
MAS61015 ALGEBRAIC TOPOLOGY

Contents

1. Introduction 1
2. The idea of homology 6
3. Topological spaces 9
4. Homeomorphism 16
5. Paths 20
6. Interlude on categories and functors 25
7. Constructing new spaces 29
8. The Hausdorff property, and compactness 36
9. Homotopy 42
10. Homology 47
11. Homology of the punctured plane 56
12. Abelian groups 59
13. Chain complexes and homology 63
14. Chain homotopy 66
15. Homology of spheres 72
16. Applications of homology 75
17. The Snake Lemma 76
18. Subdivision 79
19. Construction of the Mayer-Vietoris sequence 83
20. Further calculations 84
21. The Jordan Curve Theorem 90
22. Covering maps 95
23. Transfers, coefficients and homology of projective spaces 98
24. Borsuk-Ulam and related results 100

1. Introduction

This course is about the topological structure of spaces. We start by discussing some examples. Here are
some that you should remember from the Knots and Surfaces course: the cylinder, the sphere, the torus, the
Möbius strip and the real projective plane.

Interactive demo

The last picture actually shows a set called Boy’s surface, which crosses over itself. To understand how this
relates to the real projective plane, consider (as an analogy) the following pictures:
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Interactive demo

The right hand picture shows the trefoil knot in R3, which does not intersect itself. The left hand picture
is an attempt to represent the knot in two dimensions, but that is not possible without introducing self-
intersections. Similarly, the real projective plane lives naturally in four dimensional space, where it has no
self-intersections, and Boy’s surface is an imperfect three-dimensional representation.

In this course, we will consider many examples of spaces of dimension three or less, because that makes
it easier to draw pictures. However, you should be familiar with the idea that any problem with n variables
can lead you to consider n-dimensional linear algebra, and thus sometimes to think about the geometry of
lines, planes and so on in Rn and how they intersect. If we have nonlinear equations in n variables, we may
also need to consider nonlinear subspaces of Rn and their geometry and topology, and this can often have
meaning in the real world even when n > 4. In fact, in the recently developed field of Topological Data
Analysis, it is common to have very large values of n. For example, there is active work on applications of
TDA to neuroscience, in which n is the number of neurons that one is modelling or monitoring. For large
values of n we cannot hope to draw meaningful pictures or rely on intuition. Instead, we need methods that
convert problems from topology into more tractable questions in algebra. This is the main goal of Algebraic
Topology.

Example 1.1. One family of examples that we can use to illustrate this goal consists of the letters of the
alphabet. We will regard these as subsets of the plane R2, drawn using infinitely thin lines as follows:

Many of these (such as C, L and W ) can be straightened out to just give a line segment. With a bit more
bending and stretching we can make the E, F , J and Y look the same as the T .

Interactive demo

We can redraw the table as follows:

Interactive demo

On the left, we have drawn all the letters again in red, grouping together letters that have similar properties.
On the right, we have drawn a straightened-out form for each letter. It seems that all the letters in the first
group are topologically equivalent, as are all the letters in the second group. However, the letters in the
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first group do not seem to be equivalent to those in the second group. How can we make this precise? One
approach uses the following definition:

Definition 1.2. A cut point of X is a point x ∈ X such that X \ {x} is disconnected. We define d(X) to
be the number of points that are not cut points.

For the first three groups of letters, almost all the points are cut points; the only exceptions are the tips
of the various branches. Thus, for the first group of letters we have d = 2, for the second group we have
d = 3, and for the third group we have d = 4. However, for the letters D, O and B there are no cut points,
so d = ∞. For the remaining letters the situation is more complicated, but there are still infinitely many
points where you can cut without disconnecting the space, so again d =∞.

What can we take away from this discussion?

(a) We have used some ideas about connected and disconnected spaces that seem very reasonable, but
we still have not made precise definitions or proved any theorems, which will be essential if we want
to make sure that everything will work in higher dimensions.

(b) We have implicitly assumed that topologically equivalent spaces have the same value of d(X). This
is true if we use the most obvious version of topological equivalence, which is called homeomorphism,
but we need to give an actual proof of that. We will also spend a lot of time discussing a different
notion called homotopy equivalence. It will turn out that homotopy equivalent spaces need not have
the same value of d(X), which emphasises why we need to be careful with definitions and proofs.

(c) We have defined a number d(X), such that d(X) = d(Y ) whenever X and Y are homeomorphic.
In other words, d(X) is a numerical homeomorphism invariant of X. The letters B and C have
different values of d, so they are not homeomorphic. (This is visually obvious, but now we have a
method of proof that we can hope to apply in cases that are not visually obvious.)

(d) However, this logic does not work backwards. The letters H and X both have d = 4, but we cannot
conclude that these letters are homeomorphic. In fact, we can prove that they are not homeomorphic:
if we remove the central point from X then the remaining space breaks into 4 connected pieces, but
there is no way to break H into more than 3 pieces by removing a single point.

(e) Moreover, this technique becomes very ineffective if we consider more complicated spaces. For
example, we can remove any finite set of points from the sphere and it will still remain connected,
and the torus has the same property, so this approach has no chance of detecting the difference
between the sphere and the torus. We will need other techniques that need much more work to set
up.

Now consider again the letters B, O and C. Although we can distinguish between them by methods
similar to those described above, this is in some sense missing the most obvious point: B has two holes, O
has one hole, and C has none. Unfortunately, it will take a great deal of work to give a proper mathematical
formulation of this point, and we will not achieve that until a long way into the course. However, we will
explain one interesting aspect now. Consider the following pictures:

Interactive demo

The right hand picture shows a space X in three dimensions, consisting of three lines of longitude joining
the north and south poles of the sphere S2. The left hand picture is the same space, flattened out into
the plane. Looking at the right hand picture, it seems natural to say that there are three holes, arranged
symmetrically around the z-axis. Looking at the left hand picture, it seems natural to say that there are
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only two holes. Which is correct? The key point here is that we should not think of the holes as just giving
a number; instead, there is an abelian group of holes, called H1(X), the first homology group of X. There
really are three symmetrically arranged holes, which we can call a, b and c, but they satisfy a+b+c = 0. We
can therefore use the relation c = −a− b to express every element of H1(X) in the form na+mb for some
(n,m) ∈ Z2, so the group H1(X) is isomorphic to Z2. This is the sense in which there are really only two
basic holes. The notion of addition and subtraction used here is not obvious, but it will emerge naturally
when we give the formal definitions.

This should hopefully motivate the idea that our invariants should not just be numbers, but should instead
be algebraic structures such as groups or rings. We will eventually define abelian group denoted by Hn(X)
for all n ≥ 0, which are again called homology groups. For example, the torus T has H0(T ) ≃ H2(T ) ≃ Z
and H1(T ) ≃ Z2 and Hn(T ) = 0 for n > 2. We will also write H∗(X) for the sequence of all homology
groups of X, so H∗(T ) = (Z,Z2,Z, 0, 0, . . . ) for example. We can use these groups to prove many interesting
topological facts that are completely inaccessible by other methods.

Our approach to homology groups will involve simplices and simplicial complexes.

Definition 1.3. The standard n-simplex is the space

∆n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0 for all i and
∑
i

xi = 1}.

The vertices of ∆n are just the standard basis vectors e0, . . . , en, so e0 = (1, 0, . . . , 0) and e1 = (0, 1, 0, . . . , 0)
and en = (0, . . . , 0, 1) and so on.

The standard 0-simplex ∆0 is just a single point, and ∆1 is a line segment, and ∆2 is a triangle, and ∆3

is a tetrahedron. We can draw them as follows:

e0

e1
∆1

e0

e1

e2
∆2

e0

e1

e2

e3

∆3

Interactive demo

A key technique will be to study spaces by dividing them up into simplices. Consider the following
pictures:

Interactive demo

The middle picture shows the undivided sphere S2, which is what we really want to study. The second picture
shows S2 divided into curved triangles in an octahedral pattern, and the fourth picture shows S2 divided
into curved triangles in an icosahedral pattern. The first picture is a genuine octahedron with flat faces, and
the last picture is a genuine icosahedron with flat faces. These are examples of simplicial complexes. The
sphere is homeomorphic to both the octahedron and the icosahedron. We will eventually prove a theorem
that will allow us to use the combinatorial structure of either of these complexes to compute the homology
of S2 (although in this example, other methods of computing homology are easier).
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Example 1.4. Here are some further examples of higher-dimensional spaces that we will consider later.

(a) The most basic example is Rn. Although it might seem obvious, it is already difficult to prove that
Rn and Rm are not homeomorphic when n ̸= m, but we will achieve that by the end of the course.

(b) Inside Rn+1 we have the unit ball and the unit sphere:

Bn+1 = {x ∈ Rn+1 | ∥x∥ ≤ 1}
Sn = {x ∈ Rn+1 | ∥x∥ = 1}.

S0 B1 S1 B2 S2

(The last picture is supposed to depict a hollow shell; the space inside does not count as part of S2.)

(c) We have already seen the simplex ∆n. This is actually homeomorphic to the ball Bn, or to the
cube [0, 1]n. Later we will see a nice general theorem that makes it easy to prove that something is
homeomorphic to [0, 1]n. Alternatively, we can draw a picture for n = 2: there is a homeomorphism
sending the numbered points to the numbered points and the dotted edges to the dotted edges.

1 2 3 4

5

6

7

1 2 3

456

7

Interactive demo

We will also be interested in skeleta of simplices:

skelk(∆n) = {x ∈ ∆n | at least n− k coordinates are zero }
For example, the 1-skeleton of ∆n consists of all the vertices and edges of ∆n, but nothing else.

∆3 = solid tetrahedron skel1∆3 = just the edges flattened version

Interactive demo

(d) The n-dimensional torus is S1 × · · · × S1 = (S1)n. The case 0-dimensional torus is just a point, the
1-dimensional torus is a circle, and the 2-dimensional torus is what we normally just call the torus.

(e) Let Mn(R) be the space of n × n matrices over the real numbers. This can be identified with the

space Rn2

which we have considered already. Inside Mn(R), we can consider the subspace GLn(R)
of invertible matrices, and the subspace On of orthogonal matrices (satisfying ATA = I), and the
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subspace SOn of special orthogonal matrices (satisfying det(A) = 1 as well as ATA = I). All of
these spaces have interesting topology. For example, GL2(R) is homeomorphic to R3×S1×{1,−1}
(as shown in Example 4.11), but the answers are more complicated for n > 2. There are also similar
examples involving complex matrices.

(e) The n-dimensional real projective space RPn is obtained from the sphere Sn by identifying x with
−x for all x. This is a kind of quotient construction, for which we will need to recall various ideas
about equivalence relations and study how they interact with topology. (This is also required for
a rigorous treatment of the kind of gluing constructions that you will have seen in the Knots and
Surfaces course.) It works out that RP 1 is homeomorphic to S1 and RP 3 is homeomorphic to the
matrix group SO3. There is also a different way to describe RPn as a space of matrices: it turns
out that RPn is homeomorphic to the space

Pn = {A ∈Mn+1(R) | A2 = AT = A, trace(A) = 1}.
(f) We can also consider the complex projective space CPn, for this, we recall that S2n+1 is the unit

sphere in R2n+2, but R2n+2 can be identified with Cn+1, so the points of S2n+1 can be regarded as
complex vectors. This lets us form a quotient space in which x is identified with zx whenever z is
a complex number with |z| = 1. This quotient space is CPn. It turns out that CP 1 is just S2, but
CP 2 is already quite interesting.

In order to understand all these examples, we need a general theory of topology. The framework of metric
spaces is adequate for most, but not all purposes. We will therefore spend some time on the more general
framework of topological spaces. This is a large and important topic in its own right, but we will try to
cover the minimum that we need without too many distractions.

