
Algebraic Topology

(1)

(a) Given a topological space X, define the set π0(X). You should include a proof that the relevant equivalence
relation is in fact an equivalence relation. (8 marks)

(b) Consider [0, 1] as a based space with 0 as the basepoint. For n ≥ 3 we define Xn = {z ∈ C | zn ∈ [0, 1]}:

X7 X8 X9

(i) For which n and m (with n,m ≥ 3) is Xn homotopy equivalent to Xm? (3 marks)

(ii) For which n and m (with n,m ≥ 3) is Xn homeomorphic to Xm? (4 marks)

Justify your answers carefully.

(c) Give examples as follows, with justification:

(1) A based space W with |π1(W )| = 8. (3 marks)

(2) A space X with two points a, b ∈ X such that π1(X, a) is not isomorphic to π1(X, b). (3 marks)

(3) A space Y such that H0(Y ) ' H2(Y ) ' H4(Y ) ' H6(Y ) ' Z and all other homology groups are trivial. (4
marks)

Solution:

(a) We define a relation on X by declaring that x ∼ y if there is a continuous path u : [0, 1]→ X with u(0) = x and
u(1) = y. [1]

– For any x ∈ X we can define c : [0, 1]→ X by c(t) = x for all t. Using this we see that x ∼ x, so or relation
is reflexive. [1]

– Suppose that x ∼ y, as witnessed by a path u from x to y. The reversed path u(t) = u(1 − t) is also
continuous, with u(0) = y and u(1) = x, which shows that y ∼ x. This shows that our relation is
symmetric. [2]

– Suppose that x ∼ y and y ∼ z, as witnessed by a path u from x to y and a path v from y to z. We can
define the concatenated path u∗v : [0, 1]→ X by (u∗v)(t) = u(2t) for 0 ≤ t ≤ 1/2 and (u∗v)(t) = v(2t−1)
for 1/2 ≤ t ≤ 1 [2] (so in particular (u ∗ v)(1/2) = y = u(1) = v(0)). This is continuous on the closed
sets [0, 1/2] and [1/2, 1], which cover [0, 1], so it is continuous on [0, 1]. As (u ∗ v)(0) = u(0) = x and
(u ∗ v)(1) = v(1) = z we see that x ∼ z. This shows that our relation is transitive. [1]

We now see that we have an equivalence relation, so we can define π0(X) = X/ ∼. [1][All bookwork]

(b) (i) For any n we have a contraction of Xn to 0 given by h(t, z) = tz for 0 ≤ t ≤ 1. Thus, all the spaces Xn are
homotopy equivalent to a point and thus to each other. [3] [Unseen but easy]

(ii) Note that |π0(Xn \ {a})| is 2 for most values of a, but it is n if a = 0, and 1 if |a| = 1. If we have a
homeomorphism f : Xn → Xm then we get a homeomorphism Xn \ {0} → Xm \ {f(0)} so

n = |π0(Xn \ {0})| = |π0(Xm \ {f(0})| ∈ {1, 2,m}.

As n,m ≥ 3 this can only occur if n = m. Thus, no two of the spaces Xn are homeomorphic. [4] [Unseen,
but the general technique has been seen.]
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(c) (1) We can take W = (RP 2)3 [2], so π1(W ) = π1(RP 2)3 = (Z/2)3, so |π1(W )| = 8. [1][Unseen, but RP 2 is
a standard example.]

(2) We can take X = S1 ∪ {0} ⊂ C and a = 0 and b = 1, so π1(X, a) = 0 and π1(X, b) = Z. [3] [Unseen]

(3) We can take Y = S2 ∨ S4 ∨ S6. This is connected, so H0(Y ) = Z. For i > 0 we have Hi(Y ) = Hi(S
2) ⊕

Hi(S
4)⊕Hi(S

6). We also have Hi(S
i) = Z, and Hi(S

j) = 0 for j 6= i; it follows that H∗(Y ) is as required.
[4] Alternatively, we can take Y = CP 3. [Similar examples have been seen.]

(2) Are the following true or false? Justify your answers.

(a) S5 is a Hausdorff space. (4 marks)

(b) The Klein bottle is a retract of S1 × S1 × S1. (4 marks)

(c) There is a connected space X with π1(X) ' Z/2 and H1(X) ' Z. (4 marks)

(d) There is a short exact sequence Z/9→ Z/99→ Z/11. (4 marks)

(e) If K is a simplicial complex and L is a subcomplex and H3(K) = 0 then H3(L) = 0. (4 marks)

(f) If K and L are simplicial complexes and f : |K| → |L| is a continuous map then there is a simplicial map
s : K → L such that f is homotopic to |s|. (5 marks)

Solution:

(a) This is true [1], because the standard topology on S5 comes from the Euclidean metric on R6, and metric spaces
are always Hausdorff. [3] [It was proved in lectures that metric spaces are Hausdorff.]

