
Algebraic Topology

(1) Give examples as follows, justifying your answers.

(a) Topological spaces X and Y , together with injective functions f : X → Y and g : Y → X such that f , f ◦ g and
g ◦ f are all continuous, but g is not continuous. (4 marks)

(b) A compact, path-connected space X together with a continuous map f : X → X with no fixed points. (4 marks)

(c) A space X such that H1(X) is not a free abelian group. (Note here that the zero group is free abelian with no
generators, so in particular H1(X) must be nonzero.) (4 marks)

(d) A space X together with points a, b, c ∈ X such that |Π(X; a, b)| 6= |Π(X; b, c)|. (4 marks)

(e) A space X such that π1(X) is a free group with 3 generators, and H2(X) = Z. (4 marks)

Solution: In each case, two marks will be awarded for a correct example, and two further marks for justifying it.
Up to two marks may also be awarded for intelligent discussion of an incorrect example. Note that in addition to the
main lecture notes, students have access to a two-page summary of examples.

(a) We can use the standard example of a continuous bijection that is not a homeomorphism (Example 4.8):

X = (−∞, 0] ∪ (1,∞) Y = R

f(x) =

{
x if x ≤ 0

x− 1 if x > 1
g(y) =

{
y if y ≤ 0

y + 1 if y > 0.

Here f is continuous because the domains of the two clauses are both open in X, and f ◦ g and g ◦ f are identity
maps so they are certainly continuous, but g is discontinuous at y = 0. [4]

(b) We can take X = Sn for any n > 0, and f(x) = −x. (Example 9.15 mentions that Sn is compact, as an easy
application of Proposition 9.14. It is path-connected by Proposition 5.11. This example of a fixed-point-free
endomorphism is mentioned in the solution to Exercise 3 of Problem Sheet 9.) [4]

(c) We can take X = RP 2, then H1(X) = Z/2, which is not free abelian. (Example 12.15 shows that π1(RP 2) = Z/2,
and Theorem 18.18 shows that H1(RP 2) is the abelianisation of this, which is Z/2 again.) [4]

(d) We can take X = {0} q RP 2, with a = 0 and b = c = basepoint of RP 2. Then Π(X; a, b) = ∅ and Π(X; b, c) =
π1(RP 2, b) = C2 so |Π(X; a, b)| = 0 but |Π(X; b, c)| = 2. [4]

(e) We can take X = S1 ∨ S1 ∨ S1 ∨ S2. Using Corollary 15.20 (a special case of the van Kampen Theorem) we see
that π1(X) is the free product of three copies of π1(S1) = Z together with one copy of π1(S2) = 1, so it is free
on three generators. Similarly, we can use Lemma 21.4 (a special case of the Mayer-Vietoris Theorem) to show
that H2(X) = 0⊕ 0⊕ 0⊕ Z = Z as required. [4]

Feedback: For part (a), another good answer (given by several students) is to define f : [0, 2π)→ S1 by f(x) = eix,
note that this is bijective, and take g = f−1. Most people answered (b) correctly, using the same example as in the
solution above. Some people gave answers for (c) where they claimed that H1(X) was not abelian, but homology
groups are always abelian. Most people answered (d) correctly (but sometimes with inadequate justification); correct
answers for (e) were rare.

(2) Fix n ≥ 2. Define an equivalence relation on the disc B2 = {z ∈ C | |z| ≤ 1} by z0 ∼ z1 iff z0 = z1, or
(|z0| = |z1| = 1 and zn0 = zn1 ). Put X = B2/ ∼ and

Y = {(u, v) ∈ C2 | |u| ≤ 1, vn = (1− |u|)nu}.

Note that when n = 2 we just have X = RP 2; this should guide your thinking about the general case.
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(a) Show carefully that there is a homeomorphism f : X → Y such that f([z]) = (zn, (1 − |z|n)z) for all z ∈ B2.
You should prove in particular that f is well-defined, injective and surjective, and that both f and f−1 are
continuous. You may assume that polynomials and the absolute value function are continuous, but beyond that
you should not assume any properties of the given formula without proof. (13 marks)

(b) For the boundary S1 ⊂ B2, explain briefly why S1/ ∼ is homeomorphic to S1 again. (3 marks)

(c) By adapting the method used for RP 2, calculate H∗(X). (14 marks)

Solution:

(a) Suppose that z ∈ B2 (so |z| ≤ 1) and put u = zn and v = (1− |z|n)z = (1− |u|)z. We then have |u| = |z|n ≤ 1
and vn = (1 − |u|)nzn = (1 − |u|)nu, so (u, v) ∈ Y [1]. We can thus define a continuous map f0 : B2 → Y by
f0(z) = (zn, (1 − |z|n)z). Now suppose we have z0, z1 ∈ B2 with z0 ∼ z1; we claim that f(z0) = f(z1) [1]. If
z0 = z1 then this is clear. Otherwise, we must have |z0| = |z1| = 1 (which means that f0(zi) = (zni , 0)) and
zn0 = zn1 , so f0(z0) = f0(z1) as required [1]. By the universal property of quotients (Corollary 8.20) there is a
unique continuous map f : X → Y such that f([z]) = f0(z) for all z [1].