2. The idea of homology

Video

Consider the following space X:

How can we express mathematically the fact that it has two holes? For this we need the concepts of cycles
and boundaries. In this section we will give an imprecise and informal discussion of these ideas. After that we
will need to do some foundational work before we can get to a rigorous treatment. In outline: all boundaries
are cycles, and many cycles are boundaries, but not all. Cycles that are not boundaries reveal the existence
of holes.

Here is the space X again with some additional markings:

a

b

u

v

w

x

m
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• The boundary of the path u consists of the points a and b.
• The paths v, w and x are closed, so they have no boundary. Objects with no boundary are called
cycles. Thus, v, w and x are cycles.

• If we look at a small piece of v, then it looks the same as a small piece of R1, so we regard v as being
intrinsically 1-dimensional. Cycles of dimension k are called k-cycles, so v, w and x are 1-cycles.

• The boundary of the region m is the path w, so we can say that w is a boundary. Here m is 2-
dimensional and w is 1-dimensional so we say that w is a 1-boundary. Similarly, v is the boundary
of an evident region that we have not named, so v is another 1-boundary.

• On the other hand, we cannot fill in the interior of x without using points that are not part of our
ambient space X. Thus, with respect to the space X, the cycle x is not a boundary. This reflects
the presence of the right-hand hole.

• We regard points as 0-dimensional objects with no boundary, so a and b are 0-cycles.

Video

Now consider the following picture:

u

v

m

Both u and v are cycles that are not boundaries, revealing the existence of a hole. However, u and v surround
the same hole, so they should not be regarded as interestingly different. This corresponds to the fact that
although u and v are not individually boundaries, the difference between them is the boundary of m. In
general, cycles should be considered equivalent if the difference between them is a boundary. This suggests
that we should set up our detailed definitions so we have an abelian group Z1(X) of cycles and a subgroup
B1(X) of boundaries, and we should consider the quotient group Z1(X)/B1(X). This group will be called
H1(X), and the elements will be called (1-dimensional) homology classes. Each element of H1(X) is therefore
a coset u+B1(X), where u is a 1-cycle. We also use the notation [u] for u+B1(X).

You might object that the boundary of m is v + u rather than v − u, and that this creates a problem for
our interpretation in terms of a quotient group. In fact, if we develop the details using only the ingredients
discussed so far, then we end up with a group in which all elements have order 2, so v+ u and v− u are the
same. However, there is a more refined version in which every path u has a direction, and −u is interpreted
as the same path in the opposite direction, and there are similar considerations for objects of dimension
greater than one. With appropriate conventions of this type, and with u and v oriented anticlockwise as
indicated by the arrows, it works out that the boundary of m is v − u, so [v] = [u] in H1(X).

As another example of how this works out, consider the following picture:

p

q

u

m
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The boundary of m is u− p− q, so [u] = [p] + [q] in H1(X). Similarly, it will work out that if v is any loop
that winds i times around the left-hand hole and j times around the right-hand hole then [u] = i[p] + j[q] in
H1(X). Using this we find that H1(X) is isomorphic to Z2, with one factor of Z for each hole.

Video

We can also define a group H0 along the same lines as H1. We will illustrate this with reference to the
following space Y , which is the disjoint union of three subspaces A, B and C.

AB

C

The group H0(Y ) is defined as Z0(Y )/B0(Y ). It will work out that H0(Y ) is isomorphic to Z3, with one
copy of Z for each of the components A, B and C. To explain this in more detail, we can annotate the
picture as follows:

u1

u2 v1

a0 a1

a2

b0

c0

c1

AB

C

The points a0, a1 and a2 all count as 0-cycles, so they give homology classes [a0], [a1], [a2] ∈ H0(Y ). However,
these are all the same. Indeed, the boundary of the path u1 is a1 − a0, so a1 − a0 ∈ B0(Y ), so the cosets
a1 +B0(Y ) and a0 +B0(Y ) are the same, or in other words [a1] = [a0] in H0(Y ). We can use the paths u1
and v1 in the same way to see that [a2] = [a0] and [c1] = [c0]. More generally, any point in A has the same
homology class as a0, any point in B has the same homology class as b0, and any point in C has the same
homology class as c0. Thus, if x is a 0-cycle consisting of i points in A, j points in B and k points in C then
[x] = i[a0] + j[b0] + k[c0] in H0(Y ). When we have a more precise set of definitions we will be able to show
that the elements [a0], [b0] and [c0] actually give a basis for H0(Y ) over Z, so H0(Y ) ≃ Z3 as claimed.

So far we have treated paths in X as subsets of X, but this turns out to be technically awkward, especially
if we need to deal with paths that cross over themselves or are fractal or have other unusual behaviour. In
our formal definitions, we will instead define paths in X to be continuous maps from the unit interval [0, 1]
(or the 1-simplex ∆1, which is essentially the same) to X.

Similarly, our 2-dimensional objects will not just be subsets of X; instead, they will be continuous maps
from the space

∆2 = {(x0, x1, x2) ∈ R3 | x0, x1, x2 ≥ 0, x0 + x1 + x2 = 1}

to X. For example, consider the pictures below.
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m

Z
a b

c d e

0

1 2

Z

In our informal discussion, we might have considered the region m ⊆ Z shown in the left-hand picture. In
our formal treatment, we will instead consider the expression m0 +m1 +m2, where the maps mi : ∆2 → Z
are defined by

m0(x0, x1, x2) = x0a+ x1b+ x2c

m1(x0, x1, x2) = x0b+ x1d+ x2c

m2(x0, x1, x2) = x0b+ x1e+ x2d.

The image mi(∆2) is the region marked i in the right hand diagram.

3. Topological spaces

We will now change direction, and spend some time building the required theory of topological spaces,
which will serve as a foundation for the rigorous definition of homology groups.

Topological spaces are a generalisation of metric spaces. Knowledge of metric spaces is mostly assumed
as a prerequisite, but will be reviewed briefly here. References marked [MS] refer to Dr Roxanas’s notes for
MAS331 (Metric Spaces), but equivalent results can be found in many other sources.

Video (Definition 3.1 to Example 3.3)

Definition 3.1 (MS, page 8). Let X be a set. A metric on X is a function d : X ×X → R with properties
as follows:

(a) For all x, y ∈ X we have d(x, y) ≥ 0, and d(x, y) = 0 iff x = y.
(b) For all x, y ∈ X we have d(x, y) = d(y, x).
(c) For all x, y, z ∈ X we have d(y, z) ≤ d(x, y) + d(y, z) (the Triangle Inequality).

A metric space is a set equipped with a metric.

Example 3.2 (MS, pages 9–10). We can define three different metrics on Rn, as follows:

d1(x, y) =

n∑
i=1

|xi − yi|

d2(x, y) =

√√√√ n∑
i=1

(xi − yi)2

d∞(x, y) = max(|x1 − y1|, . . . , |xn − yn|).

Later we will explain a sense in which these are essentially the same.
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Example 3.3. Consider the set Mn(R) of real n × n matrices (or any of the various subsets of Mn(R)
discussed in Example 1.4). We can define a metric as follows:

trace(A) =

n∑
i=1

Aii

∥A∥ =
√

trace(ATA)

d(A,B) = ∥A−B∥.

This is not really a new example. A little matrix algebra shows that trace(ATA) =
∑n
i,j=1A

2
ij , so if we

identify Mn(R) with Rn2

in the obvious way, then this new metric is just the same as the standard metric
d2 in the previous example. However, this new formula for the metric makes it easier to combine with other
constructions in matrix theory, such as the definition On = {A | ATA = I} of the orthogonal group.

We will not need any examples that are much more exotic than these.

Video (Definition 3.4 to Proposition 3.12)

Definition 3.4 (MS, page 51). Let X and Y be metric spaces, with metrics dX and dY . Let f be a function
from X to Y . We say that f is continuous if it has the following property:

For all x ∈ X and ϵ > 0, there exists δ > 0 such that for all x′ ∈ X with dX(x, x′) < δ, we
have dY (f(x), f(x

′)) < ϵ.

Lemma 3.5. Suppose that f satisfies dY (f(x), f(x
′)) ≤ dX(x, x′) for all x, x′ ∈ X. Then f is continuous.

Proof. Suppose we are given x ∈ X and ϵ > 0. We need to provide a number δ > 0 and check that it
has a certain property. We just take δ = ϵ. Suppose that we have x′ ∈ X with d(x, x′) < δ = ϵ. By our
assumptions on f , x and x′, we then have d(f(x), f(x′)) ≤ d(x, x′) < ϵ. This is the required property of
δ. □

Definition 3.6 (MS, page 20). Let X be a metric space, let a be a point of X, and let r be a positive real
number. We put

OB(a, r) = {x ∈ X | d(a, x) < r},
and call this the open ball of radius r centred at a.

Definition 3.7 (MS, page 42). Let X be a metric space, and let U be a subset of X. We say that U is open
if for every point a ∈ U , there exists r > 0 such that OB(a, r) ⊆ U .

ra

OB(a, r)
U

X

We also say that a subset F ⊆ X is closed if the complement X \ F is open.

Interactive demo

Remark 3.8. Our definition of closed sets is not the same as in [MS, page 40], but it is equivalent to that
definition, as proved in [MS, page 43].

Proposition 3.9 (MS, page 44). In any metric space X:
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(a) The empty set and the whole set X are open.
(b) The union of any collection of open sets is open.
(c) The intersection of any finite collection of open sets is open.

One of the main reasons for introducing metric spaces is to formalise the notion of a continuous map.
The following result shows that we can do that using only the system of open sets, we do not actually need
the metric.

Definition 3.10 (MS, page 56). Let f : X → Y be any map of sets, and let B be a subset of Y . We put

f−1(B) = {x ∈ X | f(x) ∈ B},
and we call this the preimage of B under f .

Lemma 3.11. Let f : X → Y be any map of sets.

(a) For any family of subsets Bi ⊆ Y , we have f−1(
⋂
iBi) =

⋂
i f

−1(Bi) and f
−1(
⋃
iBi) =

⋃
i f

−1(Bi).
(b) For any subset B ⊆ Y we have f−1(Y \B) = X \ f−1(B).
(c) If g : Y → Z is another map of sets, and C ⊆ Z, then we have (g ◦ f)−1(C) = f−1(g−1(C)).

Proof. For the first claim, we have x ∈ f−1(
⋂
iBi) iff f(x) ∈

⋂
iBi iff (f(x) ∈ Bi for all i) iff (x ∈ f−1(Bi)

for all i) iff x ∈
⋂
i f

−1(Bi). All the other claims can be proved in a similar way. □

Proposition 3.12 (MS, page 56). Let f : X → Y be a function between metric spaces. Then the following
are equivalent:

(a) f is continuous.
(b) For every open set V ⊆ Y , the preimage f−1(V ) ⊆ X is an open subset of X.
(c) For every closed set G ⊆ Y , the preimage f−1(G) ⊆ X is a closed subset of X.

We can now introduce the theory of topological spaces, which was mentioned briefly at the end of [MS,
Section 3].

Video (Definition 3.13 to Example 3.15)

Definition 3.13. Let X be a set. A topology on X is a collection τ of subsets of X (which are called open
sets) with the following properties:

(a) The empty set and the whole set X are open.
(b) The union of any collection of open sets is open.
(c) The intersection of any finite collection of open sets is open.

Example 3.14. If X is a metric space, we can define open sets as in Definition 3.7. Proposition 3.9 then
tells us that these open sets satisfy the axioms in Definition 3.13, so they give a topology on X, which we
call the metric topology.

