
Algebraic Topology

(1) For n ≥ 3, we put

Xn = {z ∈ C | |z| = 1 or zn ∈ (0,∞)}
Yn = {z ∈ C | |z| = 1 or zn ∈ [0,∞)}.

(a) Sketch X3 and Y3. (2 marks)

(b) Define the terms homotopy and homotopy equivalent. (5 marks)

(c) Prove (by constructing explicit maps and homotopies, and checking their validity) thatXn andXm are homotopy
equivalent for all n,m ≥ 3. (8 marks)

(d) Prove that for all n ̸= m, the space Xn is not homeomorphic to Xm. (6 marks)

(e) Prove that for all n ̸= m, the space Yn is not homotopy equivalent to Ym. (4 marks)

Claims about the homology of particular spaces should be stated clearly and justified briefly, but details are not
required.

Solution: This has many ideas in common with Q1 from 2018-19

(a) The spaces X3 and Y3 are as follows:

X3 [1] Y3 [1]

(b) Bookwork Let A and B be topological spaces. If p and q are continuous maps from A to B, then a homotopy
from p to q is a continuous map h : [0, 1]× A → B such that h(0, a) = p(a) and h(1, a) = q(a) for all a ∈ A [2].

We say that A and B are homotopy equivalent if there exist continuous maps A
f−→ B

g−→ A and a homotopy
from g ◦ f to idA and a homotopy from f ◦ g to idB . [3]

(c) For z ∈ Xp we have zp ̸= 0 so z ̸= 0 so it is legitimate to divide by |z|. We can therefore define f : Xn → Xm and
g : Xm → Xn by f(z) = z/|z| ∈ S1 ⊂ Xm and g(w) = w/|w| ∈ S1 ⊂ Xn [4]. For z ∈ Xn we have g(f(z)) = z/|z|.
If z lies on the unit circle then g(f(z)) = z. If z lies on one of the rays of Xn then g(f(z)) lies on the same ray
so the straight line from z to g(f(z)) is wholly contained in Xn. It follows that g ◦ f is homotopic to the identity
by a linear homotopy h(t, z) = (1 − t)z + t z/|z| [3]. The same argument shows that f ◦ g is homotopic to the
identity, so f and g are homotopy equivalences [1].

(d) Say that a point is special if its removal separates the space into three path components [2]. The space Xn has
precisely n special points, namely the points e2kπi/n for 0 ≤ k < n [2]. If n ̸= m then Xn and Xm have different
numbers of special points, so they are not homeomorphic [2].

(e) The space Yn is path connected and has n holes, so H1(Yn) ≃ Zn [2]. If n ̸= m then H1(Yn) is not isomorphic
to H1(Ym), so Yn cannot be homotopy equivalent to Ym [2].

(2)
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(a) Define what is meant by a topology on a set X. (3 marks)

(b) What does it mean to say that a topological space X is Hausdorff ?
(If your definition relies on any other concepts, then you should define them.) (3 marks)

(c) What does it mean to say that a topological space X is compact?
(If your definition relies on any other concepts, then you should define them.) (3 marks)

(d) Let X and Y be topological spaces, and let f : X → Y be a continuous injective map. For each of the claims
below, give a proof or a counterexample with justification.

(i) If X is Hausdorff, then Y must also be Hausdorff. (4 marks)

(ii) If X is compact, then Y must also be compact. (4 marks)

(iii) If Y is Hausdorff, then X must also be Hausdorff. (4 marks)

(iv) If Y is compact, then X must also be compact. (4 marks)

Solution:

(a) Bookwork A topology on X is a family τ of subsets of X (called open sets) such that

(1) The empty set and the whole set X are open [1]

(2) The union of any family of open sets is open [1]

(3) The intersection of any finite list of open sets is open. [1]

(b) Bookwork Let X be a topological space. Given a, b ∈ X with a ̸= b, a Hausdorff separation for (a, b) is a pair
of open sets U, V ⊆ X with a ∈ U and b ∈ V and U ∩ V = ∅[2]. We say that X is Hausdorff if every pair of
distinct points has a Hausdorff separation [1].

(c) Bookwork Let X be a topological space. An open cover of X is a family (Ui)i∈I of open sets whose union is
all of X [1]. Given such a cover, a finite subcover is a subfamily (Ui)i∈J where J ⊆ I is finite and the union is
still all of X [1]. We say that X is compact if every open cover has a finite subcover [1].

