Algebraic Topology

(1)

(a) Given a topological space X, define the set my(X). You should include a proof that the relevant equivalence
relation is in fact an equivalence relation. (8 marks)

(b) Consider [0,1] as a based space with 0 as the basepoint. For n > 3 we define X,, = {z € C| 2" € [0,1]}:
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(i) For which n and m (with n,m > 3) is X,, homotopy equivalent to X,,? (3 marks)
(ii) For which n and m (with n,m > 3) is X,, homeomorphic to X,,? (4 marks)

Justify your answers carefully.
(¢) Give examples as follows, with justification:

(1) A based space W with |r(W)| = 8. (3 marks)
(2) A space X with two points a,b € X such that 71 (X, a) is not isomorphic to 71 (X,b). (3 marks)

(3) A space Y such that Ho(Y) ~ Ho(Y) ~ Hy(Y) ~ Hg(Y) ~ Z and all other homology groups are trivial. (4
marks)

Solution:

(a) We define a relation on X by declaring that « ~ y if there is a continuous path w: [0,1] — X with «(0) = 2 and
u(l) =y. [1]

— For any 2 € X we can define ¢: [0,1] — X by ¢(t) = « for all ¢. Using this we see that = ~ z, so or relation
is reflexive. [1]

— Suppose that  ~ y, as witnessed by a path u from z to y. The reversed path u(t) = u(l —¢t) is also
continuous, with u(0) = y and w(l) = =z, which shows that y ~ z. This shows that our relation is
symmetric. [2]

— Suppose that z ~ y and y ~ z, as witnessed by a path u from x to y and a path v from y to z. We can
define the concatenated path uxv: [0,1] = X by (u*v)(t) = u(2t) for 0 <t <1/2 and (u*v)(t) = v(2t—1)
for 1/2 < ¢ <1 [2] (so in particular (u % v)(1/2) = y = u(1) = v(0)). This is continuous on the closed
sets [0,1/2] and [1/2,1], which cover [0,1], so it is continuous on [0,1]. As (u xv)(0) = u(0) = z and
(u*v)(1) =v(1) = z we see that x ~ z. This shows that our relation is transitive. [1]

We now see that we have an equivalence relation, so we can define mo(X) = X/ ~. [1][All bookwork]

(b) (i) For any n we have a contraction of X, to 0 given by h(t, z) =tz for 0 <t < 1. Thus, all the spaces X, are
homotopy equivalent to a point and thus to each other. [3] [Unseen but easy]

(ii) Note that |mo(X, \ {a})| is 2 for most values of a, but it is n if a = 0, and 1 if |a|] = 1. If we have a
homeomorphism f: X,, — X,, then we get a homeomorphism X, \ {0} — X, \ {f(0)} so

n = [mo(Xn \ {0})] = |mo(Xm \ {F(O})] € {1,2,m}.

As n,m > 3 this can only occur if n = m. Thus, no two of the spaces X,, are homeomorphic. [4] [Unseen,
but the general technique has been seen.]



(c) (1) We can take W = (RP?)3 [2], so m1 (W) = m (RP?)3 = (Z/2)3, so |m1(W)| = 8. [1][Unseen, but RP? is
a standard example.]
(2) We can take X = ST U{0} c Cand a =0 and b =1, so m1(X,a) = 0 and 71(X,b) = Z. [3] [Unseen|]

(3) We can take Y = S2? v §* v S5, This is connected, so Hy(Y) = Z. For i > 0 we have H;(Y) = H;(5%) ®
H;(S*) @ H;(S%). We also have H;(S%) = Z, and H;(S7) = 0 for j # i; it follows that H,(Y) is as required.
[4] Alternatively, we can take Y = CP3. [Similar examples have been seen.]

(2) Are the following true or false? Justify your answers.
(a) S® is a Hausdorff space. (4 marks)

(b) The Klein bottle is a retract of S* x S! x S'. (4 marks)

(¢) There is a connected space X with 71(X) ~ 7Z/2 and Hy(X) ~ Z. (4 marks)

(d) There is a short exact sequence Z/9 — Z/99 — Z/11. (4 marks)

(e) If K is a simplicial complex and L is a subcomplex and H3(K) = 0 then Hs(L) = 0. (4 marks)
(f)

f) If K and L are simplicial complexes and f: |K| — |L| is a continuous map then there is a simplicial map
s: K — L such that f is homotopic to |s|. (5 marks)

Solution:

(a) This is true [1], because the standard topology on S® comes from the Euclidean metric on R®, and metric spaces
are always Hausdorff. [3] [It was proved in lectures that metric spaces are Hausdorff.]