Example 3.15. For any set X, we can introduce a topology by declaring that every subset is open. This
is called the discrete topology. Although this is not very interesting, it does occur naturally: it is the most
natural topology on Z for example. At the other extreme, we can introduce a different topology by declaring
that only the sets ∅ and X are open. This is called the indiscrete topology. Unlike the discrete topology, this
is rarely relevant.

Video (Lemma 3.16 to Corollary 3.17)

Lemma 3.16. Suppose we have two different metrics on X, say d1 and d2. Suppose we also have positive
constants c1 and c2 such that d1(x, y) ≤ c1d2(x, y) and d2(x, y) ≤ c2d1(x, y). Then a set U ⊆ X is open with
respect to d1 iff it is open with respect to d2. Thus, the metrics d1 and d2 give the same topology.

Proof. Suppose that U is open with respect to d1. Consider a point a ∈ U . By assumption, there exists
r > 0 such that B1(a, r) ⊆ U , where B1(a, r) is the open ball defined using d1, or in other words

B1(a, r) = {x | d1(a, x) < r}.
11

https://youtu.be/7DWV4NRPnQ4
https://youtu.be/DnTkZgAD4lM


We claim that B2(a, r/c1) is also contained in U . Indeed, if x ∈ B2(a, r/c1), then d2(a, x) < r/c1, so
d1(a, x) ≤ c1d2(a, x) < r, so x ∈ B1(a, r). However, we have B1(a, r) ⊆ U by assumption, so x ∈ U . This
proves that B2(a, r/c1) ⊆ U as claimed. As we can do this for any a ∈ U , we see that U is open with respect
to d2. By a symmetrical argument, if U is any set that is open with respect to d2, then it is also open with
respect to d1. Thus d1 and d2 have the same open sets, and thus the same topology. □

Corollary 3.17. The metrics d1, d2 and d∞ all give the same topology on Rn.

Proof. In the light of the lemma, it will be enough to prove the inequalities

d∞(x, y) ≤ d2(x, y) ≤ d1(x, y) ≤ nd∞(x, y).

Put zi = |xi − yi| ≥ 0, then choose p such that zp is the largest of all the terms zi. We then have

d∞(x, y) = max(z1, . . . , zn) = zp,

so the required inequalities are

zp ≤
√∑

i

z2i ≤
∑
i

zi ≤ n zp.

For the third inequality, the sum contains n terms each of which is less than or equal to zp, so the total is
at most n zp, as required. The other two inequalities are equivalent to

z2p ≤
∑
i

z2i ≤ (
∑
i

zi)
2 =

∑
i,j

zizj .

The first sum consists of z2p plus some other nonnegative terms. In the second sum, the terms with i = j
give the same as the first sum, and there are again some additional nonnegative terms. The claim is clear
from this. □

Remark 3.18. For p ∈ {1, 2,∞} put
Bnp = {x ∈ Rn | dp(0, x) ≤ 1}.

The inequalities in the above proof are equivalent to the claim that 1
n .B

n
∞ ⊆ Bn1 ⊆ Bn2 ⊆ Bn∞. This can be

illustrated in the case n = 2 as follows:

1
2B

2
∞

B2
∞

B2
2

B2
1

Video (Definition 3.19 to Proposition 3.24)

Definition 3.19. Let X and Y be topological spaces, and let f be a function from X to Y . We say that f
is continuous if for every open set V ⊆ Y , the preimage f−1(V ) is open in X.

Remark 3.20. Proposition 3.12 shows that when X and Y are metric spaces with the metric topology, this
agrees with our earlier definition of continuity.
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Example 3.21. We can define a function f : R4 → R4 by

f(u, v, w, x) = (eu cos(x) + w sin(x), −eu sin(x) + w cos(x), ev sin(x), ev cos(x)) .

The functions ex, sin(x) and cos(x) are known to be continuous, by basic real analysis. It is also standard that
sums and products of continuous functions are continuous, and it follows that each of the four components
of f is continuous. From this it follows easily that f itself is continuous. In future, we will not bother to
discuss this kind of argument in detail.

Example 3.22. As a very basic example, consider a constant function f : X → Y . This means that there is
a single point b ∈ Y such that f(x) = b for all x. Consider an open set U ⊆ Y . If b ∈ U then f−1(U) = X,
and if b ̸∈ U then f−1(U) = ∅. As both X and ∅ are open in X, we see that f−1(U) is always open. This
proves that f is continuous.

Proposition 3.23. Let f be as above. Then f is continuous iff for every closed subset G ⊆ Y , the preimage
f−1(G) is closed in X.

Proof. Suppose that f is continuous. Let G ⊆ Y be closed; we must show that f−1(G) is closed in X. As
G is closed in Y , we know that the complement Y \G must be open in Y , so f−1(Y \G) is open in X (by
the definition of continuity). However, f−1(Y \G) is the same as X \ f−1(G). As this is open, we see that
f−1(G) must be closed, as required.

The converse can be proved in essentially the same way. □

Proposition 3.24. Suppose that X, Y and Z are topological spaces, and we have continuous maps f : X → Y
and g : Y → Z. Then the composite map g ◦ f : X → Z is also continuous. Moreover, the identity map
id : X → X is also continuous.

Proof. Consider an open set W ⊆ Z; we must show that the preimage (g ◦ f)−1(W ) is open in X. As
g is continuous, we see that g−1(W ) is an open subset of Y . As f is continuous, it follows in turn that
f−1(g−1(W )) is open in X. However, we have x ∈ f−1(g−1(W )) iff f(x) ∈ g−1(W ) iff g(f(x)) ∈ W iff
x ∈ (g ◦f)−1(W ), so f−1(g−1(W )) is the same as (g ◦f)−1(W ). We have therefore proved that (g ◦f)−1(W )
is open in X, as required.

For the second claim, suppose that U is an open subset of X. Then id−1(U) is just the same as U , and
so is open. This proves that id is continuous. □

Definition 3.25. Let X be a topological space, and let Y be a subset of X. We declare that a subset V ⊆ Y
is open in Y if there exists an open set U of X such that V = U ∩ Y .

Proposition 3.26. The above definition gives a topology on Y (which we call the subspace topology).

Video

Proof.

(a) The empty set can be written as the intersection of Y with the open set ∅ of X, so the empty set is
open in Y . The full set Y can be written as the intersection of Y with the open set X of X, so Y is
also open in Y .

(b) Suppose we have a collection of sets Vi ⊆ Y that are open in Y ; we must show that the union
V ∗ =

⋃
i Vi is also open in Y . As each Vi is open in Y , we can find open sets Ui ⊆ X such that

Vi = Ui ∩ Y . We are assuming that the axioms for a topology are satisfied by the open sets in X,
so the union U∗ =

⋃
i Ui is again open in X. The set V ∗ can be written as U∗ ∩ Y , so it is open as

required.
(c) Now suppose instead that we have a finite collection of sets V1, . . . , Vn that are open in Y ; we must

show that the intersection V # = V1 ∩ · · · ∩ Vn is also open in Y . As in (b), we can choose open
subsets U1, . . . , Un with Vi = Ui∩Y . We are assuming that the axioms for a topology are satisfied by
the open sets in X, so the intersection U# =

⋂
i Ui is again open in X. The set V # can be written

as U# ∩ Y , so it is open as required.

□
13
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Video (Lemma 3.27 to Proposition 3.29)

One very basic point about the subspace topology is as follows. We can define i : Y → X by i(y) = y for
all y ∈ Y . We call this the inclusion map.

Lemma 3.27. If we give Y the subspace topology, then the inclusion map i : Y → X is continuous.

Proof. Consider an open set U ⊆ X; we must show that i−1(U) is open with respect to the subspace topology
on Y . But i−1(U) is just the same as U ∩ Y , which is open by the definition of the subspace topology. □

We next deal with a slightly technical point. Suppose, for example, we want to discuss whether the
function f(x) = sin(x) is continuous. We might want to regard this as a function from R to R, or as a
function from R to [−1, 1]. We also might want to restrict the range of values of x, and consider f as a
function defined on [0, 2π] or [−π, π] or [0,∞) instead of all of R. This leads us to worry about the following
possibility: perhaps some of these versions of f(x) are continuous, and some of them are not. It would then
be a nightmare to keep track of everything. Fortunately, however, this nightmare does not arise: if we can
check that f is continuous as a map R→ [−1, 1], then all other versions of f are automatically continuous.
This is the message of the following proposition.

Proposition 3.28. Let X and Y1 be topological spaces. Let X0 be a subset of X, and let Y be a subset
of Y1, with inclusion maps i : X0 → X and j : Y → Y1. Let f be a continuous function from X to Y . Let
f = j ◦ f ◦ i be the corresponding map X0 → Y1, obtained by restricting the domain to X0 and enlarging the
codomain to Y1, so we have a commutative diagram as follows:

X0 Y1

X Y

i

f

f

j

Then f is also continuous.

Proof. This is just because i and j are continuous by Lemma 3.27, so j◦f ◦i is continuous by Proposition 3.24.
□

There is also a partial converse for the above result.

Proposition 3.29. Let X and Y1 be topological spaces, and let j : Y → Y1 be the inclusion of a subset with
the subspace topology. Let f be a function from X to Y , and suppose that j ◦f is continuous (or equivalently:
f is continuous when regarded as a function X → Y1). Then f is continuous (as a function X → Y ).

Proof. Let V be a subset of Y that is open with respect to the subspace topology. We must show that
f−1(V ) is open in X. By the definition of the subspace topology, there must exist an open set V1 ⊆ Y1 such
that V = V1 ∩ Y . This can also be written as V = j−1(V1), so f

−1(V ) = f−1(j−1(V1)) = (j ◦ f)−1(V1). We
are given that j ◦ f : X → Y1 is continuous and V1 is open in Y1 so (j ◦ f)−1(V1) is open in X. In other
words, f−1(V ) is open in X as required. □

Video (Lemmas 3.30 and 3.32)

Lemma 3.30. Let Y be an open subset of X, and let V be a subset of Y . Then V is open with respect to
the subspace topology on Y iff V is open with respect to the original topology on X.

Proof. First suppose that V is open with respect to the subspace topology. By definition, this means that
V = U ∩Y for some subset U ⊆ X that is open in X. Now both U and Y are open in X, so the intersection
V = U ∩ Y is also open in X, as required.

Suppose instead that we start from the assumption that V is open with respect to the original topology
on X. If we just take U = V , we see that U is open in X and V = U ∩ Y , so V is open with respect to the
subspace topology. □
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Lemma 3.31. Let Y be an arbitrary subset of X, and let G be a subset of Y . Then G is closed (with respect
to the subspace topology on Y ) iff there exists a closed set F ⊆ X such that G = F ∩ Y .

Proof. If G is closed in Y , then the complement V = Y \ G must be open in Y . This means by definition
that there exists an open set U ⊆ X such that V = U ∩ Y . We can now put F = X \ U , which is a closed
subset of X. We find that

F ∩ Y = (X \ U) ∩ Y = Y \ (U ∩ Y ) = Y \ V = G,

so G has the form F ∩ Y , as required. We leave the converse to the reader. □

Lemma 3.32. Let Y be a closed subset of X, and let G be a subset of Y . Then G is closed with respect to
the subspace topology on Y iff G is closed with respect to the original topology on X.

Proof. Now that we have Lemma 3.31, this can be proved in essentially the same way as Lemma 3.30. □

Lemma 3.33. Let X be a topological space, and let U be a subset of X. Suppose that for each x ∈ U we
can find an open set V such that x ∈ V and V ⊆ U . Then U itself is open.