(b) This is false [1]. Let X be the Klein bottle. If this was a retract of (S1)3, then π1(X) would be a retract of the
group π1((S1)3) = Z3, so in particular it would be a subgroup of Z3 and so would be abelian. However, it is
standard that π1(X) is nonabelian, so this is a contradiction. [3] [Similar examples have been seen.]

(c) This is false [1]. For a connected space X, the group H1(X) is always the abelianisation of π1(X). Thus, if
π1(X) is Z/2 then H1(X) must also be Z/2. [3] [Unseen]

(d) This is true [1]: there is a short exact sequence Z/9 i−→ Z/99
p−→ Z/11 given by i(a (mod 9)) = 11a (mod 99)

and p(b (mod 99)) = b (mod 11). [3] Alternatively, as 9 and 11 are coprime we can use the Chinese Remainder

Theorem to identify Z/99 with Z/9 × Z/11. We then have a short exact sequence Z/9 j−→ Z/9 × Z/11
q−→ Z/11

given by j(x) = (x, 0) and q(x, y) = y. [Similar examples have been seen.]

(e) This is false [1]. For example, if K = ∆4 and L = ∂∆4 ⊂ K then H3(K) = 0 but H3(L) = Z. [3] [Seen]

(f) This is false. [1]For example, K and L could be as follows:

K = L =

If s : K → L is a simplicial map, it is easy to see that the image can only be a single point or a single edge
of L, and thus that |s| is homotopic to a constant map. However, it is easy to produce a homeomorphism
f : |K| → |L| and then f is not homotopic to a constant, so it cannot be homotopic to |s| for any s. [4] (By
the Simplicial Approximation Theorem, for any f : |K| → |L| we can find a corresponding map s : K(r) → L for
sufficiently large r; but that is not relevant here, because the question specifies that s should be defined on K
itself.) [Similar examples have been seen.]

(3) Let K and L be abstract simplicial complexes.

(a) Define what is meant by a simplicial map from K to L. (3 marks)

(b) Let s, t : K → L be simplicial maps. Define what it means for s and t to be directly contiguous. (3 marks)
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(c) Prove that if s and t are directly contiguous, then the resulting maps |s|, |t| : |K| → |L| are homotopic. (3
marks)

(d) Prove that if s and t are directly contiguous, then the resulting maps s∗, t∗ : H∗(K)→ H∗(L) are the same. (You
can prove the main formula just for n = 3 rather than general n.) (9 marks)

(e) How many injective simplicial maps are there from ∂∆2 to itself? Show that no two of them are directly
contiguous. (7 marks)

Solution:

(a) A simplicial map from K to L is a function s : vert(K) → vert(L) such that whenever σ = {v0, . . . , vn} is a
simplex of K, the image s(σ) = {σ(v0), . . . , σ(vn)} is a simplex of L. [3]

(b) We say that s and t are directly contiguous if whenever σ = {v0, . . . , vn} is a simplex of K, the set

s(σ) ∪ t(σ) = {s(v0), . . . , s(vn), t(v0), . . . , t(vn)}

is a simplex of L. [3] [Bookwork]

(c) Suppose that s and t are directly contiguous. Consider a point x ∈ |K|, so x ∈ |σ| for some σ ∈ simp(K). Put
τ = s(σ)∪t(σ), which is a simplex of L because of the contiguity condition. Both |s|(x) and |t|(x) lie in |τ |, so the
whole line segment from |s|(x) to |t|(x) lies in |τ |. We can therefore define a linear homotopy h : [0, 1]×|K| → |L|
from |s| to |t| by h(r, x) = (1− r)|s|(x) + r |t|(x). [3] [Bookwork]

(d) Suppose again that s and t are directly contiguous. Define u : CnK → Cn+1L by

u〈v0, . . . , vn〉 =

n∑
i=0

(−1)i〈s(v0), . . . , s(vi), t(vi), . . . , t(vn)〉.[2]