(d) Unseen

(i) Let X be empty, take Y = {0, 1} with the indiscrete topology, and let f : X → Y be the inclusion. Then
f is continuous and injective and X is (vacuously) Hausdorff but Y is not Hausdorff (because there is no
Hausdorff separation for the pair (0, 1)). [4]

(ii) Let X be empty, take Y = Z with the discrete topology, and let f : X → Y be the inclusion. Then f is
continuous and injective and X is compact but Y is not compact (because the open cover by singletons has
no finite subcover). [4]

(iii) Suppose that Y is Hausdorff; we will show that X is also Hausdorff. Suppose that a, b ∈ X with a ̸= b.
Then f(a), f(b) ∈ Y , with f(a) ̸= f(b) because f is injective. As Y is Hausdorff, we can choose disjoint
open sets U, V ⊆ Y with f(a) ∈ U and f(b) ∈ V . As f is continuous, the sets f−1(U), f−1(V ) ⊆ X are
open. As f(a) ∈ U and f(b) ∈ V we have a ∈ f−1(U) and b ∈ f−1(V ). As U and V are disjoint, we have
f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅) = ∅. Thus, the pair (f−1(U), f−1(V )) is a Hausdorff separation
for (a, b). [4]

(iv) Take X = (0, 1) and Y = [0, 1] and let f : X → Y be the inclusion. Then f is continuous and injective. It
is standard that subsets of R are compact iff they are bounded and closed, so Y is compact but X is not.
[4]

(3)

(a) Define the terms chain complex, chain map and chain homotopy. (8 marks)

(b) Prove that if two chain maps are chain homotopic, then they have the same effect on homology groups. (5
marks)

(c) Consider the chain complex T with Ti = Z/8 for all i and d(x) = 4x for all x. Find the homology groups of T .
(3 marks)
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(d) Suppose we have a short exact sequence A∗
i−→ B∗

p−→ C∗ of chain complexes and chain maps. Suppose that for
all i ∈ Z we have H2i+1(A) = H2i+1(C) = 0 and |H2i(A)| = 3 and |H2i(C)| = 5. Prove that all homology groups
of B are cyclic or trivial, and determine their orders. (5 marks)

(e) Let U∗ be a chain complex in which all the differentials d2i (for all i ∈ Z) are surjective homomorphisms. What
can we conclude about the homology groups of U∗? (4 marks)

Solution:

(a) Bookwork

(1) A chain complex is a sequence of abelian groups Ui (for i ∈ Z) [1]equipped with homomorphisms di : Ui →
Ui−1 [1]satisfying di−1 ◦ di = 0: Ui → Ui−2 for all i (or more briefly, d2 = 0). [1]

(2) Let U∗ and V∗ be chain complexes. A chain map from U∗ to V∗ is a sequence of homomorphisms fi : Ui → Vi

[1]such that di ◦ fi = fi−1 ◦ di : Ui → Vi−1 for all i ∈ Z (or more briefly, df = fd) [1].

(3) Let f, g : U∗ → V∗ be chain maps [1]. A chain homotopy between f and g is a sequence of homomorphisms
si : Ui → Vi+1 [1]with ds+ sd = g − f [1].

(b) Bookwork Suppose we have chain maps f, g : U∗ → V∗ and a chain homotopy s as above. Consider an element
u ∈ Hn(U), so u = [z] for some cycle z ∈ Un with d(z) = 0 [1]. As s is a chain homotopy from f to g, we have
g(z)− f(z) = d(s(z)) + s(d(z)) [1]. As d(z) = 0 this becomes g(z)− f(z) = d(s(z)) ∈ img(d)n = Bn(V ) [1], so
the cosets [g(z)] = g(z) + Bn(V ) and [f(z)] = f(z) + Bn(V ) are the same [1], or in other words g∗(u) = f∗(u)
as required [1].

(c) Similar examples have been seen We can identify Z/8 with {0, 1, 2, . . . , 7}. The map d sends 0, 2, 4 and
6 to 0 and 1, 3, 5 and 7 to 4. It follows that Zi(T ) = {0, 2, 4, 6} [1]and Bi(T ) = {0, 4} [1]so the quotient
Hi(T ) = Zi(T )/Bi(T ) has order 4/2 = 2 and is isomorphic to Z/2 [1].

(d) Unseen Let A∗
i−→ B∗

p−→ C∗ be as described. The Snake Lemma then gives exact sequences

0 = H2i+1(A) → H2i+1(B) → H2i+1(C) = 0.

