SCHOOL OF MATHEMATICS AND STATISTICS

Algebraic Topology - Mock Exam

Spring Semester
2021-2022
2 hours 30 minutes

Answer four questions. You are advised not to answer more than four questions: if you do, only your best four will be counted.
$1 \quad$ For $n \geq 3$, we put $X_{n}=\mathbb{R}^{2} \backslash\{(1,0),(2,0), \ldots,(n, 0)\}$.
(a) Define the following terms: topology, topological space, continuous map, homeomorphism.
(7 marks)
(b) Find a space Y_{n} consisting of a finite number of straight line segments that is homotopy equivalent to X_{n}. Give a brief justification for the claim that Y_{n} is homotopy equivalent to X_{n}.
(6 marks)
(c) Prove that X_{n} is not homeomorphic to Y_{n}.
(3 marks)
(d) Prove that X_{n} is not homotopy equivalent to S^{m} for any m.
(4 marks)
(e) Find contractible open sets $U_{n}, V_{n} \subseteq \mathbb{C}$ such that $X_{n}=U_{n} \cup V_{n}$. Give a careful proof that U_{n} and V_{n} are contractible.
(5 marks)
Claims about the homology of particular spaces should be stated clearly and justified briefly, but details are not required.
(a) Let X be a topological space. Define the equivalence relation \sim on X such that $\pi_{0}(X)=X / \sim$, and prove that it is an equivalence relation. (6 marks)
(b) Let $f: X \rightarrow Y$ be a continuous map. Define the induced map $f_{*}: \pi_{0}(X) \rightarrow$ $\pi_{0}(Y)$, and prove that it is well-defined.
(c) Show that if $f, g: X \rightarrow Y$ are homotopic maps then $f_{*}=g_{*}: \pi_{0}(X) \rightarrow \pi_{0}(Y)$.
(4 marks)
(d) Let Y and Z be topological spaces. Construct a bijection $\pi_{0}(Y \times Z) \rightarrow \pi_{0}(Y) \times$ $\pi_{0}(Z)$, and prove that it is a bijection.
(5 marks)
(e) Define $i: \mathbb{Z} \rightarrow \mathbb{R} \backslash \mathbb{Z}$ by $i(n)=n+\frac{1}{2}$. Prove that there do not exist continuous maps $\mathbb{Z} \xrightarrow{f} S^{2} \times S^{2} \xrightarrow{g} \mathbb{R} \backslash \mathbb{Z}$ such that i is homotopic to $g \circ f . \quad$ (6 marks)
(a) Let $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ be a short exact sequence of chain complexes and chain maps. Define what is meant by a snake for this sequence.
(5 marks)
(b) Define the homomorphism $\delta: H_{n}(W) \rightarrow H_{n-1}(U)$. You should give a clear statement of the lemmas needed to ensure that your definition is meaningful, but you do not need to prove those lemmas.
(4 marks)
(c) Suppose that $H_{k}(W)$ is finite for all k, and that $H_{k}(U) \simeq \mathbb{Z}$ for all k. Prove that $H_{k}(V)$ is infinite and that the map $p_{*}: H_{k}(V) \rightarrow H_{k}(W)$ is surjective.
(5 marks)
(d) Consider the chain complex with $A_{k}=\mathbb{Z}^{3}$ for all $k \in \mathbb{Z}$ and $d(x, y, z)=(z, 0,0)$.
(i) Find the homology of A_{*}.
(2 marks)
(ii) Show that the formula $m(x, y, z)=(0, y, 0)$ defines a chain map $m: A_{*} \rightarrow A_{*}$
(2 marks)
(iii) Show that m is chain homotopic to the identity.
(3 marks)
(iv) Construct a chain complex A_{*}^{\prime} where the differential is zero, and a chain homotopy equivalence from A_{*}^{\prime} to A_{*}.
(4 marks)

4 For each of the following, either give an example (with justification) or prove that no example can exist.
(a) A continuous map $f: X \rightarrow Y$ such that $f_{*}: H_{1}(X) \rightarrow H_{1}(Y)$ is injective but not surjective, and $f_{*}: H_{10}(X) \rightarrow H_{10}(Y)$ is surjective but not injective.
(b) A path connected space X that is homotopy equivalent to $X \times X$.
(c) A path connected space X that is not homotopy equivalent to $X \times X$.
(5 marks)
(d) A space X and a point $x \in X$ such that X is not contractible but $X \backslash\{x\}$ is contractible.
(5 marks)
(e) A subspace $X \subseteq \mathbb{R}^{2}$ that is homotopy equivalent to $S^{4} \backslash S^{2}$.
(5 marks)

Let X be a path connected space, and put

$$
\begin{aligned}
U & =\left\{(t, x) \in S^{1} \times X \mid t \neq(0,1)\right\} \\
V & =\left\{(t, x) \in S^{1} \times X \mid t \neq(0,-1)\right\} .
\end{aligned}
$$

We use the usual notation for inclusion maps:

(a) Define maps $f, g: X \rightarrow U \cap V$ such that f gives a homotopy equivalence from X to one path component of $U \cap V$, and g gives a homotopy equivalence from X to the other path component of $U \cap V$.
(4 marks)
(b) Prove that the map $i^{\prime}=i \circ f: X \rightarrow U$ is homotopic to $i \circ g$, and also that i^{\prime} is a homotopy equivalence. (You can then assume without further argument that the map $j^{\prime}=j \circ f: X \rightarrow V$ is homotopic to $j \circ g$, and that j^{\prime} is a homotopy equivalence.)
(6 marks)
(c) Deduce descriptions of the homology groups $H_{p}(U \cap V), H_{p}(U)$ and $H_{p}(V)$, and the homomorphism

$$
\alpha=\left[\begin{array}{c}
i_{*} \\
-j_{*}
\end{array}\right]: H_{p}(U \cap V) \rightarrow H_{p}(U) \oplus H_{p}(V)
$$

Find the kernel and image of α.
(d) Show that every element of $H_{p}(U) \oplus H_{p}(V)$ can be written as $\left(i_{*}^{\prime}(a), 0\right)+\alpha(b)$ for a unique pair $(a, b) \in H_{p}(X)^{2}$.
(3 marks)
(e) Deduce that there is a short exact sequence $H_{p}(X) \rightarrow H_{p}\left(S^{1} \times X\right) \rightarrow H_{p-1}(X)$.

End of Question Paper