(b) This is false [1]. Let X be the Klein bottle. If this was a retract of (S!)3, then 71(X) would be a retract of the
group 1 ((S1)?) = Z3, so in particular it would be a subgroup of Z* and so would be abelian. However, it is
standard that 71 (X) is nonabelian, so this is a contradiction. [3] [Similar examples have been seen.]

(c) This is false [1]. For a connected space X, the group H;(X) is always the abelianisation of 71(X). Thus, if
7m1(X) is Z/2 then H;(X) must also be Z/2. [3] [Unseen]

(d) This is true [1]: there is a short exact sequence Z/9 AN 7./99 2 7,/11 given by i(a (mod 9)) = 11a (mod 99)
and p(b (mod 99)) = b (mod 11). [3] Alternatively, as 9 and 11 are coprime we can use the Chinese Remainder
Theorem to identify Z/99 with Z/9 x Z/11. We then have a short exact sequence Z/9 % Z/9 x Z/11 % 7/11
given by j(z) = (z,0) and ¢(z,y) = y. [Similar examples have been seen.]

(e) This is false [1]. For example, if K = A* and L = 0A* C K then H3(K) = 0 but H3(L) = Z. [3] [Seen]

(f) This is false. [1]For example, K and L could be as follows:

If s: K — L is a simplicial map, it is easy to see that the image can only be a single point or a single edge
of L, and thus that |s| is homotopic to a constant map. However, it is easy to produce a homeomorphism
f: K| — |L|] and then f is not homotopic to a constant, so it cannot be homotopic to |s| for any s. [4] (By
the Simplicial Approximation Theorem, for any f: |K| — |L| we can find a corresponding map s: K" — L for
sufficiently large r; but that is not relevant here, because the question specifies that s should be defined on K
itself.) [Similar examples have been seen.]

(3) Let K and L be abstract simplicial complexes.
(a) Define what is meant by a simplicial map from K to L. (3 marks)

(b) Let s,t: K — L be simplicial maps. Define what it means for s and ¢ to be directly contiguous. (3 marks)
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(d)

()

Prove that if s and ¢ are directly contiguous, then the resulting maps |s|, |¢t|: |[K| — |L| are homotopic. (3
marks)

Prove that if s and t are directly contiguous, then the resulting maps s, t.: Hy(K) — H,(L) are the same. (You
can prove the main formula just for n = 3 rather than general n.) (9 marks)

How many injective simplicial maps are there from OA? to itself? Show that no two of them are directly
contiguous. (7 marks)

Solution:

(a)

(b)

A simplicial map from K to L is a function s: vert(K) — vert(L) such that whenever o = {vg,...,v,} is a
simplex of K, the image s(o) = {o(vg),...,0(v,)} is a simplex of L. [3]

We say that s and t are directly contiguous if whenever o = {wy,...,v,} is a simplex of K, the set

s(o)Ut(o) = {s(vo),...,8(vn), t(vo), ..., t(vy)}
is a simplex of L. [3] [Bookwork]

Suppose that s and ¢ are directly contiguous. Consider a point x € |K]|, so z € |o]| for some o € simp(K). Put
T = s(o)Ut(o), which is a simplex of L because of the contiguity condition. Both |s|(z) and |¢|(z) lie in |7|, so the
whole line segment from |s|(x) to [¢|(x) lies in |7|. We can therefore define a linear homotopy h: [0,1] x |K| — |L]
from |s| to [t| by h(r,z) = (1 —r)|s|(z) + r|t|(z). [3] [Bookwork]

Suppose again that s and ¢ are directly contiguous. Define u: C, K — C},+1L by

n

w({vg, ..., Up) = Z(fl)%s(vo), ey 8(), (V) .- t(vp)).[2]