Proof. For each point x ∈ U , choose a set Vx as described, so Vx is open and x ∈ Vx and Vx ⊆ U . Put
V ∗ =

⋃
x Vx. This is the union of a family of open sets, so it is open by the axioms for a topology. If we can

prove that V ∗ is the same as U , then we will be done. Each set Vx is contained in U , and it follows that the
union V ∗ is also contained in U . On the other hand, for each x ∈ U we have x ∈ Vx ⊆ V ∗, so U ⊆ V ∗. As
U ⊆ V ∗ and V ∗ ⊆ U we have U = V ∗ as required. □

Video (Propositions 3.34 and 3.35)

Proposition 3.34 (Open patching). Let f : X → Y be a function between topological spaces. Suppose we
have subsets U1, . . . , Un ⊆ X such that

(a) Each set Ui is open.
(b) X = U1 ∪ · · · ∪ Un
(c) For each i, the restricted map fi : Ui → Y is continuous (with respect to the subspace topology on

Ui).

Then f is continuous.

Proof. Let V be an open subset of Y ; we must show that f−1(V ) is open in X. Let fi : Ui → Y be the
restriction of f . As fi is continuous by assumption, we know that f−1

i (V ) is open in Ui. By Lemma 3.30,

this is the same as being open in X. Moreover, we see from the definitions that f−1
i (V ) = f−1(V ) ∩ Ui. As⋃

i Ui = X, we see that

f−1(V ) =
⋃
i

(f−1(V ) ∩ Ui) =
⋃
i

f−1
i (V ).

We have seen that each set f−1
i (V ) is open, so the union of these sets is open, so f−1(V ) is open as

required. □

Proposition 3.35 (Closed patching). Again let f : X → Y be a function between topological spaces. Suppose
we have subsets F1, . . . , Fn ⊆ X such that

(a) Each set Fi is closed.
(b) X = F1 ∪ · · · ∪ Fn
(c) For each i, the restricted map fi : Fi → Y is continuous (with respect to the subspace topology on

Fi).

Then f is continuous.

Proof. By Proposition 3.23, it will be enough to show that f−1(G) is closed in X whenever G is closed in Y .
After this preliminary step, the rest of the proof is essentially the same as for the previous proposition. □
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4. Homeomorphism

Video (Definition 4.1 to Example 4.8)

Definition 4.1. Let X and Y be topological spaces, and let f : X → Y be a function. We say that f is a
homeomorphism if

(a) f is a bijection, so there is an inverse map f−1 : Y → X, satisfying f−1(f(x)) = x for all x ∈ X and
f(f−1(y)) = y for all y ∈ Y .

(b) Both f and f−1 are continuous.

We say that X and Y are homeomorphic if there exists a homeomorphism from X to Y . We will write
X ≃ Y to indicate that X and Y are homeomorphic.

Remark 4.2. Later we will introduce a different notion called homotopy equivalence, and write X ∼= Y (with
an extra bar) to indicate that X and Y are homotopy equivalent. It is important to distinguish between
these two ideas. However, you should be aware that there is no consistency in the literature about the
notation used. It is safest to say “homeomorphic” or “homotopy equivalent” in words, to avoid confusion.

Remark 4.3. There are very few indirect techniques for proving that two spaces are homeomorphic. Instead,
we just have to find a specific homeomorphism. Many examples will be given below.

Proposition 4.4. Suppose that a, b, c, d ∈ R with a < b and c < d. Then [a, b] ≃ [c, d] and (a, b) ≃ (c, d)
and [a, b) ≃ [c, d) and (a, b] ≃ (c, d].

Proof. We can define maps [a, b]
f−→ [c, d]

g−→ [a, b] by

f(t) = c+
d− c
b− a

(t− a) g(t) = a+
b− a
d− c

(t− c).

We find that f(g(t)) = t and g(f(t)) = t, so g is inverse to f . It is clear that f and g are continuous, so f is
a homeomorphism. The same formulae also give homeomorphisms (a, b)→ (c, d) and so on. □

Proposition 4.5. The formulae

f(x) =
x√

1− x2
g(y) =

y√
1 + y2

give continuous maps (−1, 1) f−→ R g−→ (−1, 1) which are inverse to each other. Thus, they are both homeo-
morphisms, and (−1, 1) ≃ R. Moreover, the same maps restrict to give homeomorphisms between [0, 1) and
[0,∞).

x

y

y = f(x)

y

x
x = g(x)
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Proof. First, note that when x ∈ (−1, 1) we have 0 ≤ x2 < 1 so 0 < 1− x2 ≤ 1, so dividing by
√
1− x2 does

not cause any problems. Thus, f is a continuous function from (−1, 1) to R. Similarly, for all y we have

1+ y2 ≥ 1 > 0 so
√
1 + y2 ≥ 1 > 0, so dividing by

√
1 + y2 does not cause a problem, and g is a continuous

map from R to R. Note also that

g(y)2 = y2/(1 + y2) = 1− 1/(1 + y2) < 1,

so g(y) ∈ (−1, 1), so g can in fact be regarded as a continuous map g : R −→ (−1, 1).
Note that if y = f(x) = x/

√
1− x2 then

1 + y2 = 1 +
x2

1− x2
=

1

1− x2

so
√
1 + y2 = (1− x2)−1/2, so g(y) = y/

√
1 + y2 = x. This shows that g(f(x)) = x.

Conversely, suppose we start with y and put x = g(y) = y/
√
1 + y2. We then have

1− x2 = 1− y2

1 + y2
=

1

1 + y2
,

so
√
1− x2 = (1 + y2)−1/2, so f(x) = x/

√
1− x2 = y. This shows that f(g(y)) = y, so f : (−1, 1) −→ R and

g : R −→ (−1, 1) are inverses of each other, as required. □

Remark 4.6. Suppose we are trying to define a map p : U → V , and we give a formula for p(u). For this
to be valid, we must check two things.

(a) The formula must be meaningful for all elements u ∈ U . It must never involve division by zero, or
square roots of negative numbers in a context where a real result is required, for example.

(b) The resulting value p(u) must lie in V . For example, V might be a subspace of R3 defined by various
equations or inequalities. Typically it will only be obvious from the formula that p(u) lies in R3, so
we need to check that the equations or inequalities are satisfied as an extra step.

You should observe how these checks were done in the proof of Proposition 4.5. It is sadly common for them
to be omitted in homework or exam answers submitted by students. Do not let that be you.

Remark 4.7. There is some interesting geometry behind the maps f and g in Proposition 4.5: we have
f(x) = y and g(y) = x if and only if x and y are related as in the diagram below.

0 x y

(0, 1)

(x, z)

C

1− z

In more detail, let C be the circle of radius one centred at (0, 1). Given a point x ∈ (−1, 1), let (x, z) be the
point on the lower half of C lying directly above (x, 0). Then draw a line from (0, 1) through (x, z), and let

y be the point where it meets the axis. I claim that y = x/
√
1− x2 = f(x). Indeed, as the point (x, z) lies

on C, the distance from (x, z) to (0, 1) must be one, so x2 + (1− z)2 = 1, so 1− z =
√
1− x2. On the other

hand, the diagram contains a triangle of base y and height 1, and a nested triangle of base x and height
1− z. These triangles have the same angles, so we must have y/1 = x/(1− z), so y = x/

√
1− x2 as claimed.
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Example 4.8. The previous example can be generalised as follows. Put OBn = {x ∈ Rn | ∥x∥ < 1} (so in
particular OB1 = (−1, 1) ⊂ R). We can define f : OBn −→ Rn and g : Rn −→ OBn by

f(x) = x/
√
1− ∥x∥2

g(y) = y/
√
1 + ∥y∥2.

Using essentially the same argument as given above, we see that f and g are mutually inverse homeomor-
phisms, so OBn is homeomorphic to Rn.

Example 4.9. The map f(x) = (∥x∥, x/∥x∥) gives a homeomorphism Rn \ {0} → (0,∞) × Sn−1, with
inverse f−1(t, y) = ty.

Interactive demo

Example 4.10.
Video

Note that Definition 4.1 specifies that both f and f−1 must be continuous. It is necessary to make the
definition this way, because it can easily happen that we have a bijection f : X → Y where f is continuous
but f−1 is not, and we do not want to count maps like that as homeomorphisms. We give such an example
here.

Put X = (−∞, 0] ∪ (1,∞) = R \ (0, 1] and Y = R. Define maps X
f−→ Y

g−→ X by

f(x) =

{
x if x ≤ 0

x− 1 if x > 0.
g(x) =

{
x if x ≤ 0

x+ 1 if x > 0.

X

Y

g f f g

It is easy to see that f and g are inverse to each other. We claim that f is continuous but that g is not. To
see this, we introduce the subsets

U = (−∞, 0] = X ∩ (−∞, 12 )
V = (1,∞) = X ∩ ( 12 ,∞).

The sets (−∞, 12 ) and ( 12 ,∞) are open in R, so U and V are open in the subspace topology on X. The map
f is given by f(x) = x on U and by f(x) = x−1 on V , so the restrictions to U and V are both continuous, so
f is continuous on X by open patching (Proposition 3.34). On the other hand, we have g−1(U) = (−∞, 0],
which is not an open subset of the space Y = R; this proves that g is not continuous. We therefore have a
continuous bijection whose inverse is not continuous, so it does not count as a homeomorphism.

Example 4.11.
Video

Define f : S1 × {1,−1} −→ O2 by

f(x, y, z) =

[
x −yz
y xz

]
so

f(cos(θ), sin(θ),+1) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= rotation matrix

and

f(cos(θ), sin(θ),−1) =
[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
= reflection matrix
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It is easy to see that this is a homeomorphism, with inverse

f−1

[
a b
c d

]
= (a, c, ad− bc).

We can also define g : R3 × S1 × {1,−1} → GL2(R) by

g(u, v, w, x, y, z) =

[
eu 0
0 ev

] [
1 t
0 1

] [
x −yz
y xz

]
.

This can also be shown to be a homeomorphism. The inverse is

g−1

[
a b
c d

]
= (u, v, w, x, y, z),

where

∆ = ad− bc w = (ac+ bd)/|∆|

u = ln |∆| − 1
2 ln(c

2 + d2) x = sgn(∆)d/
√
c2 + d2

v = 1
2 ln(c

2 + d2) y = c/
√
c2 + d2

z = sgn(∆).

Remark 4.12. We could try to define a map g : S1 → S1 by the rule

(A) g((cos(θ), sin(θ)) = (cos(θ/2), sin(θ/2)).

There could be two different things wrong with this definition, depending on how we interpret it.

(a) Any point in S1 can be expressed as (cos(θ), sin(θ)) for infinitely many different values of θ, differing
by multiples of 2π. For example, the point (−1, 0) can be represented as (cos(π), sin(π)) or as
(cos(−π), sin(−π)). The first representation gives g((1, 0)) = (cos(π/2), sin(π/2)) = (0, 1), and the
second representation gives g((−1, 0)) = (cos(−π/2), sin(−π/2)) = (0,−1). Thus, equation (A) does
not give us a well-defined function S1 → S1.

(b) We could instead note that any point in S1 can be expressed as (cos(θ), sin(θ)) for a unique choice
of θ satisfying the auxiliary condition −π < θ ≤ π, and we could define g by saying that formula (A)
holds for this choice of θ. This gives a well-defined function, which satisfies g((−1, 0)) = (0, 1).
However, for points (x, y) ∈ S1 lying just below (−1, 0), we find that θ ≈ −π and so g(x, y) is close
to (0,−1). This shows that g is discontinuous, despite the apparent continuity of all ingredients in
equation (A).

For this kind of reason, it is generally a bad idea to define functions in terms of θ. This is why our initial
definition of f : S1 × {1,−1} → O2 in Example 4.11 was given directly in terms of the coordinates x, y and
z.