As the two outer groups are zero the middle one is also zero, so H2i+1(B) = 0 [2]. We also have exact sequences

H2i+1(C) → H2i(A) → H2i(B) → H2i(C) → H2i−1(A)

The two outer groups are zero, so the middle three groups form a short exact sequence. As |H2i(A)| = 3 and
|H2i(C)| = 5 it follows that |H2i(B)| = 15. Up to isomorphism, the only abelian group of order 15 is Z/3⊕Z/5,
and this is isomorphic to Z/15 by the Chinese Remainder Theorem (as 3 and 5 are coprime). It follows that
H2i(B) ≃ Z/15 [3].

(e) Unseen Let U∗ be a chain complex in which d2i : U2i → U2i−1 is always surjective, so B2i−1(U) = U2i−1.
This means that every element u ∈ U2i−1 can be expressed as u = d(u′) for some u′, so d(u) = d2(u′) = 0
[1]. Thus, the homomorphism d2i−1 : U2i−1 → U2i−2 is zero. We now have Z2i−1(U) = B2i−1(U) = U2i−1, so
H2i−1(U) = U2i−1/U2i−1 = 0 [1]. We also have B2i(U) = 0 [1]and so H2i(U) ≃ Z2i(U) = ker(d2i : U2i → U2i−1)
[1].

(4) For each of the following, either give an example (with justification) or prove that no example can exist.

(a) A continuous injective map i : X → Y such that the map i∗ : H2(X) → H2(Y ) is not injective. (5 marks)

(b) A continuous surjective map p : X → Y such that the map p∗ : H2(X) → H2(Y ) is not surjective. (5 marks)

(c) A contractible space X and a homeomorphism f : X → X with no fixed points. (5 marks)

(d) A continuous injective map f : S1 → S3 such that S3 \ f(S1) is homotopy equivalent to S1. (5 marks)

(e) A continuous injective map f : S1 → S3 such that S3 \ f(S1) is contractible. (5 marks)

Solution:
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(a) Similar examples have been seen Let i be the inclusion S2 → B3 [3]. This is continuous and injective, but
H2(S

2) ≃ Z and H2(B
3) = 0 so the map i∗ : H2(S

2) → H2(B
3) is zero and is not injective [2].

(b) Unseen Let p : [0, 1]2 → T = S1 × S1 be the usual gluing map, given by p(s, t) = (e2πis, e2πit) [3]. This is
continuous and surjective, but H2([0, 1]

2) = 0 and H2(T ) ≃ Z so the map p∗ : H2([0, 1]
2) → H2(T ) is zero and is

not surjective [2].

(c) Similar examples have been seen Take X = R and define f : X → X by f(x) = x + 1 [3]. Then X is
contractible and f is a homeomorphism (with f−1(x) = x− 1) and f has no fixed points [2].

(d) Bookwork Let f : S1 → S3 be the standard inclusion given by f(u, v) = (u, v, 0, 0), and put X = S3 \ f(S1)
[2]. We then have

X = {(u, v, w, x) ∈ R4 | u2 + v2 + w2 + x2 = 1, (w, x) ̸= (0, 0)}.
We can thus define i : S1 → X and r : X → S1 and h : [0, 1]×X → X by i(w, x) = (0, 0, w, x) and r(u, v, w, x) =
(w2 + x2)−1/2(w, x) and

h(t, (u, v, w, x)) = (t2u2 + t2v2 + w2 + x2)−1/2)(tu, tv, w, x).

We then find that r ◦ i = id and h gives a homotopy between i◦ r and the identity so i is a homotopy equivalence
[3].

(e) Immediate consequence of bookwork The generalised Jordan Curve Theorem says that for any continuous
injective map f : S1 → S3, the complement S3 \ f(S1) has the same homology as S1 [3] and so cannot be
contractible [2].

(5) Put X = {(x, y) ∈ C2 | |x|2 + |y|2 = 1}, so X is homeomorphic to S3. Put ω = e2πi/3 ∈ C, so ω3 = 1. Define an
equivalence relation on X by (x, y) ∼ (x′, y′) iff (x′, y′) = ωk(x, y) for some k. Put

Y = X/ ∼
U = {[x, y] ∈ Y | x ̸= 0}
V = {[x, y] ∈ Y | y ̸= 0}.

You may assume that U and V are open in Y and that Y = U ∪ V .