=0

We claim that du + ud =ty — s4 [1]. We will prove this for a generator x = (vg,v1, v2,v3) € C3(K), using the
abbreviated notation i for v; or s(v;), and 7 for t(v;). We have

u(z) = 400123 —01123 401223 —01233 d(z) = +123 —023 +013 —012

—11

+1223 —1233 ud(z) = —1223

[S%)

—0223 40233 —0023 || 40223

+0023 | (0123 0173 }1—013§ +0013  —01T3

—0013 40113 | (0123 +0123 ) —0012 40112 —0122

+0012 —-0112 +0122 | —0123

Most terms cancel in the indicated groups, leaving du(z) + ud(z) = 0123 — 0123. In the original notation, this
says that

(du +ud)(x) = (t(vo), t(v1), t(v2), t(vs)) = (s(vo), s(v1), 8(v2), 5(v3)) = tx(x) — s4(2),

which means that « is a chain homotopy between sx and ¢4 [5]. As these maps are chain-homotopic, they
induce the same homomorphism between homology groups. [1][Bookwork]

The injective simplicial maps from 9AZ? to itself are just given by permuting the three vertices, so there are 3! = 6
such maps [2]. Suppose that f and g are permutations that are contiguous. Then the set f({0,1}) U g({0,1})
must be a simplex, so it has size at most two. However, f({0,1}) and g({0,1}) both have size two already, so this
is only possible if f({0,1}) = g({0,1}). As f and g are permutations, it follows that f(2) = ¢(2). By applying
the same logic to {0,2} and then {1,2}, we also see that f(1) = g(1) and f(0) = ¢(0). Thus, we actually have
f =g [5]. [Unseen]



(4) Let U, 2 V. & W, be a short exact sequence of chain complexes and chain maps.

(a)

Define what is meant by saying that the above sequence is short exact. (3 marks)

Now recall that a snake for the above sequence is a system (¢, w,v,u,a) such that

(b)
()
(d)

ce H,(W);

w € Z,(W) is a cycle such that ¢ = [w];

v €V, is an element with p(v) = w;

u € Z,—1(U) is a cycle with i(u) = d(v) € V,_1;

a=[ul € Hy_1(U).

Prove that for each ¢ € H,(W) there is a snake starting with c¢. (8 marks)

Prove that if two snakes have the same starting point, then they also have the same endpoint. (10 marks)

Suppose that the differential d: V,,11 — V,, is surjective. Show that any snake starting in H, (W) ends with
zero. (4 marks)

Solution:

(a)
(b)

The map i is injective, the map p is surjective, and the image of i is the same as the kernel of p. [3] [Bookwork]

Consider an element ¢ € H,,(W). As H,(W) = Z,,(W)/B, (W) by definition, we can certainly choose w € Z,,(W)

such that ¢ = [w] [1]. As the sequence U % V/ 2y W is short exact, we know that p: V,, — W, is surjective, so
we can choose v € V,, with p(v) = w [1]. As p is a chain map we have p(d(v)) = d(p(v)) = d(w) = 0 (the last
equation because w € Z,(W)) [1]. This means that d(v) € ker(p), but ker(p) = img(i) because the sequence is
exact, so we have u € U,y with i(u) = d(v) [2]. Note also that i(d(u)) = d(i(u)) = d(d(v)) = 0 (because i is a
chain map and d? = 0) [1]. On the other hand, exactness means that i is injective, so the relation i(d(u)) = 0
implies that d(u) = 0 [1]. This shows that v € Z,_1(U), so we can put a = [u] € H,_1(U) [1]. We now have a
snake (¢, w,v,u, a) starting with ¢ as required. [Bookwork]

Suppose we have two snakes that start with ¢. We can then subtract them to get a snake (0, w, v, u,a) starting
with 0 [1]. It will be enough to show that this ends with 0 as well, or equivalently that a = 0 [1]. The
first snake condition says that [w] = 0, which means that w = d(w’) for some w’ € W, 41 [1]. Because p is
surjective we can also choose v/ € V, 1 with w’ = p(v’) [1], and this gives w = d(w’) = d(p(v')) = p(d(v'))
[1]. The next snake condition says that p(v) = w. We can combine these facts to see that p(v — d(v’)) = 0, so
v —d(v') € ker(p) = img(i)[1]. We can therefore find v’ € U,, with v — d(v") =i(u’) [1]. We can apply d to this
using d? = 0 and di = id to get d(v) = i(d(v')) [1]. On the other hand, the third snake condition tells us that
d(v) = i(u). Subtracting these gives i(u — d(u’)) = 0, but 7 is injective, so u = d(u'), so u € B,_1(U) [1]. The
final snake condition now says that a = [u] = v+ B,—1(U), but u € B,,_1(U) so a = [u] =0 [1]. [Bookwork]