Example 4.13. Let N be the “north pole” of the sphere S2, in other words the point (0, 0, 1). There are

mutually inverse continuous maps S2 \ {N} f−→ R2 g−→ S2 \ {N} given by

f(x, y, z) =
(x, y)

1− z
g(u, v) =

(2u, 2v, u2 + v2 − 1)

u2 + v2 + 1
,

so S2 \ {N} is homeomorphic to R2. This is called stereographic projection. Geometrically, f(x, y, z) is the
unique point where the line joining N to (x, y, z) meets the plane z = 0, and g(u, v) is the unique point
where the line joining N to (u, v, 0) meets S2:
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(0, 0, 1)

(0, 0, z)

(x, y, 0) (u, v, 0) = (x, y, 0)/(1− z)

(x, y, z)
1− z

Interactive demo

We will leave it to the reader to check directly from the formulae that f(g(u, v)) = (u, v) and g(f(x, y, z)) =
(x, y, z). Essentially the same formulae can be used to prove that Sn \ {P} ≃ Rn for any n ≥ 1 and any
P ∈ Sn.

5. Paths

Video (Definition 5.1 to Definition 5.10)

Definition 5.1. Let X be a topological space. A path in X is a continuous function u : [0, 1] → X. If
u(0) = a and u(1) = b then we say that u is a path from a to b and write u : a⇝ b.

Example 5.2. This picture shows a path u from the point a = (2, 0) to the point b = (0,−2) in the space
X = {(x, y) ∈ R2 | 1 ≤ ∥(x, y)∥ ≤ 3}:

a

b

X

Explicitly, the formula is

u(t) = 2(1 + t− t2) (cos(3πt/2), sin(3πt/2)) .

Example 5.3. Note, however, that pictures like the one above can be a little misleading, because they only
show the points traversed by the path, not the time at which those points are reached. Consider the maps
u, v : [0, 1]→ R2 given by u(t) = (t, 1− t) and v(t) = (t2, 1− t2). The resulting tracks are just the same:
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u v

However, if we add markers for t = 0.1, 0.2, . . . , 0.9 then we can see the difference:

u v

Example 5.4. Suppose that X is a subset of Rn, with the subspace topology. For any points a, b ∈ X,
we can define u : [0, 1] → Rn by u(t) = (1 − t)a + tb. This gives a path from a to b in Rn, which we call a
straight line path. However, this path might or might not lie in X; in any case where we want to use straight
line paths, we need to check this. For example, if X is a circle then the straight line path from a to b is
not contained in X, except in the trivial case where a = b. In the space Y shown on the right below, the
straight line paths from c to d and from d to e are contained in Y , but the straight line path from c to e is
not contained in Y .

a

b

X

c

d e

Y

Remark 5.5. Later, we will want to consider paths as continuous maps ∆1 → X rather than continuous
maps [0, 1] → X. We will always identify the point t ∈ [0, 1] with the point (1 − t, t) ∈ ∆1. This ensures
that the point 0 ∈ [0, 1] gets identified with e0 = (1, 0) ∈ ∆1, and the point 1 ∈ [0, 1] gets identified with
e1 = (0, 1) ∈ ∆1.

Definition 5.6. Let X be a topological space.

(a) For any a ∈ X, the constant path ca : [0, 1] → X is just given by ca(t) = a for all t. This is a path
a⇝ a.

(b) Now suppose we have a path u : a ⇝ b. We define a path u : b ⇝ a by u(t) = u(1 − t), and we call
this the reverse of u.

(c) Now suppose we also have a path v : b⇝ c. We define a path u ∗ v : a⇝ c by

(u ∗ v)(t) =

{
u(2t) if 0 ≤ t ≤ 1

2

v(2t− 1) if 1
2 ≤ t ≤ 1.

(Roughly speaking, in the first half-second we go from a to b by following u at double speed, then
in the next half-second we go from b to c by following v at double speed.)
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u

v

a b
c

u ∗ v

a
c

Remark 5.7. There are a number of things that we need to check in order to validate the above definitions,
especially part (c). Firstly, ca is continuous by Example 3.22, and u is continuous by Proposition 3.24,
because it is the composite of u with the continuous function t 7→ 1− t.

Now consider u ∗ v. Firstly, if t = 1
2 then both clauses in the definition of (u ∗ v)(t) are applicable. This

would be a problem if the two clauses gave different answers for the value of (u ∗ v)( 12 ). However, the first
clause gives the answer u(1), and the second clause gives the answer v(0). As u : a ⇝ b and v : b ⇝ c we
have u(1) = b = v(0) so the two answers are the same.

Next, we need to show that the map u ∗ v : [0, 1]→ X is continuous. We can write [0, 1] as F1 ∪F2, where
F1 = [0, 12 ] and F2 = [ 12 , 0]. By closed patching (Proposition 3.35), it will be enough to show that u ∗ v is
continuous on F1 and also continuous on F2. On F1, we have (u ∗ v)(t) = u(2t). This is the composite of u
with the map t 7→ 2t, and both of these maps are continuous, so u ∗ v is continuous by Proposition 3.24. A
similar argument shows that u ∗ v is continuous on F2, so it is continuous on [0, 1] as required. We also have
(u ∗ v)(0) = u(2× 0) = u(0) = a and (u ∗ v)(1) = v(2× 1− 1) = v(1) = c, so u ∗ v : a⇝ c.

Definition 5.8. We introduce a relation on X by declaring that a ∼ b iff there exists a path u : a⇝ b in X.

Proposition 5.9. This relation is an equivalence relation.

(If you need to review the basic ideas about equivalence relations, you can look forward to Definition 7.13.)

Proof. We must show that the relation is reflexive, symmetric and transitive. In more detail, the conditions
are as follows:

(a) For all a ∈ X, we must have a ∼ a.
(b) For all a, b ∈ X with a ∼ b, we must have b ∼ a.
(c) For all a, b, c ∈ X with a ∼ b and b ∼ a we must have a ∼ c.

For condition (a), we always have ca : a ⇝ a, and this shows that a ∼ a. For condition (b), suppose that
a ∼ b. This means that there exists a path u : a ⇝ b. It follows that the reverse path u has u : b ⇝ a, and
thus that b ∼ a. Finally, suppose that a ∼ b and b ∼ c. This means that there exist paths u : a ⇝ b and
v : b⇝ c. The joined path u ∗ v then goes from a to c, proving that a ∼ c as required. □

Definition 5.10. The equivalence classes for ∼ are called the path components of X. We write [a] for
the path component containing a, so that [a] = [b] iff a ∼ b. We write π0(X) for the quotient set X/ ∼,
or equivalently, the set of path components. We say that X is path connected if it has precisely one path
component. This means that X ̸= ∅, and a ∼ b for all a, b ∈ X.

Video (Example 5.11 to Proposition 5.14)

Example 5.11. Let X be a subset of Rn. We say that X is convex if for all a, b ∈ X and t ∈ [0, 1] we have
(1 − t)a + tb ∈ X. Equivalently, this means that any straight line path with endpoints in X is contained
wholly in X, and so counts as a path in X between those endpoints. It therefore follows that X is path
connected (provided that it is not empty).
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convex path connected, but not convex not path connected

In particular, the ball Bn, the cube [0, 1]n and the simplex ∆n are all nonempty and convex, so they are
path connected.

Example 5.12. Consider again the following space Y , which we discussed in Section 2:

a0 a1

a2

b0

c0

c1

A

B

C

This is the disjoint union of the three subsets A, B and C. The set A is the set of all points that can be
connected to a0 by a continuous path in Y , or in other words A = [a0] ∈ π0(Y ). Because a0, a1 and a2 all lie in
A they can all be connected to each other, which means that a0 ∼ a1 ∼ a2 and [a0] = [a1] = [a2] = A. In the
same way, we have B = [b0] ∈ π0(Y ) and C = [c0] = [c1] ∈ π0(Y ). From this we see that π0(Y ) = {A,B,C}
and so |π0(Y )| = 3.

Remark 5.13. You should not be confused by the fact that A itself is an infinite set. The whole set A
taken as a single object is an element of π0(Y ), the whole set B taken as a single object is another element,
and the whole set C is the third element.

Proposition 5.14. For n > 0, the sphere Sn is path connected.

Proof. Suppose we have points a, b ∈ Sn. Suppose for the moment that they are not opposite points, so
b ̸= −a. Consider the linear path u : [0, 1] → Rn+1 given by u(t) = (1 − t)a + tb. Because a and b are not
opposite, we see that the straight line from a to b does not pass through the origin, so u(t) is never zero.
It is therefore legitimate to define û(t) = u(t)/∥u(t)∥. This gives a continuous map û : [0, 1] → Sn with
û(0) = a/∥a∥ = a and û(1) = b/∥b∥ = b, so a ∼ b in Sn. Now consider the exceptional case where b = −a.
If we allowed the case n = 0 then Sn would just consist of two points, but we have specified that n > 0, so
Sn is infinite, so we can choose a point c that is different from a and b = −a. The ordinary case now tells
us that a ∼ c and b ∼ c, and ∼ is an equivalence relation so a ∼ b as required.
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a

b

u

û

ordinary case

a

b = −a

c

exceptional case

□

Video (Proposition 5.15 to Proposition 5.18)

Proposition 5.15. Let a and b be points in a topological space X. Suppose that there is a continuous
function f : X → R such that

(a) f(x) ̸= 0 for all x ∈ X.
(b) f(a) < 0 < f(b).

Then a ̸∼ b.

Proof. Suppose (for a contradiction) that there is a path u from a to b in X. We then have a continuous map
g = f ◦ u : [0, 1]→ R with g(0) = f(a) < 0 and g(1) = f(b) > 0. By the Intermediate Value Theorem, there
exists t0 ∈ [0, 1] with g(t0) = 0. This means that the point x = u(t0) ∈ X satisfies f(x) = 0, contradicting
assumption (a). We therefore conclude that no such path u can exist, so a ̸∼ b. □

Example 5.16. Consider the space Z. If a, b ∈ Z with a < b, we can define f : Z→ R by f(x) = x− b+ 1
2 .

This is nonzero for all x ∈ Z, and satisfies f(a) < 0 < f(b), so a ̸∼ b. It follows that the connected
components are just the singleton sets [a] = {a} for all a ∈ Z, so π0(Z) is essentially the same as Z.

Example 5.17. Consider the space GL2(R) of invertible 2 × 2 matrices, and the elements I, J ∈ GL2(R),
where

I =

[
1 0
0 1

]
J =

[
0 1
1 0

]
.

We can define a continuous map f : GL2(R) → R by f(A) = det(A). It is a standard fact of linear algebra
that invertible matrices have nonzero determinant, so f is nonzero everywhere on GL2(R). We also have
f(J) = −1 and f(I) = 1. Proposition 5.15 therefore tells us that J ̸∼ I. More generally, we could take any
n > 0 and put

U = {A ∈ GLn(R) | det(A) > 0}
V = {B ∈ GLn(R) | det(B) < 0}.

The same line of argument shows that if B ∈ V and A ∈ U then B ̸∼ A. However, it can also be shown that
the subsets U and V are both path connected (we will not give the proof here). Assuming this, we see that
U and V are precisely the path components of GLn(R), so π0(GLn(R)) = {U, V } and |π0(GLn(R))| = 2.

Proposition 5.18. Suppose that X can be written as X = U ∪ V , where U and V are open subsets of X
with U ∩ V = ∅. Then for a ∈ U and b ∈ V we have a ̸∼ b.

Proof. We define f : X → R by f(x) = −1 for all x ∈ U and f(x) = 1 for all x ∈ V . (This defines f(x) for
all x, because X = U ∪ V . There is no clash between the two clauses, because U ∩ V = ∅.) We claim that f
is continuous. (Assuming this, the main claim follows by Proposition 5.15.) Consider an open subset A ⊆ R;
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we must show that f−1(A) is open in X. We have

f−1(A) =


∅ if − 1 ̸∈ A and 1 ̸∈ A
U if − 1 ∈ A and 1 ̸∈ A
V if − 1 ̸∈ A and 1 ∈ A
X if − 1 ∈ A and 1 ∈ A.

