Algebraic Topology

(1)
(a) Given a topological space X, define the set $\pi_{0}(X)$. You should include a proof that the relevant equivalence relation is in fact an equivalence relation. (8 marks)
(b) Consider $[0,1]$ as a based space with 0 as the basepoint. For $n \geq 3$ we define $X_{n}=\left\{z \in \mathbb{C} \mid z^{n} \in[0,1]\right\}$:

(i) For which n and m (with $n, m \geq 3$) is X_{n} homotopy equivalent to X_{m} ? ($\mathbf{3}$ marks)
(ii) For which n and m (with $n, m \geq 3$) is X_{n} homeomorphic to X_{m} ? (4 marks)

Justify your answers carefully.
(c) Give examples as follows, with justification:
(1) A based space W with $\left|\pi_{1}(W)\right|=8$. (3 marks)
(2) A space X with two points $a, b \in X$ such that $\pi_{1}(X, a)$ is not isomorphic to $\pi_{1}(X, b)$. (3 marks)
(3) A space Y such that $H_{0}(Y) \simeq H_{2}(Y) \simeq H_{4}(Y) \simeq H_{6}(Y) \simeq \mathbb{Z}$ and all other homology groups are trivial. (4 marks)

Solution:

(a) We define a relation on X by declaring that $x \sim y$ if there is a continuous path $u:[0,1] \rightarrow X$ with $u(0)=x$ and $u(1)=y .[1]$

- For any $x \in X$ we can define $c:[0,1] \rightarrow X$ by $c(t)=x$ for all t. Using this we see that $x \sim x$, so or relation is reflexive. [1]
- Suppose that $x \sim y$, as witnessed by a path u from x to y. The reversed path $\bar{u}(t)=u(1-t)$ is also continuous, with $\bar{u}(0)=y$ and $\bar{u}(1)=x$, which shows that $y \sim x$. This shows that our relation is symmetric. [2]
- Suppose that $x \sim y$ and $y \sim z$, as witnessed by a path u from x to y and a path v from y to z. We can define the concatenated path $u * v:[0,1] \rightarrow X$ by $(u * v)(t)=u(2 t)$ for $0 \leq t \leq 1 / 2$ and $(u * v)(t)=v(2 t-1)$ for $1 / 2 \leq t \leq 1[2]$ (so in particular $(u * v)(1 / 2)=y=u(1)=v(0)$). This is continuous on the closed sets $[0,1 / 2]$ and $[1 / 2,1]$, which cover $[0,1]$, so it is continuous on $[0,1]$. As $(u * v)(0)=u(0)=x$ and $(u * v)(1)=v(1)=z$ we see that $x \sim z$. This shows that our relation is transitive. [1]

We now see that we have an equivalence relation, so we can define $\pi_{0}(X)=X / \sim$. [1][All bookwork]
(b) (i) For any n we have a contraction of X_{n} to 0 given by $h(t, z)=t z$ for $0 \leq t \leq 1$. Thus, all the spaces X_{n} are homotopy equivalent to a point and thus to each other. [3] [Unseen but easy]
(ii) Note that $\left|\pi_{0}\left(X_{n} \backslash\{a\}\right)\right|$ is 2 for most values of a, but it is n if $a=0$, and 1 if $|a|=1$. If we have a homeomorphism $f: X_{n} \rightarrow X_{m}$ then we get a homeomorphism $X_{n} \backslash\{0\} \rightarrow X_{m} \backslash\{f(0)\}$ so

$$
n=\left|\pi_{0}\left(X_{n} \backslash\{0\}\right)\right|=\mid \pi_{0}\left(X_{m} \backslash\{f(0\}) \mid \in\{1,2, m\}\right.
$$

