r ◦ i′ = id, and contractibility of S1 \ {(0, 1)}
ensures that i′r is homotopic to the identity [3].

(c) As f : X → A×X and g : X → B×X are homotopy equivalences, we see that every element of Hp(U ∩V ) can be
written as f∗(a)+g∗(b) for a unique pair (a, b) ∈ Hp(X)⊕Hp(X). [2] Similarly, any element ofHp(U)⊕Hp(V ) can
be written as (i′∗(a), j

′
∗(b)) for a unique pair (a, b) ∈ Hp(X)⊕Hp(X)[2]. As i∗f∗ = i∗g∗ = i′∗ and j∗f∗ = j∗g∗ = j′∗

we see that
α(f∗(a) + g∗(b)) = (i′∗(a+ b), −j′∗(a+ b)).[2]

This means that

ker(α) = {f∗(a)− g∗(a) | a ∈ Hp(X)} ≃ Hp(X)[1]

img(α) = {(i′∗(c),−j′∗(c)) | c ∈ Hp(X)} ≃ Hp(X)[1].

(d) We now see that every element (i′∗(a), j
′
∗(b)) ∈ Hp(U)⊕Hp(V ) can be written as (i′∗(a+b), 0)+(i′∗(−b),−j′∗(−b))

with the second term lying in img(α), and this decomposition is unique [3].

(e) From the exact sequence

Hp(U ∩ V )
α−→ Hp(U)⊕Hp(V ) → Hp(S

1 ×X)
δ−→ Hp−1(U ∩ V )

α−→ Hp−1(U)⊕Hp−1(V )

we get a short exact sequence

(Hp(U)⊕Hp(V ))/ img(αp) → Hp(S
1 ×X) −→ ker(αp−1)[2]

Part (d) gives an isomorphism (Hp(U) ⊕ Hp(V ))/ img(αp) ≃ Hp(X) [1]. Part (c) gives an isomorphism
ker(αp−1) ≃ Hp−1(X) [1]. We therefore have a short exact sequence

Hp(X) → Hp(S
1 ×X) → Hp−1(X)

as claimed.

6