In all cases, we see that f−1(A) is open, as required. □

Video (Lemma 5.19 to Proposition 5.20)

Lemma 5.19. Let f : X → Y be a continuous map between topological spaces. Suppose that a, b ∈ X with
a ∼ b, so that [a] = [b] in π0(X). Then we also have f(a) ∼ f(b), and so [f(a)] = [f(b)] in π0(Y ).

Proof. We are assuming that a ∼ b, which means that there exists a continuous function u : [0, 1] → X
with u(0) = a and u(1) = b. Put v = f ◦ u, so v is a continuous function from [0, 1] to Y . It has
v(0) = f(u(0)) = f(a) and v(1) = f(u(1)) = f(b), so v : f(a)⇝ f(b). As there exists a path in Y from f(a)
to f(b), we have f(a) ∼ f(b) as claimed. □

Proposition 5.20. Let f : X → Y be a continuous map between topological spaces. Then there is a well-
defined map f∗ : π0(X)→ π0(Y ), given by f∗[a] = [f(a)] for all a ∈ X. Moreover:

• For the identity map id : X → X, we have id∗ = id: π0(X)→ π0(X).
• For any pair of continuous maps f : X → Y and g : Y → Z, we have (g ◦ f)∗ = g∗ ◦ f∗ : π0(X) →
π0(Z).

Proof. Let u be an element of π0(X); we need to define f∗(u). We can choose a point a ∈ X such that
u = [a], and we want to define f∗(u) = [f(a)]. The only problem with this is that it seems to depend
on the choice of a. If we chose a different element b with u = [b], then we would also want to define
f∗(u) = [f(b)], and that would be inconsistent if [f(a)] was different from [f(b)]. However, Lemma 5.19 tells
us that [f(a)] = [f(b)], so this problem does not arise, and we have a well-defined function as claimed. We
also have id∗[a] = [id(a)] = [a], so id∗ is the identity map. Similarly, if g : Y → Z is another continuous map,
we have

g∗(f∗([a])) = g∗[f(a)] = [g(f(a))] = [(g ◦ f)(a)] = (g ◦ f)∗[a],
so g∗ ◦ f∗ = (g ◦ f)∗. □

6. Interlude on categories and functors

Video (Definition 6.1 to Example 6.6)

Definition 6.1. A category C consists of

(a) A class obj(C) of mathematical objects (such as groups, rings or metric spaces).
(b) For each pair of objects A,B ∈ obj(C), a set C(A,B) of morphisms from A to B. We will write

f : A→ B or A
f−→ B to indicate that f ∈ C(A,B).

(c) For each object A ∈ obj(C), a morphism idA ∈ C(A,A) (called the identity morphism).

(d) A composition rule for morphisms. This should define, for every pair of morphisms A
f−→ B

g−→ C, a
new morphism g ◦ f : A→ C.

These must satisfy the following properties:

(e) For every morphism f : A→ B, we have f ◦ idA = f = idB ◦f .
(f) For every triple of morphisms A

f−→ B
g−→ C

h−→ D, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Example 6.2. There is a category Group of groups. The objects are groups, and the morphisms are
group homomorphisms. The identity morphism idG is just the identity function G → G, which is a group
homomorphism by a trivial argument. The composition rule is just ordinary composition of functions. For
this to be valid, we need to check that the composite of any two group homomorphisms is another group
homomorphism, but this is easy. Properties (e) and (f) are also straightforward.
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Remark 6.3. (a) Most of our other examples will have the same nature: the objects will be sets with
some kind of added structure, and the morphisms will be functions that preserve that structure in
some sense. The only point of any real content will be to check that if we compose two structure-
preserving maps, then the composite also preserves structure in the same sense.

(b) Two examples considered later will be a bit different: the category of topological spaces and homotopy
classes of continuous functions, and the category of chain complexes and chain-homotopy classes of
chain maps. In these examples we start with a category C as in (a), and define an equivalence relation
on each morphism set C(A,B), and put C(A,B) = C(A,B)/ ∼. We then want to say that we have a
new category with the same objects as C and morphism sets C(A,B). For this to work, we need to
check that the equivalence relations are compatible with composition in an appropriate sense. See
Definition 9.9 for an example of this.

Example 6.4. Some other algebraic categories:

(a) The category Ab of abelian groups and group homomorphisms. In abelian groups, we will always
write the group operation as addition, the identity element as 0 and the inverse of a as −a. Thus,
the morphisms from A to B are functions α : A → B satisfying α(a0 + a1) = α(a0) + α(a1) for all
a0, a1 ∈ A. (This implies α(0) = 0 and α(−a) = −α(a), by standard arguments.)

(b) The category Ring of rings and ring homomorphisms.
(c) The categories VectQ, VectR and VectC of vector spaces over Q, R and C respectively. In each case,

the morphisms are maps that are linear over the relevant field.
(d) Underlying all of these, we have the category Set: the objects are just sets, and the morphisms are

just functions.
(e) We can also consider subcategories defined by various finiteness conditions. For example, we have

the category FAb: the objects are finite abelian groups, and the morphisms are just group homo-
morphisms between finite abelian groups.

In some sense, the main project of algebraic topology is to compare these algebraic categories with various
topological categories.

Example 6.5. We have a category Metric: the objects are metric spaces, and the morphisms are continuous
maps. To validate this, we need to know that composites of continuous maps are continuous, which is
Proposition 3.24 above, or [MS, page 54]. It is sometimes also useful to consider a slightly different category
Metric1: the objects are again metric spaces, but the morphisms are

Metric1(X,Y ) = {f : X → Y | d(f(x), f(x′)) ≤ d(x, x′) for all x, x′ ∈ X}.

It is straightforward to check that if f ∈ Metric1(X,Y ) and g ∈ Metric1(Y, Z) then g ◦ f ∈ Metric1(X,Z),
so this definition does indeed give a category. Lemma 3.5 tells us that Metric1(X,Y ) ⊆ Metric(X,Y ).

Example 6.6. Similarly, there is a category Top whose objects are topological spaces, and whose morphisms
are continuous maps.

We next need to discuss how to compare different categories. The key concept here is as follows:

Video (Definition 6.7 to Example 6.11)

Definition 6.7. Let C and D be categories. A functor F from C to D consists of

(a) A rule giving an object FA ∈ obj(D) for every object A ∈ obj(C); and
(b) A rule giving a morphism Ff ∈ D(FA,FA′) for each morphism f ∈ C(A,A′)

such that

(c) For each A ∈ obj(C), we have F (idA) = idFA

(d) For every pair of morphisms A
f−→ A′ f ′

−→ A′′ in C, we have F (f ′ ◦ f) = F (f ′) ◦F (f) ∈ D(FA,FA′′).
In other words, the following diagram should commute:
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FA FA′

FA′′

Ff

F (f ′◦f)
Ff ′

We will sometimes write f∗ (or f# or f• or some similar notation) instead of Ff .

Example 6.8. For every topological space X ∈ obj(Top), we have a set π0(X) ∈ obj(Set), as in Defini-
tion 5.10. For every continuous map f ∈ Top(X,Y ), we have a function f∗ = π0(f) ∈ Set(π0(X), π0(Y )),
as in Proposition 5.20. The same proposition proves conditions (c) and (d) in Definition 6.7, so we have a
functor π0 : Top→ Set.

Example 6.9. For any metric space X, we let TX denote the same set regarded as a topological space
using the metric topology. If f ∈ Metric(X,Y ) then f is just a continuous map from X to Y and so can also
be regarded as an element of Top(TX, TY ). We define Tf = f . This gives a functor T : Metric→ Top.

Example 6.10. For any set X, we have another set PX = X ×Z. We would like to make this construction
into a functor P : Set→ Set. Given a morphism f ∈ Set(X,Y ) (i.e. a function f : X → Y ), we need to define
a corresponding function Pf : PX → PY , or in other words Pf : X × Z → Y × Z. Thus, given a function
f : X → Y , a point x ∈ X and a number n ∈ Z, we need to define a point (Pf)(x, n) ∈ Y × Z. This must
have the form (Pf)(x, n) = (y,m) for some y ∈ Y and m ∈ Z. The only element of Y that we can produce
from these ingredients is f(x), so we need to take y = f(x). We must have P (idX) = id: X×Z→ X×Z, so
in the case f = idX we need to take m = n, so the simplest thing is to take m = n in all cases. We therefore
arrive at the definition (Pf)(x, n) = (f(x), n), or in other words Pf = f × idZ : X × Z→ Y × Z. This gives

P (idX)(x, n) = (idX(x), n) = (x, n) = idPX(x, n).

Also, if we have functions X
f−→ Y

g−→ Z, then

P (g)(P (f)(x, n)) = P (g)(f(x), n) = (g(f(x)), n) = ((g ◦ f)(x), n) = P (g ◦ f)(x, n).
Thus, we have P (idX) = idPX and P (g ◦ f) = P (g) ◦ P (f). We have therefore succeeded in defining a
functor.

Example 6.11. For any abelian group A we note that the subset DA = {2a | a ∈ A} is a subgroup of
A. If α : A → B is a homomorphism, then α(2a) = 2α(a) for all a ∈ A, so α(DA) ≤ DB, so we have a
function Dα = α|DA : DA → DB, which is again a homomorphism. It is easy to see that D(idA) = idDA
and D(β ◦ α) = (Dβ) ◦ (Dα), so we have defined a functor D : Ab → Ab. This satisfies D(Z/2) = 0 and
D(Z/3) = Z/3, for example. We can also define QA = A/DA. Given a coset a + DA ∈ QA, we would
like to define (Qα)(a +DA) = α(a) +DB ∈ QB. This is well-defined, because if a +DA = a′ +DA then
a′− a ∈ DA, so α(a′)−α(a) = α(a′− a) ∈ α(DA) ≤ DB, so α(a′) +DB = α(a) +DB. One can check that
this gives a homomorphism Qα : QA → QB, and that Q(idA) = idQA and Q(β ◦ α) = (Qβ) ◦ (Qα). Thus,
we have defined another functor Q : Ab→ Ab. This satisfies Q(Z/2) ≃ Z/2 and Q(Z/3) = 0, for example.

Video (Definition 6.12 to Corollary 6.18)

Definition 6.12. Let C be a category, and let f : X → Y be a morphism in C. An inverse for f is a
morphism g : Y → X such that g ◦ f = idX and f ◦ g = idY . We say that f is an isomorphism if it has an
inverse. We say that X and Y are isomorphic if there exists an isomorphism from X to Y . We will usually
write X ≃ Y to indicate that X and Y are isomorphic.

Lemma 6.13. If f has an inverse, then it is unique.

Proof. Let g1 and g2 be inverses for f . Then

g1 = g1 ◦ idY = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = idX ◦g2 = g2.

□

Because of the lemma, we can write f−1 for the inverse of f without creating any ambiguity.
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Example 6.14. In the category Group, the isomorphisms are just group isomorphisms as usually defined
in abstract algebra. In the category Set, the isomorphisms are just bijections. In the categories Metric and
Top, the isomorphisms are homeomorphisms.

Proposition 6.15.

(a) For every object X ∈ C, the identity morphism idX is an isomorphism.
(b) If f : X → Y is an isomorphism, then so is f−1 : Y → X.
(c) If f : X → Y and g : Y → Z are isomorphisms, then so is g ◦ f : X → Z.

Proof.

(a) idX is an inverse for itself.
(b) f is an inverse for f−1.
(c) f−1 ◦ g−1 is an inverse for g ◦ f .

□

Corollary 6.16. Let X, Y and Z be objects in a category C.
(a) X ≃ X
(b) If X ≃ Y then Y ≃ X
(c) If X ≃ Y and Y ≃ Z then X ≃ Z.