As $n, m \geq 3$ this can only occur if $n=m$. Thus, no two of the spaces X_{n} are homeomorphic. [4] [Unseen, but the general technique has been seen.]
(c) (1) We can take $W=\left(\mathbb{R} P^{2}\right)^{3}[2]$, so $\pi_{1}(W)=\pi_{1}\left(\mathbb{R} P^{2}\right)^{3}=(\mathbb{Z} / 2)^{3}$, so $\left|\pi_{1}(W)\right|=8$. [1] [Unseen, but $\mathbb{R} P^{2}$ is a standard example.]
(2) We can take $X=S^{1} \cup\{0\} \subset \mathbb{C}$ and $a=0$ and $b=1$, so $\pi_{1}(X, a)=0$ and $\pi_{1}(X, b)=\mathbb{Z}$. [3] [Unseen]
(3) We can take $Y=S^{2} \vee S^{4} \vee S^{6}$. This is connected, so $H_{0}(Y)=\mathbb{Z}$. For $i>0$ we have $H_{i}(Y)=H_{i}\left(S^{2}\right) \oplus$ $H_{i}\left(S^{4}\right) \oplus H_{i}\left(S^{6}\right)$. We also have $H_{i}\left(S^{i}\right)=\mathbb{Z}$, and $H_{i}\left(S^{j}\right)=0$ for $j \neq i$; it follows that $H_{*}(Y)$ is as required. [4] Alternatively, we can take $Y=\mathbb{C} P^{3}$. [Similar examples have been seen.]
(2) Are the following true or false? Justify your answers.
(a) S^{5} is a Hausdorff space. (4 marks)
(b) The Klein bottle is a retract of $S^{1} \times S^{1} \times S^{1}$. (4 marks)
(c) There is a connected space X with $\pi_{1}(X) \simeq \mathbb{Z} / 2$ and $H_{1}(X) \simeq \mathbb{Z}$. (4 marks)
(d) There is a short exact sequence $\mathbb{Z} / 9 \rightarrow \mathbb{Z} / 99 \rightarrow \mathbb{Z} / 11$. (4 marks)
(e) If K is a simplicial complex and L is a subcomplex and $H_{3}(K)=0$ then $H_{3}(L)=0$. (4 marks)
(f) If K and L are simplicial complexes and $f:|K| \rightarrow|L|$ is a continuous map then there is a simplicial map $s: K \rightarrow L$ such that f is homotopic to $|s|$. (5 marks)

Solution:

(a) This is true [1], because the standard topology on S^{5} comes from the Euclidean metric on \mathbb{R}^{6}, and metric spaces are always Hausdorff. [3] [It was proved in lectures that metric spaces are Hausdorff.]
(b) This is false [1]. Let X be the Klein bottle. If this was a retract of $\left(S^{1}\right)^{3}$, then $\pi_{1}(X)$ would be a retract of the group $\pi_{1}\left(\left(S^{1}\right)^{3}\right)=\mathbb{Z}^{3}$, so in particular it would be a subgroup of \mathbb{Z}^{3} and so would be abelian. However, it is standard that $\pi_{1}(X)$ is nonabelian, so this is a contradiction. [3] [Similar examples have been seen.]
(c) This is false [1]. For a connected space X, the group $H_{1}(X)$ is always the abelianisation of $\pi_{1}(X)$. Thus, if $\pi_{1}(X)$ is $\mathbb{Z} / 2$ then $H_{1}(X)$ must also be $\mathbb{Z} / 2$. [3] [Unseen]
(d) This is true [1]: there is a short exact sequence $\mathbb{Z} / 9 \xrightarrow{i} \mathbb{Z} / 99 \xrightarrow{p} \mathbb{Z} / 11$ given by $i(a(\bmod 9))=11 a(\bmod 99)$ and $p(b(\bmod 99))=b(\bmod 11)$. [3] Alternatively, as 9 and 11 are coprime we can use the Chinese Remainder Theorem to identify $\mathbb{Z} / 99$ with $\mathbb{Z} / 9 \times \mathbb{Z} / 11$. We then have a short exact sequence $\mathbb{Z} / 9 \xrightarrow{j} \mathbb{Z} / 9 \times \mathbb{Z} / 11 \xrightarrow{q} \mathbb{Z} / 11$ given by $j(x)=(x, 0)$ and $q(x, y)=y$. [Similar examples have been seen.]
(e) This is false [1]. For example, if $K=\Delta^{4}$ and $L=\partial \Delta^{4} \subset K$ then $H_{3}(K)=0$ but $H_{3}(L)=\mathbb{Z}$. [3] [Seen]
(f) This is false. [1]For example, K and L could be as follows:

If $s: K \rightarrow L$ is a simplicial map, it is easy to see that the image can only be a single point or a single edge of L, and thus that $|s|$ is homotopic to a constant map. However, it is easy to produce a homeomorphism $f:|K| \rightarrow|L|$ and then f is not homotopic to a constant, so it cannot be homotopic to $|s|$ for any s. [4] (By the Simplicial Approximation Theorem, for any $f:|K| \rightarrow|L|$ we can find a corresponding map $s: K^{(r)} \rightarrow L$ for sufficiently large r; but that is not relevant here, because the question specifies that s should be defined on K itself.) [Similar examples have been seen.]
(3) Let K and L be abstract simplicial complexes.
(a) Define what is meant by a simplicial map from K to L. ($\mathbf{3}$ marks)
(b) Let $s, t: K \rightarrow L$ be simplicial maps. Define what it means for s and t to be directly contiguous. (3 marks)
(c) Prove that if s and t are directly contiguous, then the resulting maps $|s|,|t|:|K| \rightarrow|L|$ are homotopic. (3 marks)
(d) Prove that if s and t are directly contiguous, then the resulting maps $s_{*}, t_{*}: H_{*}(K) \rightarrow H_{*}(L)$ are the same. (You can prove the main formula just for $n=3$ rather than general n.) (9 marks)
(e) How many injective simplicial maps are there from $\partial \Delta^{2}$ to itself? Show that no two of them are directly contiguous. (7 marks)

Solution:

(a) A simplicial map from K to L is a function $s: \operatorname{vert}(K) \rightarrow \operatorname{vert}(L)$ such that whenever $\sigma=\left\{v_{0}, \ldots, v_{n}\right\}$ is a simplex of K, the image $s(\sigma)=\left\{\sigma\left(v_{0}\right), \ldots, \sigma\left(v_{n}\right)\right\}$ is a simplex of L. [3]
(b) We say that s and t are directly contiguous if whenever $\sigma=\left\{v_{0}, \ldots, v_{n}\right\}$ is a simplex of K, the set

$$
s(\sigma) \cup t(\sigma)=\left\{s\left(v_{0}\right), \ldots, s\left(v_{n}\right), t\left(v_{0}\right), \ldots, t\left(v_{n}\right)\right\}
$$

is a simplex of L. [3] [Bookwork]
(c) Suppose that s and t are directly contiguous. Consider a point $x \in|K|$, so $x \in|\sigma|$ for some $\sigma \in \operatorname{simp}(K)$. Put $\tau=s(\sigma) \cup t(\sigma)$, which is a simplex of L because of the contiguity condition. Both $|s|(x)$ and $|t|(x)$ lie in $|\tau|$, so the whole line segment from $|s|(x)$ to $|t|(x)$ lies in $|\tau|$. We can therefore define a linear homotopy $h:[0,1] \times|K| \rightarrow|L|$ from $|s|$ to $|t|$ by $h(r, x)=(1-r)|s|(x)+r|t|(x)$. [3] [Bookwork]
(d) Suppose again that s and t are directly contiguous. Define $u: C_{n} K \rightarrow C_{n+1} L$ by

$$
u\left\langle v_{0}, \ldots, v_{n}\right\rangle=\sum_{i=0}^{n}(-1)^{i}\left\langle s\left(v_{0}\right), \ldots, s\left(v_{i}\right), t\left(v_{i}\right), \ldots, t\left(v_{n}\right)\right\rangle \cdot[2]
$$