We claim that du+ ud = t# − s# [1]. We will prove this for a generator x = 〈v0, v1, v2, v3〉 ∈ C3(K), using the
abbreviated notation i for vi or s(vi), and i for t(vi). We have

u(x) = +00123 −01123 +01223 −01233

du(x) = +0123 −1123 +1223 −1233

−0123 +0123 −0223 +0233

+0023 −0123 +0123 −0133

−0013 +0113 −0123 +0123

+0012 −0112 +0122 −0123

d(x) = +123 −023 +013 −012

ud(x) = +1123 −1223 +1233

−0023 +0223 −0233

+0013 −0113 +0133

−0012 +0112 −0122

Most terms cancel in the indicated groups, leaving du(x) + ud(x) = 0123 − 0123. In the original notation, this
says that

(du+ ud)(x) = 〈t(v0), t(v1), t(v2), t(v3)〉 − 〈s(v0), s(v1), s(v2), s(v3)〉 = t#(x)− s#(x),

which means that u is a chain homotopy between s# and t# [5]. As these maps are chain-homotopic, they
induce the same homomorphism between homology groups. [1][Bookwork]

(f) The injective simplicial maps from ∂∆2 to itself are just given by permuting the three vertices, so there are 3! = 6
such maps [2]. Suppose that f and g are permutations that are contiguous. Then the set f({0, 1}) ∪ g({0, 1})
must be a simplex, so it has size at most two. However, f({0, 1}) and g({0, 1}) both have size two already, so this
is only possible if f({0, 1}) = g({0, 1}). As f and g are permutations, it follows that f(2) = g(2). By applying
the same logic to {0, 2} and then {1, 2}, we also see that f(1) = g(1) and f(0) = g(0). Thus, we actually have
f = g [5]. [Unseen]
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(4) Let U∗
i−→ V∗

p−→W∗ be a short exact sequence of chain complexes and chain maps.

(a) Define what is meant by saying that the above sequence is short exact. (3 marks)

Now recall that a snake for the above sequence is a system (c, w, v, u, a) such that

• c ∈ Hn(W );

• w ∈ Zn(W ) is a cycle such that c = [w];

• v ∈ Vn is an element with p(v) = w;

• u ∈ Zn−1(U) is a cycle with i(u) = d(v) ∈ Vn−1;

• a = [u] ∈ Hn−1(U).

(b) Prove that for each c ∈ Hn(W ) there is a snake starting with c. (8 marks)

(c) Prove that if two snakes have the same starting point, then they also have the same endpoint. (10 marks)

(d) Suppose that the differential d : Vn+1 → Vn is surjective. Show that any snake starting in Hn(W ) ends with
zero. (4 marks)

Solution:

(a) The map i is injective, the map p is surjective, and the image of i is the same as the kernel of p. [3] [Bookwork]

(b) Consider an element c ∈ Hn(W ). As Hn(W ) = Zn(W )/Bn(W ) by definition, we can certainly choose w ∈ Zn(W )

such that c = [w] [1]. As the sequence U
i−→ V

p−→ W is short exact, we know that p : Vn → Wn is surjective, so
we can choose v ∈ Vn with p(v) = w [1]. As p is a chain map we have p(d(v)) = d(p(v)) = d(w) = 0 (the last
equation because w ∈ Zn(W )) [1]. This means that d(v) ∈ ker(p), but ker(p) = img(i) because the sequence is
exact, so we have u ∈ Un−1 with i(u) = d(v) [2]. Note also that i(d(u)) = d(i(u)) = d(d(v)) = 0 (because i is a
chain map and d2 = 0) [1]. On the other hand, exactness means that i is injective, so the relation i(d(u)) = 0
implies that d(u) = 0 [1]. This shows that u ∈ Zn−1(U), so we can put a = [u] ∈ Hn−1(U) [1]. We now have a
snake (c, w, v, u, a) starting with c as required. [Bookwork]

(c) Suppose we have two snakes that start with c. We can then subtract them to get a snake (0, w, v, u, a) starting
with 0 [1]. It will be enough to show that this ends with 0 as well, or equivalently that a = 0 [1]. The
first snake condition says that [w] = 0, which means that w = d(w′) for some w′ ∈ Wn+1 [1]. Because p is
surjective we can also choose v′ ∈ Vn+1 with w′ = p(v′) [1], and this gives w = d(w′) = d(p(v′)) = p(d(v′))
[1]. The next snake condition says that p(v) = w. We can combine these facts to see that p(v − d(v′)) = 0, so
v − d(v′) ∈ ker(p) = img(i)[1]. We can therefore find u′ ∈ Un with v − d(v′) = i(u′) [1]. We can apply d to this
using d2 = 0 and di = id to get d(v) = i(d(u′)) [1]. On the other hand, the third snake condition tells us that
d(v) = i(u). Subtracting these gives i(u − d(u′)) = 0, but i is injective, so u = d(u′), so u ∈ Bn−1(U) [1]. The
final snake condition now says that a = [u] = u+Bn−1(U), but u ∈ Bn−1(U) so a = [u] = 0 [1]. [Bookwork]