Proof. Immediate from the proposition. □

Proposition 6.17. Let F : C → D be a functor, and let f : X → Y be an isomorphism in C. Then the
morphism Ff : FX → FY is an isomorphism in D, with inverse F (f−1).

Proof. By the definition of an inverse, we have f−1 ◦ f = idX and f ◦ f−1 = idY . Using the functor axioms
we obtain

F (f−1) ◦ Ff = F (f−1 ◦ f) = F (idX) = idFX

Ff ◦ F (f−1) = F (f ◦ f−1) = F (idY ) = idFY .

These prove that F (f−1) is an inverse for Ff , as required. □

Corollary 6.18. Let F : C → D be a functor, and let X and Y be objects of C. If X ≃ Y in C, then
FX ≃ FY in D.

Proof. Immediate from the proposition. □

Video (Definition 6.19 to Proposition 6.26)

We will also need a weaker concept, which is only half as good as being isomorphic.

Definition 6.19. Let X and Y be objects in a category C. We say that X is a retract of Y if there exist

morphisms X
f−→ Y

g−→ X with g ◦ f = idX . (We make no assumption about f ◦ g.) Any pair (f, g) with this
property will be called a retraction pair for (X,Y ).

Example 6.20. Let G and H be groups. We can define homomorphisms

G
j−→ G×H q−→ G

by j(g) = (g, 1) and q(g, h) = g. These satisfy q ◦ j = idG, so G is a retract of G×H in Group.

Example 6.21. We can define continuous maps S2 f−→ R3 \{0} g−→ S2 by f(u) = u and g(v) = v/∥v∥. These
satisfy g ◦ f = idS2 , so S2 is a retract of R3 \ {0} in Top.

Example 6.22. Let X and Y be nonempty finite sets with |X| ≤ |Y |. We claim that X is a retract of
Y in the category Set. Indeed, we can list the elements as X = {x1, . . . , xn} and Y = {y1, . . . , ym} with
1 ≤ n ≤ m. We can then define f : X → Y by f(xi) = yi. In the opposite direction, we define g : Y → X by

g(yi) =

{
xi if 1 ≤ i ≤ n
xn if n < i ≤ m.
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We then have g ◦ f = idX , as required.

We will mostly be interested in cases where we can prove that X is not a retract of Y . The main tool for
this is as follows:

Proposition 6.23. Let C be a category in which the objects are sets with extra structure, and the morphisms
are the functions that preserve that structure. (This covers all the examples that we have discussed so far.)
Let (f, g) be a retraction pair in C. Then f is injective, and g is surjective.

Proof. We can ignore the structure-preserving properties of f and g; we just need to know that we have
functions f : X → Y and g : Y → X satisfying g(f(x)) = x for all x ∈ X. In particular, this shows that x
can be written as g(y) for some y (namely y = f(x)), so g is surjective. Now suppose we have x, x′ ∈ X with
f(x) = f(x′). By applying g to both sides we obtain g(f(x)) = g(f(x′)), but g(f(x)) = x and g(f(x′)) = x′

so we get x = x′. This proves that f is injective. □

Corollary 6.24. Let G and H be groups.

(a) If G is nonabelian and H is abelian, then G is not a retract of H.
(b) If G is infinite and H is finite, then G is not a retract of H.
(c) If G ≃ Z/2 and H ≃ Z, then G is not a retract of H.

Proof. Suppose that G
j−→ H

q−→ G is a retraction pair. Then j is injective, so G is isomorphic to j(G), which
is a subgroup of H. By the contrapositive, if G is not isomorphic to any subgroup of H, then G cannot be
a retract of H. In case (a), every subgroup of H is abelian, so G cannot be isomorphic to any subgroup of
H. In case (b), every subgroup of H is finite, so G cannot be isomorphic to any subgroup of H. In case (c),
the group G contains an element of order precisely two, but all elements of Z have order 1 or ∞, so again G
cannot be isomorphic to any subgroup of H. □

Proposition 6.25. Let F : C → D be a functor, and let X and Y be objects of C. If X is a retract of Y
in C, then FX is a retract of FY in D. Thus, by the contrapositive, if FX is not a retract of FY , then X
cannot be a retract of Y .

Proof. If X is a retract of Y , then we can choose a retraction pair X
f−→ Y

g−→ X with g ◦ f = idX . This

gives maps FX
Ff−−→ FY

Fg−−→ FX with Fg ◦ Ff = F (g ◦ f) = F (idX) = idFX , proving that FX is a retract
of FY . □

As a basic example of how this can be used, we have the following:

Proposition 6.26. Let X and Y be topological spaces such that |π0(Y )| is finite and |π0(X)| > |π0(Y )|.
Then X is not a retract of Y .

Proof. If X was a retract of Y , then π0(X) would be a retract of π0(Y ), so in particular, we would have an
injective function f∗ : π0(X)→ π0(Y ). This is impossible because |π0(X)| > |π0(Y )|. □

7. Constructing new spaces

We next need to discuss several ways of constructing new topological spaces from spaces that we already
know about.

Video (Definition 7.1 to Remark 7.4)

Definition 7.1. Let Y and Z be disjoint sets, and put X = Y ∪ Z. Suppose we are given topologies on Y
and Z, which we use to regard them as topological spaces. We then declare that a subset U ⊆ X is open iff
U ∩ Y is open in the given topology on Y , and U ∩Z is open in the given topology on Z. This is easily seen
to give a topology on X, which we call the coproduct topology.

Remark 7.2. We now have a topology on X, and Y is a subset of X, so we can use Definition 3.25 to
define a subspace topology on Y . It is easy to see that this is just the the same as the original topology on
Y . Similarly, if we regard Z as a subspace of X, then the subspace topology is just the same as the original

topology. In particular, the inclusion maps Y
i−→ X

j←− Z are continuous.
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The category-theoretic viewpoint encourages us to ask the following kind of question: whenever we con-
struct a new object X in a category C, we should try to prove theorems describing the set C(T,X) of
morphisms into X, and/or the set C(X,T ) of morphisms out of X, for an arbitrary object T ∈ C.
Proposition 7.3. Let X, Y and Z be as above, and let T be another topological space. To describe a function
f : X → T , it is enough to specify the restricted functions g = f |Y : Y → T and h = f |Z : Z → T . Moreover,
the combined map f is continuous (with respect to the coproduct topology) iff g and h are continuous (with
respect to the originally given topologies on Y and Z). Thus, we have a bijection between Top(X,T ) and
Top(Y, T )× Top(Z, T ).

Proof. Consider an open set A ⊆ T . We then find that f−1(A) ∩ Y = g−1(A) and f−1(A) ∩ Z = h−1(A).
Thus, f−1(A) is open in X iff g−1(A) is open in Y and h−1(A) is open in Z. Thus, f is continuous iff
this condition holds for all A iff g and h are continuous. Thus, to give a continuous map f ∈ Top(X,T ) is
the same as to give a pair of continuous maps g ∈ Top(Y, T ) and h ∈ Top(Z, T ), or in other words a pair
(g, h) ∈ Top(Y, T )× Top(Z, T ). □

Remark 7.4. There is a general notion of coproduct objects in category theory. The above proposition can
be interpreted as saying that X (equipped with the coproduct topology) is the coproduct of Y and Z in this
general categorical sense.

Proposition 7.5. Let X, Y , Z and T be as above, and consider a function p : T → X. Then p is continuous
iff

(a) The sets A = p−1(Y ) and B = p−1(Z) are open in T .
(b) The restricted map q = p|A : A→ Y is continuous with respect to the subspace topology on A ⊆ T .
(c) The restricted map r = p|B : B → Z is continuous with respect to the subspace topology on B ⊆ T .

Proof. Left as an exercise. □

Video (Definition 7.6 to Remark 7.12)

Definition 7.6. Let Y and Z be topological spaces, and consider the product

X = Y × Z = {(y, z) | y ∈ Y and z ∈ Z}.
For a point a = (b, c) ∈ Y ×Z, a box around a means a set of the form V ×W , where b ∈ V and c ∈W and
V is open in Y and W is open in Z. We declare that a set U ⊆ X is open iff for all a ∈ U , there is a box
around a that is contained in U .

Example 7.7. The picture shows the case where Y = [0, 2] and Z = [0, 1]. We have indicated a subset
U ⊂ Y × Z, two points a, a′ ∈ U , a box around a contained in U , and a box around a′ contained in U .

a

a′

X = Y × Z

U

Lemma 7.8. Suppose that V is an open subset of Y and W is an open subset of Z. Then V ×W is open
in Y × Z.
Proof. Consider a point a = (b, c) ∈ V ×W , so b ∈ V and c ∈ W . We need to show that there is a box B
around a such that B ⊆ V ×W . We can just take B = V ×W . □
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Proposition 7.9. Definition 7.6 specifies a topology on Y × Z (which we call the product topology).

Proof. First suppose we have a family of open sets Ui ⊆ Y ×Z; we must show that the union U∗ =
⋃
i Ui is

open. Consider a point a ∈ U∗. By the definition of the union, this means that a ∈ Ui for some i. As Ui is
open, we can choose a box B = V ×W around a such that B ⊆ Ui. Now Ui ⊆ U∗, so we also have B ⊆ U∗.
Thus, every point in U∗ has a box that is contained in U∗, so U∗ is open as required.

Now suppose we have a finite list of open sets U1, . . . , Un; we must show that the intersection U# =
U1 ∩ . . .∩Un is open. Consider a point a = (b, c) ∈ U#. By the definition of the intersection, we have a ∈ Ui
for all i. As Ui is open, we can choose a box Bi = Vi×Wi around a such that Bi ⊆ Ui. Put V # = V1∩. . .∩Vn
and W# = W1 ∩ · · · ∩Wn and B# = B1 ∩ · · · ∩ Bn = V # ×W#. For all i we have b ∈ Vi and c ∈ Wi, so
b ∈ V # and c ∈ W#. By the topology axioms for Y , the set V # is open in Y . By the topology axioms for
Z, the set W# is open in Z. It follows that B# is a box around a that is contained in U#, as required.

We also see that ∅ is open (because there are no points a ∈ ∅ to check, so the definition is vacuously
satisfied). Also, the set X = Y × Z itself is a box around each of its points, so X is open. This completes
the proof that we have defined a topology. □

Again, the categorical viewpoint encourages us to try to analyse the continuous maps to or from Y × Z.
For maps out of Y × Z there is no simple answer, but maps into Y × Z are quite easy.

Lemma 7.10. The projection maps Y
p←− Y ×Z q−→ Z (given by p(y, z) = y and q(y, z) = z) are continuous.

Proof. Let V ⊆ Y be an open set. We must show that p−1(V ) is open in Y ×Z, but p−1(V ) is just the same
as V × Z, which is open by Lemma 7.8. The proof for q is essentially the same. □

Now consider a topological space T and a function f : T → Y × Z. This must have the form f(t) =
(g(t), h(t)) for some functions g : T → Y and h : T → Z. We denote this by f = ⟨g, h⟩. We can also express
the component functions g and h as g = p ◦ f and h = q ◦ f .

Proposition 7.11. The combined map f = ⟨g, h⟩ : T → Y × Z is continuous (with respect to the product
topology) iff the component functions g = p◦f : T → Y and h = q◦f : T → Z are continuous. Thus, there is a
bijection between the sets Top(T, Y ×Z) and Top(T, Y )×Top(T,Z), in which the element f ∈ Top(T, Y ×Z)
corresponds to the pair (g, h) ∈ Top(T, Y )× Top(T,Z).

Proof. If f is continuous, then the composites g = p ◦ f and h = q ◦ f are continuous by Lemma 7.10 and
Proposition 3.24.

