MAS435

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2021–2022

2 hours 30 minutes

Algebraic Topology – Mock Exam

Answer **four** questions. You are advised **not** to answer more than four questions: if you do, only your best four will be counted.

- 1 For $n \ge 3$, we put $X_n = \mathbb{R}^2 \setminus \{(1,0), (2,0), \dots, (n,0)\}.$
 - (a) Define the following terms: topology, topological space, continuous map, homeomorphism. (7 marks)
 - (b) Find a space Y_n consisting of a finite number of straight line segments that is homotopy equivalent to X_n . Give a brief justification for the claim that Y_n is homotopy equivalent to X_n . (6 marks)
 - (c) Prove that X_n is not homeomorphic to Y_n . (3 marks)
 - (d) Prove that X_n is not homotopy equivalent to S^m for any m. (4 marks)
 - (e) Find contractible open sets $U_n, V_n \subseteq \mathbb{C}$ such that $X_n = U_n \cup V_n$. Give a careful proof that U_n and V_n are contractible. (5 marks)

Claims about the homology of particular spaces should be stated clearly and justified briefly, but details are not required.

MAS435

- (a) Let X be a topological space. Define the equivalence relation \sim on X such that $\pi_0(X) = X/\sim$, and prove that it is an equivalence relation. (6 marks)
- (b) Let $f: X \to Y$ be a continuous map. Define the induced map $f_*: \pi_0(X) \to \pi_0(Y)$, and prove that it is well-defined. (4 marks)
- (c) Show that if $f, g: X \to Y$ are homotopic maps then $f_* = g_*: \pi_0(X) \to \pi_0(Y)$. (4 marks)
- (d) Let Y and Z be topological spaces. Construct a bijection $\pi_0(Y \times Z) \to \pi_0(Y) \times \pi_0(Z)$, and prove that it is a bijection. (5 marks)
- (e) Define $i: \mathbb{Z} \to \mathbb{R} \setminus \mathbb{Z}$ by $i(n) = n + \frac{1}{2}$. Prove that there do not exist continuous maps $\mathbb{Z} \xrightarrow{f} S^2 \times S^2 \xrightarrow{g} \mathbb{R} \setminus \mathbb{Z}$ such that i is homotopic to $g \circ f$. (6 marks)
- (a) Let $U_* \xrightarrow{i} V_* \xrightarrow{p} W_*$ be a short exact sequence of chain complexes and chain maps. Define what is meant by a *snake* for this sequence. (5 marks)
- (b) Define the homomorphism $\delta: H_n(W) \to H_{n-1}(U)$. You should give a clear statement of the lemmas needed to ensure that your definition is meaningful, but you do not need to prove those lemmas. (4 marks)
- (c) Suppose that $H_k(W)$ is finite for all k, and that $H_k(U) \simeq \mathbb{Z}$ for all k. Prove that $H_k(V)$ is infinite and that the map $p_* \colon H_k(V) \to H_k(W)$ is surjective. (5 marks)

(d) Consider the chain complex with A_k = Z³ for all k ∈ Z and d(x, y, z) = (z, 0, 0).
(i) Find the homology of A_{*}. (2 marks)

- (ii) Show that the formula m(x, y, z) = (0, y, 0) defines a chain map $m: A_* \to A_*$ (2 marks)
- (iii) Show that m is chain homotopic to the identity. (3 marks)
- (iv) Construct a chain complex A'_* where the differential is zero, and a chain homotopy equivalence from A'_* to A_* . (4 marks)

2

MAS435

- 4 For each of the following, either give an example (with justification) or prove that no example can exist.
 - (a) A continuous map f: X → Y such that f_{*}: H₁(X) → H₁(Y) is injective but not surjective, and f_{*}: H₁₀(X) → H₁₀(Y) is surjective but not injective.
 (5 marks)
 - (b) A path connected space X that is homotopy equivalent to $X \times X$. (5 marks)
 - (c) A path connected space X that is not homotopy equivalent to $X \times X$. (5 marks)
 - (d) A space X and a point $x \in X$ such that X is not contractible but $X \setminus \{x\}$ is contractible. (5 marks)
 - (e) A subspace $X \subseteq \mathbb{R}^2$ that is homotopy equivalent to $S^4 \setminus S^2$. (5 marks)

5 Let X be a path connected space, and put

$$U = \{(t, x) \in S^1 \times X \mid t \neq (0, 1)\}$$
$$V = \{(t, x) \in S^1 \times X \mid t \neq (0, -1)\}.$$

We use the usual notation for inclusion maps:

- (a) Define maps $f, g: X \to U \cap V$ such that f gives a homotopy equivalence from X to one path component of $U \cap V$, and g gives a homotopy equivalence from X to the other path component of $U \cap V$. (4 marks)
- (b) Prove that the map $i' = i \circ f : X \to U$ is homotopic to $i \circ g$, and also that i' is a homotopy equivalence. (You can then assume without further argument that the map $j' = j \circ f : X \to V$ is homotopic to $j \circ g$, and that j' is a homotopy equivalence.) (6 marks)
- (c) Deduce descriptions of the homology groups $H_p(U \cap V)$, $H_p(U)$ and $H_p(V)$, and the homomorphism

$$\alpha = \begin{bmatrix} i_* \\ -j_* \end{bmatrix} \colon H_p(U \cap V) \to H_p(U) \oplus H_p(V).$$

Find the kernel and image of α .

(8 marks)

- (d) Show that every element of $H_p(U) \oplus H_p(V)$ can be written as $(i'_*(a), 0) + \alpha(b)$ for a unique pair $(a, b) \in H_p(X)^2$. (3 marks)
- (e) Deduce that there is a short exact sequence $H_p(X) \to H_p(S^1 \times X) \to H_{p-1}(X)$. (4 marks)

End of Question Paper