Now suppose we have (u, v) ∈ Y , so vn = (1−|u|)nu. If |u| 6= 1 then 0 < 1−|u| ≤ 1 and we put z = v/(1−|u|) ∈ C.
The relation vn = (1 − |u|)nu becomes zn = u. It follows that |z|n = |u| < 1 so |z| < 1 so z ∈ B2, and we find
that f([z]) = f0(z) = u. On the other hand, if |u| = 1 then the relation vn = (1 − |u|)nu gives v = 0. We can
let z be any one of the n’th roots of u and we get |z| = 1 and f([z]) = f0(z) = (u, 0). This shows that f is
surjective. [3]

Now suppose we have z0, z1 ∈ B2 with f([z0]) = f([z1]), or in other words zn0 = zn1 and (1 − |z0|n)z0 =
(1− |z1|n)z1. Put r = |z0| ∈ [0, 1]. Using zn0 = zn1 we get rn = |z1|n so |z1| is also equal to r. Thus, the equation
(1−|z0|n)z0 = (1−|z1|n)z1 becomes (1−rn)(z0−z1) = 0. If r < 1 this gives z0 = z1, so certainly [z0] = [z1]. On
the other hand, if r = 1 then the relation zn0 = zn1 gives z0 ∼ z1 (from the definition of the equivalence relation)
and so [z0] = [z1]. Either way, we have [z0] = [z1], so we conclude that f is injective. [3]

Note also that X is a quotient of the compact space B2, so it is again compact. Moreover, Y is a metric space and
so is Hausdorff. As f is a continuous bijection from a compact space to a Hausdorff space, it is a homeomorphism
by Proposition 9.28. [3]

(b) For z ∈ S1 we have (1−|z|n)z = 0, so f restricts to give a homeomorphism S1/ ∼→ S1×{0} ' S1. Alternatively,
on S1 the equivalence relation is just z0 ∼ z1 ⇐⇒ zn0 = zn1 , so the map [z] 7→ zn gives the required
homeomorphism. [3]

(c) Put Ũ = B2 \ {0} and Ṽ = B2 \ S1 = OB2. Let U and V be the images of Ũ and Ṽ in X. These are open sets
which cover X, so they give a Mayer-Vietoris sequence. [3]

The equivalence relation does not do anything to Ṽ , so V is just an open disc, which is contractible. Thus, the
only nontrivial homology group is H0(V ) = Z [2]. Next, we can deform Ũ radially outward onto S1, and this
is compatible with the equivalence relation, so U is homotopy equivalent to S1/ ∼, which is homeomorphic to
S1 by (b). Thus, we have H0(U) = H1(U) = Z and all other homology groups are zero [2]. Also, U ∩ V is an
annulus so H0(U ∩ V ) = H1(U ∩ V ) = Z and again all other homology groups are zero [1]. As U , V and U ∩ V
are connected we can use the truncated version of the Mayer-Vietoris sequence:

H2(U)⊕H2(V )→ H2(X)→ H1(U ∩ V )→ H1(U)⊕H1(V )→ H1(X)→ H1(U ∩ V )→ 0.[2]

Using the above determination of the homology groups, this becomes

0→ H2(X)→ Z i∗−→ Z −→ H1(X)→ 0.[1]

The standard circle in the annulus U ∩ V gets wrapped n times around the boundary circle S1/ ∼, so i∗ is
multiplication by n, which is injective [1]. It follows that H2(X) = 0 and H1(X) = Z/n. As X is connected, we
have H0(X) = Z [1]. For k > 2 is is clear from the Mayer-Vietoris sequence that Hk(X) = 0. [1]

Feedback:
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(a) Very few people checked that (zn, (1−|z|n)z) ∈ Y , despite my ranting about this sort of thing in connection with
Problem Sheet 10. Very few people distinguished clearly between f0 and f ; in particular, many people claimed
to be proving that f is continuous, but actually proved that f0 is continuous. Attempts to prove that f is
well-defined and injective were of variable quality. For surjectivity, many people claimed that f([u1/n]) = (u, v)
for all (u, v) ∈ Y . Here everything is complex so we usually have n different choices of z with zn = u, i.e. n
different possible values of u1/n. If you choose the right one then you will get f([z]) = (u, v), but if you choose
the wrong one then you will instead get f([z]) = (u, e2πik/nv) for some k 6= 0. Thus, a more detailed argument
needs to be given. These issues also mean that f−1 is not given by a simple and well-defined formula, so the
only reasonable way to prove that f−1 is continuous is to use Proposition 9.28. This is all similar to Examples
8.24, 8.26, 9.29 and 9.30 in the notes.

(b) Most people gave answers that were along the right lines.

(c) Most people who made a serious attempt at this got it roughly right; but some people gave up.
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