SCHOOL OF MATHEMATICS AND STATISTICS

MAS435 Algebraic Topology

Spring Semester 2017-2018

2 hours 30 minutes

Answer four questions. You are advised not to answer more than four questions: if you do, only your best four will be counted.

1 (i) (a) What is a topological space? If X and Y are topological spaces define the product topology on $X \times Y$.
(5 marks)
(b) Suppose that T, X and Y are topological spaces and $f: T \longrightarrow X \times Y$. Writing $\pi_{X}: X \times Y \longrightarrow X$ and $\pi_{Y}: X \times Y \longrightarrow Y$ for the projections, show that if the composites $\pi_{X} \circ f$ and $\pi_{Y} \circ f$ are continuous, so too is f.
(ii) (a) If X is a topological space and $a, b \in X$ what is a path from a to b ?
(2 marks)
(b) Suppose that ω is a path from a to b and σ is a path from b to c define the concatenated path $\omega \cdot \sigma$.

Consider the relation $a \sim b$ if there is a path from a to b. Show that this is an equivalence relation. (We let $\pi_{0}(X)$ denote the set of equivalence classes).
(5 marks)
(c) If $f: X \longrightarrow Y$ is a continuous function, explain how to define the induced map $f_{*}: \pi_{0}(X) \longrightarrow \pi_{0}(Y)$.
(3 marks)
(d) Show that the map $f: \pi_{0}(X \times Y) \longrightarrow \pi_{0}(X) \times \pi_{0}(Y)$ induced by the projections is a bijection.
(6 marks)
(i) (a) What is a covering map?
(b) State the Path Lifting Lemma for a covering map $p: Y \longrightarrow X$, and explain how it can be used to define a function

$$
\ell: \pi_{1}\left(X, x_{0}\right) \longrightarrow p^{-1}\left(x_{0}\right),
$$

where $x_{0} \in X$ (you need not check that your definition is independent of the choices you make). State conditions under which ℓ is a bijection.
(8 marks)
(ii) (a) Consider the torus $T=S^{1} \times S^{1}$ and the self-map $f: T \longrightarrow T$ defined by $f(w, z)=(-w, \bar{z})$ (where w, z are complex numbers of modulus 1) and notice that f^{2} is the identity. Take the quotient space $K=T / \sim$ where $(w, z) \sim f(w, z)$ and give it the quotient topology. Show that the quotient map $p: T \longrightarrow K$ is a covering map.
(4 marks)
(b) Choose basepoints $\tilde{x}_{0}=(1,1)$ and $x_{0}=p\left(\tilde{x}_{0}\right)$. Show that p_{*} : $\pi_{1}\left(T, \tilde{x}_{0}\right) \longrightarrow \pi_{1}\left(K, x_{0}\right)$ is injective. Let $\tilde{\sigma}$ be any path from $f\left(\tilde{x}_{0}\right)$ to \tilde{x}_{0} and let $h \in \pi_{1}\left(K, x_{0}\right)$ be the class of the loop $\sigma:=p \circ \tilde{\sigma}$. Show that for any element $g \in \pi_{1}\left(K, x_{0}\right)$, either g or $g h$ is in the image of p_{*}. Deduce that $\pi_{1}\left(K, x_{0}\right)$ is generated by three elements.
(9 marks)

3 (i) What is a chain complex of abelian groups? What is the homology of such a chain complex?
(5 marks)
(ii) Show that if K is a n-dimensional simplicial complex, then $H_{n}(K)$ is a free abelian group. Show that if L is a subcomplex of K which includes all simplices of dimension $\leq d$ then $H_{i}(L)=H_{i}(K)$ for $i \leq d-1 . \quad$ (7 marks)
(iii) Let Δ^{n} be the standard n-simplex with vertex set $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$. Write down $H_{*}\left(\Delta^{n}\right)$.

Let $\left(\Delta^{n}\right)^{(d)}$ be the simplicial complex of all faces of dimension $\leq d$. Draw pictures of $\left(\Delta^{3}\right)^{(k)}$ for $k=0,1,2$.

Show that $H_{i}\left(\left(\Delta^{n}\right)^{(d)}\right)=0$ unless $i=0$ or $i=d$. For $n \geq 3$, calculate the homology of $\left(\Delta^{n}\right)^{(n-1)}$ and $\left(\Delta^{n}\right)^{(n-2)}$.
(9 marks)

4 (i) State the Mayer-Vietoris Theorem for calculating the homology of a simplicial complex $K=L \cup M$ expressed as the union of two subcomplexes L and M.
(5 marks)
(ii) Let X be formed by sticking a Möbius strip to a 2 -torus T^{2} by identifying the boundary circle with some circle in T^{2}. Suppose X may be triangulated using a simplicial complex $K=L \cup M$ with L being a triangulation of the 2-torus T^{2}, and let M being a triangulation of the Möbius strip.

Write down $H_{*}(L), H_{*}(M), H_{*}(L \cap M)$ and identify the map induced by the inclusion $L \cap M \longrightarrow M$, making any assumptions about the triangulations that are convenient.
(8 marks)
Write down the Mayer-Vietoris long exact sequence for $K=L \cup M$, and identify $H_{0}(K), H_{2}(K)$. Identify two possibilities for $H_{1}(K)$ and show that they both occur.
(12 marks)

5 Are the following true or false. Justify your answers.
(i) Any continuous self-map of the closed unit ball \bar{B}^{3} in \mathbb{R}^{3} has a fixed point.
(5 marks)
(ii) Writing $d(P, Q)$ for the Euclidean distance from P to Q, the space $X:=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid d((x, y),(n, 0))<1 / 2\right.$ for some $\left.n \in \mathbb{Z}\right\}$ is homeomorphic to $Y:=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y) \notin \mathbb{Z} \times\{0\}\right\}$.
(5 marks)
(iii) There is a covering map $K^{2} \longrightarrow T^{2}$ from the Klein bottle to the torus.
(5 marks)
(iv) One may remove a finite number of points from \mathbb{R}^{2} and obtain a space homotopy equivalent to the projective plane $\mathbb{R} P^{2}$.
(5 marks)
(v) The space X obtained by deleting the z axis from \mathbb{R}^{3} is homotopy equivalent to a 1-dimensional complex.
(5 marks)

End of Question Paper