We claim that $d u+u d=t_{\#}-s_{\#}[1]$. We will prove this for a generator $x=\left\langle v_{0}, v_{1}, v_{2}, v_{3}\right\rangle \in C_{3}(K)$, using the abbreviated notation i for v_{i} or $s\left(v_{i}\right)$, and \bar{i} for $t\left(v_{i}\right)$. We have

$$
\left.\begin{array}{rlrl}
u(x)= & +0 \overline{0123} & -01 \overline{123} & +012 \overline{23} \\
-0123 \overline{3} & d(x)=+123 & -023 & +013
\end{array}-012\right)
$$

Most terms cancel in the indicated groups, leaving $d u(x)+u d(x)=\overline{0123}-0123$. In the original notation, this says that

$$
(d u+u d)(x)=\left\langle t\left(v_{0}\right), t\left(v_{1}\right), t\left(v_{2}\right), t\left(v_{3}\right)\right\rangle-\left\langle s\left(v_{0}\right), s\left(v_{1}\right), s\left(v_{2}\right), s\left(v_{3}\right)\right\rangle=t_{\#}(x)-s_{\#}(x)
$$

which means that u is a chain homotopy between $s_{\#}$ and $t_{\#}$ [5]. As these maps are chain-homotopic, they induce the same homomorphism between homology groups. [1][Bookwork]
(f) The injective simplicial maps from $\partial \Delta^{2}$ to itself are just given by permuting the three vertices, so there are $3!=6$ such maps [2]. Suppose that f and g are permutations that are contiguous. Then the set $f(\{0,1\}) \cup g(\{0,1\})$ must be a simplex, so it has size at most two. However, $f(\{0,1\})$ and $g(\{0,1\})$ both have size two already, so this is only possible if $f(\{0,1\})=g(\{0,1\})$. As f and g are permutations, it follows that $f(2)=g(2)$. By applying the same logic to $\{0,2\}$ and then $\{1,2\}$, we also see that $f(1)=g(1)$ and $f(0)=g(0)$. Thus, we actually have $f=g$ [5]. [Unseen]
(4) Let $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ be a short exact sequence of chain complexes and chain maps.
(a) Define what is meant by saying that the above sequence is short exact. (3 marks)

Now recall that a snake for the above sequence is a system (c, w, v, u, a) such that

- $c \in H_{n}(W)$;
- $w \in Z_{n}(W)$ is a cycle such that $c=[w]$;
- $v \in V_{n}$ is an element with $p(v)=w$;
- $u \in Z_{n-1}(U)$ is a cycle with $i(u)=d(v) \in V_{n-1}$;
- $a=[u] \in H_{n-1}(U)$.
(b) Prove that for each $c \in H_{n}(W)$ there is a snake starting with c. (8 marks)
(c) Prove that if two snakes have the same starting point, then they also have the same endpoint. (10 marks)
(d) Suppose that the differential $d: V_{n+1} \rightarrow V_{n}$ is surjective. Show that any snake starting in $H_{n}(W)$ ends with zero. (4 marks)

Solution:

(a) The map i is injective, the map p is surjective, and the image of i is the same as the kernel of p. [3] [Bookwork]
(b) Consider an element $c \in H_{n}(W)$. As $H_{n}(W)=Z_{n}(W) / B_{n}(W)$ by definition, we can certainly choose $w \in Z_{n}(W)$ such that $c=[w][1]$. As the sequence $U \xrightarrow{i} V \xrightarrow{p} W$ is short exact, we know that $p: V_{n} \rightarrow W_{n}$ is surjective, so we can choose $v \in V_{n}$ with $p(v)=w[1]$. As p is a chain map we have $p(d(v))=d(p(v))=d(w)=0$ (the last equation because $\left.w \in Z_{n}(W)\right)$ [1]. This means that $d(v) \in \operatorname{ker}(p)$, but $\operatorname{ker}(p)=\operatorname{img}(i)$ because the sequence is exact, so we have $u \in U_{n-1}$ with $i(u)=d(v)$ [2]. Note also that $i(d(u))=d(i(u))=d(d(v))=0$ (because i is a chain map and $d^{2}=0$) [1]. On the other hand, exactness means that i is injective, so the relation $i(d(u))=0$ implies that $d(u)=0[1]$. This shows that $u \in Z_{n-1}(U)$, so we can put $a=[u] \in H_{n-1}(U)[1]$. We now have a snake (c, w, v, u, a) starting with c as required. [Bookwork]
(c) Suppose we have two snakes that start with c. We can then subtract them to get a snake $(0, w, v, u, a)$ starting with 0 [1]. It will be enough to show that this ends with 0 as well, or equivalently that $a=0$ [1]. The first snake condition says that $[w]=0$, which means that $w=d\left(w^{\prime}\right)$ for some $w^{\prime} \in W_{n+1}[1]$. Because p is surjective we can also choose $v^{\prime} \in V_{n+1}$ with $w^{\prime}=p\left(v^{\prime}\right)[1]$, and this gives $w=d\left(w^{\prime}\right)=d\left(p\left(v^{\prime}\right)\right)=p\left(d\left(v^{\prime}\right)\right)$ [1]. The next snake condition says that $p(v)=w$. We can combine these facts to see that $p\left(v-d\left(v^{\prime}\right)\right)=0$, so $v-d\left(v^{\prime}\right) \in \operatorname{ker}(p)=\operatorname{img}(i)[1]$. We can therefore find $u^{\prime} \in U_{n}$ with $v-d\left(v^{\prime}\right)=i\left(u^{\prime}\right)$ [1]. We can apply d to this using $d^{2}=0$ and $d i=i d$ to get $d(v)=i\left(d\left(u^{\prime}\right)\right)$ [1]. On the other hand, the third snake condition tells us that $d(v)=i(u)$. Subtracting these gives $i\left(u-d\left(u^{\prime}\right)\right)=0$, but i is injective, so $u=d\left(u^{\prime}\right)$, so $u \in B_{n-1}(U)$ [1]. The final snake condition now says that $a=[u]=u+B_{n-1}(U)$, but $u \in B_{n-1}(U)$ so $a=[u]=0$ [1]. [Bookwork]
(d) Now suppose that $d: V_{n+1} \rightarrow V_{n}$ is surjective. As $d^{2}=0$ this means that $d: V_{n} \rightarrow V_{n-1}$ is zero. Now suppose we have a snake (c, w, v, u, a) with $c \in H_{n}(W)$ so $v \in V_{n}$. The condition $i(u)=d(v)$ now gives $i(u)=0$, but i is injective so $u=0$, so $a=[u]=0$. [4] [Unseen]
(5) Consider a simplicial complex K with subcomplexes L and M such that $K=L \cup M$. Use the following notation for the inclusion maps:

(a) State the Seifert-van Kampen Theorem (in a form applicable to simplicial complexes and subcomplexes as above). (4 marks)
(b) State the Mayer-Vietoris Theorem. (5 marks)
(c) State a theorem about the relationship between π_{1} and H_{1}. (3 marks)
(d) Suppose that $|L|,|M|$ and $|L \cap M|$ are all homotopy equivalent to S^{1}. Suppose that the maps i and j both have degree two.
(1) Find a presentation for $\pi_{1}|K|$. (3 marks)
(2) Find $H_{*}(K)$. In particular, you should express each nonzero group as a direct sum of terms like \mathbb{Z} or \mathbb{Z} / n. (10 marks)

Solution:

(a) Suppose that $|L \cap M|$ is connected and that we have presentations

$$
\begin{aligned}
\pi_{1}|L| & =\left\langle x_{1}, \ldots, x_{p} \mid u_{1}=\cdots=u_{k}=1\right\rangle \\
\pi_{1}|M| & =\left\langle y_{1}, \ldots, y_{q} \mid v_{1}=\cdots=v_{l}=1\right\rangle \\
\pi_{1}|L \cap M| & =\left\langle z_{1}, \ldots, z_{r} \mid w_{1}=\cdots=w_{m}=1\right\rangle
\end{aligned}
$$