Now suppose that d: V,, 41 — V,, is surjective. As d? = 0 this means that d: V;, — Vj,,_ is zero. Now suppose
we have a snake (¢, w,v,u,a) with ¢ € H,(W) so v € V,,. The condition i(u) = d(v) now gives i(u) = 0, but ¢ is
injective so u = 0, so a = [u] = 0. [4] [Unseen]

(5) Consider a simplicial complex K with subcomplexes L and M such that K = L U M. Use the following notation
for the inclusion maps:

(a)

(b)

LNM —*5 L

| |

M —/— K.

State the Seifert-van Kampen Theorem (in a form applicable to simplicial complexes and subcomplexes as above).
(4 marks)

State the Mayer-Vietoris Theorem. (5 marks)



(c) State a theorem about the relationship between 7 and H;. (3 marks)

(d) Suppose that |L|, |[M| and |L N M| are all homotopy equivalent to S. Suppose that the maps i and j both have
degree two.

(1) Find a presentation for m|K|. (3 marks)

(2) Find H,(K). In particular, you should express each nonzero group as a direct sum of terms like Z or Z/n.
(10 marks)

Solution:

(a) Suppose that |L N M]| is connected and that we have presentations

mi|L] = (1,

cop U=

U = ].>
m|M| = (Yy1,...,yq |1 =" =v=1)
| LOM| = (z1,...,2, w1 =+ =Wy =1).
Then we have a presentation of m1|K| with generators x1,...,2p,y1,...,y, and relations u; =
---=wv; =1 and i.(z¢) = ju(2¢) for all t. [4] [Bookwork]

7‘7'*
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cee = u’l‘ = ’]_)1 =
(b) There is a natural map §: H,(K) = H,(LU M) — H,_1(L N M) such that the resulting sequence

Hy1(LUM) S H, (LN M) ]

Ho(L) & Ho (M) 2L gowu ) S B, (L0 M)
is exact for all n [5]. [Bookwork]

(d)

(¢) If |K] is connected [1], then H;(K) is naturally isomorphic to the abelianisation of 71| K| [2]. [Bookwork]
(1) As |[LN M| ~ S*, we can choose a generator z for m1|L N M|. As i has degree two we see that there is a
generator x of 7y |L| with i,(z) = 22. As j has degree two we see that there is a generator y of 71| M| with
have been seen.]

j«(2) = y?. The Seifert-van Kampen Theorem now gives m1|K| = (z,y | 2% = y?). [3] [Similar examples
(2) We have a Mayer-Vietoris sequence as follows:

Hyo(L N M) @ Hyo(L) ® Ho(M) —2 1 g,

(K) j
(K) j
Ho(K).[3]
The spaces |[LN M]|, |L| and |[M| are all homotopy equivalent to S* and so have Hy = H; = Z and all other
homology groups are zero. We also know that i, and j. act as the identity on Hy, and as multiplication by
2 on Hj. The sequence therefore has the following form:

Jx Hl

L Hy(LNM) [55.]

(L)@ Hy(M) —=21 g,

L Ho(L N M) [55.]

1y Hy(L) @ Ho(M) -2

0 o 0 0

H(K) U
LZ ] (K)
j

Lt 707 M H,
(K).[3]

Lo L,

From this we can read off that Ho(K) = 0 and Ho(K) = Z [1]and that H{(K) = Z?/7Z.(2,-2) [1]. If

we use the basis {(1,0), (1,—1)} for Z? we get H;(K) ~ Z ® Z/2 [1]. By extending the sequence further
upwards, it is also clear that H, (K) = 0 for n > 2 [1]. [Similar examples have been seen.]
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