(a) Show that the formula f([x, y]) = (x3/|x|3, y/x) gives a well-defined and continuous map f : U → S1 × C. Do
not assume any properties of the given formula without checking them. (6 marks)

(b) Show that f is actually a bijection and that the inverse satisfies

f−1(u, z) =
[
(v, z v)/

√
1 + |z|2

]
where v is any one of the three cube roots of u. Do not assume any properties of the given formula without
checking them. (6 marks)

(c) You may assume without proof that the map f−1 : S1 × C → U is also continuous, so f is a homeomorphism.
What can you conclude about the homeomorphism type of U ∩ V ? (3 marks)

(d) The facts proved for U have obvious counterparts for V ; you can assume these without proof. Deduce descriptions
of H∗(U), H∗(V ) and H∗(U ∩ V ). (5 marks)

(e) Use the Mayer-Vietoris sequence to compute H∗(Y ). You should be able to compute Hk(Y ) for k = 0 and k ≥ 3.
For k = 1, 2 you will need to determine a map in the Mayer-Vietoris sequence, which is possible but not so easy.
If you cannot see how to do it then you should guess, and give an answer based on your guess. (5 marks)

Solution: Somewhat similar examples have been seen

(a) For (x, y) ∈ U ′ we have x ̸= 0 so it is meaningful to define f0(x, y) = (x3/|x|3, y/x) ∈ C2 [1]. Basic complex
analysis shows that this gives a continuous map f0 : U

′ → C2 [1]. As |x3/|x|3| = |x|3/|x|3 = 1 we see that
f0(x, y) ∈ S1 × C [1]. If (x, y) ∼ (x′, y′) then (x′, y′) = (ωkx, ωky) for some k so

f0(x
′, y′) = (ω3x3/|ωx|3, (ωy)/(ωx)) = (x3/|x|3, y/x) = f0(x, y).[1]

This proves that f0 is saturated, so it induces a well-defined and continuous map f : U = U ′/ ∼→ S1 ×C given
by f([x, y]) = f0(x, y) = (x3/|x|3, y/x) [2].
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(b) Consider a point (u, z) ∈ S1 × C. Let v be a cube root of u, so |v| = 1. Put x = v/
√
1 + |z|2 and y = zx =

zv/
√

1 + |z|2. We then have x ̸= 0 and

|x|2 + |y|2 = (1 + |z|2)−1(|v|2 + |z|2|v|2|) = 1,

so (x, y) ∈ X. We also have x/|x| = v and y/x = (zx)/x = z so

f([x, y]) = f0(x, y) = (v3, z) = (u, z).

This proves that f is surjective [3].

Now suppose we have another element [x′, y′] ∈ U with f([x′, y′]) = (u, z), so (x′/|x′|)3 = u and y′/x′ = z.
This gives y′ = zx′ so (1 + |z|2)|x′|2 = |x′|2 + |y′|2 = 1 so |x′| = (1 + |z|)−1/2 = |x|. Together with the relation
(x/|x|)3 = u = (x′/|x′|)3 this gives (x′/x)3 = 1, so x′ = ωkx for some k. This in turn gives y′ = zx′ = ωkzx =
ωky, so (x′, y′) = ωk(x, y), so [x′, y′] = [x, y]. This shows that f is also injective, and therefore bijective [3].

(c) As f : U → S1 ×C is a homeomorphism, it also gives a homeomorphism from U ∩ V to f(U ∩ V ) [1]. From the
formulae in (b) and (c) we see that f−1(u, z) lies in U ∩ V iff z ̸= 0, so f gives a homeomorphism from U ∩ V
to S1 × C× [2].

(d) We now see that U is homotopy equivalent to S1, and V is also homotopy equivalent to S1 by a symmetric
argument [1]. On the other hand, U ∩ V is homotopy equivalent to S1 × S1 [1]. This gives H0(U) = H0(V ) =
H0(U ∩ V ) = Z and H1(U) = H1(V ) = Z and H1(U ∩ V ) = Z2 and H2(U ∩ V ) = Z [3].

(e) It is easy to see that U , V , U ∩ V and Y are all path connected, so H0(Y ) = Z. The interesting parts of the
truncated Mayer-Vietoris sequence are now

0 → H3(Y )
δ−→ H2(U ∩ V ) = Z → 0[1]

and

0 → H2(Y )
δ−→ Z2 α−→ Z2 β−→ H1(Y ) → 0.[1]

From the first of these we get H3(Y ) ≃ Z [1](and similar arguments give Hn(Y ) = 0 for n > 3) [1]. One can
check that α has the form (i, j) 7→ (i,−i− 3j) so it is injective with image of index 3 in Z2; this gives H2(Y ) = 0
and H1(Y ) = Z/3 [1].
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