Then we have a presentation of $\pi_{1}|K|$ with generators $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}$ and relations $u_{1}=\cdots=u_{r}=v_{1}=$ $\cdots=v_{l}=1$ and $i_{*}\left(z_{t}\right)=j_{*}\left(z_{t}\right)$ for all t. [4] [Bookwork]
(b) There is a natural map $\delta: H_{n}(K)=H_{n}(L \cup M) \rightarrow H_{n-1}(L \cap M)$ such that the resulting sequence

$$
H_{n+1}(L \cup M) \xrightarrow{\delta} H_{n}(L \cap M) \xrightarrow{\left[\begin{array}{c}
i_{*} \\
-j_{*}
\end{array}\right]} H_{n}(L) \oplus H_{n}(M) \xrightarrow{\left[f_{*} g_{*}\right]} H_{n}(L \cup M) \xrightarrow{\delta} H_{n-1}(L \cap M)
$$

is exact for all n [5]. [Bookwork]
(c) If $|K|$ is connected [1], then $H_{1}(K)$ is naturally isomorphic to the abelianisation of $\pi_{1}|K|$ [2]. [Bookwork]
(d) (1) As $|L \cap M| \simeq S^{1}$, we can choose a generator z for $\pi_{1}|L \cap M|$. As i has degree two we see that there is a generator x of $\pi_{1}|L|$ with $i_{*}(z)=x^{2}$. As j has degree two we see that there is a generator y of $\pi_{1}|M|$ with $j_{*}(z)=y^{2}$. The Seifert-van Kampen Theorem now gives $\pi_{1}|K|=\left\langle x, y \mid x^{2}=y^{2}\right\rangle$. [3] [Similar examples have been seen.]
(2) We have a Mayer-Vietoris sequence as follows:

$$
\begin{aligned}
& H_{2}(L \cap M) \xrightarrow{\left[\begin{array}{c}
i_{*} \\
-j_{*}
\end{array}\right]} H_{2}(L) \oplus H_{2}(M) \xrightarrow{\left[f_{*} g_{*}\right]} H_{2}(K) \\
\rightarrow & H_{1}(L \cap M) \xrightarrow{\left[\begin{array}{c}
i_{*} \\
-j_{*}
\end{array}\right]} H_{1}(L) \oplus H_{1}(M) \xrightarrow{\left[f_{*} g_{*}\right]} H_{1}(K) \\
\rightarrow & H_{0}(L \cap M) \xrightarrow{\left[\begin{array}{c}
i_{*} \\
-j_{*}
\end{array}\right]} H_{0}(L) \oplus H_{0}(M) \xrightarrow{\left[f_{*} g_{*}\right]} H_{0}(K) \cdot[3]
\end{aligned}
$$

The spaces $|L \cap M|,|L|$ and $|M|$ are all homotopy equivalent to S^{1} and so have $H_{0}=H_{1}=\mathbb{Z}$ and all other homology groups are zero. We also know that i_{*} and j_{*} act as the identity on H_{0}, and as multiplication by 2 on H_{1}. The sequence therefore has the following form:

From this we can read off that $H_{2}(K)=0$ and $H_{0}(K)=\mathbb{Z}[1]$ and that $H_{1}(K)=\mathbb{Z}^{2} / \mathbb{Z} .(2,-2)$ [1]. If we use the basis $\{(1,0),(1,-1)\}$ for \mathbb{Z}^{2} we get $H_{1}(K) \simeq \mathbb{Z} \oplus \mathbb{Z} / 2$ [1]. By extending the sequence further upwards, it is also clear that $H_{n}(K)=0$ for $n>2$ [1]. [Similar examples have been seen.]