(d) Now suppose that d : Vn+1 → Vn is surjective. As d2 = 0 this means that d : Vn → Vn−1 is zero. Now suppose
we have a snake (c, w, v, u, a) with c ∈ Hn(W ) so v ∈ Vn. The condition i(u) = d(v) now gives i(u) = 0, but i is
injective so u = 0, so a = [u] = 0. [4] [Unseen]

(5) Consider a simplicial complex K with subcomplexes L and M such that K = L∪M . Use the following notation
for the inclusion maps:

L ∩M L

M K.

i

j f

g

(a) State the Seifert-van Kampen Theorem (in a form applicable to simplicial complexes and subcomplexes as above).
(4 marks)

(b) State the Mayer-Vietoris Theorem. (5 marks)

4



(c) State a theorem about the relationship between π1 and H1. (3 marks)

(d) Suppose that |L|, |M | and |L∩M | are all homotopy equivalent to S1. Suppose that the maps i and j both have
degree two.

(1) Find a presentation for π1|K|. (3 marks)

(2) Find H∗(K). In particular, you should express each nonzero group as a direct sum of terms like Z or Z/n.
(10 marks)

Solution:

(a) Suppose that |L ∩M | is connected and that we have presentations

π1|L| = 〈x1, . . . , xp | u1 = · · · = uk = 1〉
π1|M | = 〈y1, . . . , yq | v1 = · · · = vl = 1〉

π1|L ∩M | = 〈z1, . . . , zr | w1 = · · · = wm = 1〉.

Then we have a presentation of π1|K| with generators x1, . . . , xp, y1, . . . , yq and relations u1 = · · · = ur = v1 =
· · · = vl = 1 and i∗(zt) = j∗(zt) for all t. [4] [Bookwork]

(b) There is a natural map δ : Hn(K) = Hn(L ∪M)→ Hn−1(L ∩M) such that the resulting sequence

Hn+1(L ∪M)
δ−→ Hn(L ∩M)

[
i∗
−j∗

]
−−−−→ Hn(L)⊕Hn(M)

[ f∗ g∗ ]−−−−−→ Hn(L ∪M)
δ−→ Hn−1(L ∩M)

is exact for all n [5]. [Bookwork]

(c) If |K| is connected [1], then H1(K) is naturally isomorphic to the abelianisation of π1|K| [2]. [Bookwork]

(d) (1) As |L ∩M | ' S1, we can choose a generator z for π1|L ∩M |. As i has degree two we see that there is a
generator x of π1|L| with i∗(z) = x2. As j has degree two we see that there is a generator y of π1|M | with
j∗(z) = y2. The Seifert-van Kampen Theorem now gives π1|K| = 〈x, y | x2 = y2〉. [3] [Similar examples
have been seen.]

(2) We have a Mayer-Vietoris sequence as follows:

H2(L ∩M) H2(L)⊕H2(M) H2(K)

H1(L ∩M) H1(L)⊕H1(M) H1(K)

H0(L ∩M) H0(L)⊕H0(M) H0(K).[3]

[
i∗
−j∗

]
[ f∗ g∗ ]

[
i∗
−j∗

]
[ f∗ g∗ ]

[
i∗
−j∗

]
[ f∗ g∗ ]

The spaces |L∩M |, |L| and |M | are all homotopy equivalent to S1 and so have H0 = H1 = Z and all other
homology groups are zero. We also know that i∗ and j∗ act as the identity on H0, and as multiplication by
2 on H1. The sequence therefore has the following form:

0 0 H2(K)

Z Z⊕ Z H1(K)

Z Z⊕ Z H0(K).[3]

0 0

[
2
−2

]
[ f∗ g∗ ]

[
1
−1

]
[ f∗ g∗ ]

From this we can read off that H2(K) = 0 and H0(K) = Z [1]and that H1(K) = Z2/Z.(2,−2) [1]. If
we use the basis {(1, 0), (1,−1)} for Z2 we get H1(K) ' Z ⊕ Z/2 [1]. By extending the sequence further
upwards, it is also clear that Hn(K) = 0 for n > 2 [1]. [Similar examples have been seen.]
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