Suppose instead that we start from the assumption that g and h are both continuous. Consider an open
set U ⊆ Y ×Z; we must show that f−1(U) is open. The simplest case is where U is a box, say U = V ×W ,
where V is open in Y and W is open in Z. We then have

t ∈ f−1(V ×W ) ⇐⇒ (g(t), h(t)) ∈ V ×W ⇐⇒ (g(t) ∈ V and h(t) ∈W ) ⇐⇒ t ∈ g−1(V ) ∩ h−1(W ).

This shows that f−1(V ×W ) = g−1(V ) ∩ h−1(W ), and this set is open because g and h are continuous.
Now return to the general case of an arbitrary open set U ⊆ Y × Z, which need not be a box. For each

point x ∈ f−1(U), we have f(x) ∈ U . As U is open with respect to the product topology, there is a box Bx
with f(x) ∈ Bx ⊆ U . We put Ax = f−1(Bx), so x ∈ Ax ⊆ f−1(U). The previous paragraph shows that Ax
is open. Moreover, we find that f−1(U) is the union of all the sets Ax. The union of any family of open sets
is open, so f−1(U) is open as required. □

Remark 7.12. There is a general notion of product objects in category theory. The above proposition can
be interpreted as saying that Y ×Z (equipped with the product topology) is the product of Y and Z in this
general categorical sense.

We now turn our attention to quotient constructions. We recall the basic definitions.

Video (Definition 7.13 to Corollary 7.16)

Definition 7.13. Let X be a set, and let E be a relation on X (so for each pair (x, y) ∈ X ×X we have a
statement xEy, which may or may not be satisfied).

(a) We say that the relation is reflexive if xEx for all x ∈ X.
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(b) We say that the relation is symmetric if whenever xEy, we also have yEx.
(c) We say that the relation is transitive if whenever xEy and yEz, we also have xEz.
(d) We say that the relation is an equivalence relation if it is reflexive, symmetric and transitive.
(e) If we have an equivalence relation, we write [x] = {y | xEy} ⊆ X, and call this the equivalence class

of x. We note that
(i) The relation xEy holds iff [x] = [y]
(ii) For each x ∈ X we have x ∈ [x]
(iii) If x E̸y, then the subsets [x], [y] ⊆ X are disjoint, i.e. [x] ∩ [y] = ∅.
Although the equivalence classes are defined as subsets of X, we will often deemphasise that fact,
and just treat them as abstract symbols satisfying property (i).

(f) We write X/E for the set of all equivalence classes, so X/E = {[x] | x ∈ X}. We define a map
π : X → X/E by π(x) = [x], so π is surjective and π(x) = π(y) iff xEy. Informally, we say that X/E
is obtained from X by identifying points x and y whenever xEy. We may also say “gluing together”
instead of “identifying”.

Definition 7.14. Suppose we have sets X and Y , and an equivalence relation E on X. We say that a
function f : X → Y is E-saturated if whenever xEx′ in X, we have f(x) = f(x′) in Y .

Proposition 7.15.

(a) The quotient map π : X → X/E is E-saturated.
(b) For any function f : X/E → Y , the composite f ◦ π is E-saturated.
(c) For any E-saturated function f : X → Y , there is a well-defined function f : X/E → Y given by

f([x]) = f(x). This is the unique f : X/E → Y such that f ◦π = f . (We call it the function induced
by f .)

Proof. Claim (a) follows from Definition 7.13(e)(i), and claim (b) follows immediately from (a). For claim (c),
we need to define f(u) ∈ Y for each equivalence class u ∈ X/E. To do this, we pick any x with u = [x],
and take f(u) = f(x). There could in principle be a problem with this. If we choose a different x′ such that
u is also equal to [x′], then we should also have f(u) = f(x′), and this would be inconsistent if f(x′) was
different from f(x). However, in this situation we have [x] = [x′] so xEx′ so f(x) = f(x′) by the E-saturation
condition. Thus, no inconsistency can arise, and we have a well-defined function as claimed. The equation
f ◦ π = f is just another way of writing the condition f([x]) = f(x), so it is clear that there is a unique
function f with this property. □

Corollary 7.16. There is a one-to-one correspondence between functions X/E → Y , and E-saturated
functions X → Y . □

Video (Definition 7.17 to Remark 7.21)

Definition 7.17. Now suppose we have a topological space X, together with an equivalence relation E on
X. We declare that a subset V ⊆ X/E is open iff the preimage π−1(V ) ⊆ X is open in X.

Proposition 7.18. The above definition gives a topology on X/E (which we call the quotient topology).
Moreover, the quotient map π : X → X/E is continuous with respect to this topology.

Proof. Suppose we have a family of subsets Vi ⊆ X/E that are open with respect to the quotient topology.
We must show that the union V ∗ =

⋃
i Vi is also open. By the definition of the quotient topology, we see that

the sets Ui = π−1(Vi) are open in X, and we must show that π−1(V ∗) is also open in X. As the sets Ui are
all open, the set U∗ =

⋃
i Ui is also open, by the topology axioms for X. Moreover, we have π−1(V ∗) = U∗

by Lemma 3.11(a), so π−1(V ∗) is open as required. The proof for finite intersections is similar. We also
have π−1(X/E) = X, and X is open in X by the topology axioms for X, so X/E is open in X/E by our
definition of open sets in X/E. Similarly, we have π−1(∅) = ∅, which is open in X, so ∅ is open in X/E.
This completes the proof that we have a topology on X/E.

We also want to prove that π : X → X/E is continuous. In other words, for every set V ⊆ X/E that is
open with respect to the quotient topology, we must show that π−1(V ) is open in X. But this is true by the
very definition of the quotient topology. □
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Proposition 7.19. Let X and E be as above, and let f be a function from X/E to another topological space
Y . Then f is continuous (with respect to the quotient topology on X/E) iff the composite f ◦ π : X → Y is
continuous.

Proof. We have seen that π is continuous and that composites of continuous functions are continuous. Thus,
if f is continuous, then the composite f ◦ π is also continuous as claimed.

Suppose instead that we start from the assumption that f ◦ π : X → Y is continuous; we must show that

f : X/E → Y is continuous. Let W ⊆ Y be open; we must show that the preimage V = f
−1

(W ) is open
in X/E. By the definition of the quotient topology, it is equivalent to prove that the set π−1(V ) is open in

X. However, we have π−1(V ) = π−1(f
−1

(W )) = (f ◦ π)−1(W ), and this is open as required because f ◦ π
is assumed to be continuous. □

Corollary 7.20. Let f : X → Y be an E-saturated function. Then the induced function f : X/E → Y is
continuous iff f is continuous. Thus, we have a one-to-one correspondence between continuous functions
X/E → Y , and E-saturated continuous functions X → Y .

Proof. As f ◦ π = f , this is just a restatement of the proposition. □

Remark 7.21. This corollary could be put in a common framework with the first isomorphism theorem for
groups, if we took the time to develop the relevant categorical notion of coequalisers.

Example 7.22. We can define an equivalence relation E on Sn by xEy iff y = ±x. The real projective
space RPn is defined to be the quotient space Sn/E. Similarly, we can regard S2n+1 as the unit sphere in
the space Cn+1 = R2n+2. We can then define another equivalence relation F on S2n+1 by declaring that
xFy iff y = eiθx for some θ ∈ R. The complex projective space CPn is defined to be S2n+1/F .

Example 7.23. We will prove that the real projective space RP 1 is homeomorphic to S1. Recall that
RP 1 = S1/E, where uEv iff v = ±u. We will identify S1 with {z ∈ C | |z| = 1} by the usual Argand
corrspondence (x, y)↔ x+ iy. We define f : S1 → S1 by f(z) = z2. This clearly satisfies f(−z) = f(z), so
it is E-saturated and induces a map f : RP 1 → S1 with f(π(z)) = z2 for all z. Now suppose we have a point
w = eiθ ∈ S1. Then the set g(w) = {eiθ/2,−eiθ/2} is an E-equivalence class, or in other words a point of the
space RP 1, so we have a map g : S1 → RP 1. It is easy to see that this is inverse to f , so f is a continuous
bijection. We just need to check that g is also continuous. Suppose that U ⊆ RP 1 is open, and contains g(w)
for some point w = eiθ ∈ S1. This means that eiθ/2 ∈ π−1(U), and π−1(U) is open in S1 by the definition
of the quotient topology, so there is some ϵ > 0 such that eiϕ ∈ π−1(U) whenever |ϕ − θ/2| < ϵ. It follows

that eiθ
′ ∈ g−1(U) whenever |θ′ − θ| < 2ϵ. From this we can deduce that g−1(U) is open as required.

Interactive demo

Example 7.24. Put

X = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1 and z = ±1}.

This consists of two closed discs, as shown on the left below.
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Interactive demo

If we glue together the boundary circles of the two discs, we get a sphere, as shown on the right. We can
make this more formal and rigorous as follows. We introduce an equivalence relation E on X by declaring
that (x, y, z)E(x′, y′, z′) if (x′, y′, z′) = (x, y, z), or if (x′, y′, z′) = (x, y,−z) with x2 + y2 = 1. We define

f : X → S2 by f(x, y, z) = (x, y, z
√
1− x2 − y2), as illustrated below.

(x, y, 1)

(x, y,−1)

f(x, y, 1)

f(x, y,−1)

This is clearly continuous. Also, if x2 + y2 = 1 then we have f(x, y, 1) = f(x, y,−1) = (x, y, 0), so f is
E-saturated. We therefore have an induced map f : X/E → S2, and Corollary 7.20 tells us that this is
continuous. It is not hard to check that f is a bijection. However, we saw in Example 4.10 that not every
continuous bijection has a continuous inverse, so we cannot immediately conclude that f is a homeomorphism.
It would be possible but fiddly to prove this directly. However, we will see an efficient general method for
this in Section 8, so we will defer further comment until then.

Example 7.25. From the Knots and Surfaces course you should remember pictures like this:
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v1

v2

v3

v4

v5

v6

v7

v8

a

ba

b

c

d c

d

We take a filled octagon X, with edges marked a, b, c or d as shown. There are two edges marked a, and we
glue them together in the direction indicated by the arrows. We do the same for the labels b, c and d. To
make this more formal and rigorous, we introduce a relation E as follows: we declare that xEy if

• x = y; or
• for some t ∈ [0, 1] we have x = (1− t)v1 + tv2 and y = (1− t)v4 + tv3; or
• for some t ∈ [0, 1] we have x = (1− t)v2 + tv3 and y = (1− t)v4 + tv3; or
• for some t ∈ [0, 1] we have x = (1− t)v5 + tv6 and y = (1− t)v8 + tv7; or
• for some t ∈ [0, 1] we have x = (1− t)v6 + tv7 and y = (1− t)v1 + tv8; or
• for some i, j we have x = vi and y = vj .

One can check that this is an equivalence relation, so we can form the quotient space X/E. One can then
show that X/E is homeomorphic to the usual kind of double torus embedded in R3.

Example 7.26. Consider the spaces X = R2 and

Y = S1 × S1 = {(w, x, y, z) ∈ R4 | w2 + x2 = y2 + z2 = 1}

(so Y is a version of the torus). We introduce an equivalence relation on X by declaring that uEv iff
u− v ∈ Z2. We then define f : X → Y by

f(x, y) = (cos(2πx), sin(2πx), cos(2πy), sin(2πy)) .

It is easy to see that this is continuous and E-saturated, so it induces a continuous map f : X/E → Y .

It is also easy to see that f is a bijection. It is again true that f
−1

is also continuous, so that f is a
homeomorphism, but we will again defer the proof.

Example 7.27. Here is a more exotic example. We start with the space X = R× {1,−1}, and we declare
that (x′, y′)E(x, y) if either (x′, y′) = (x, y), or (x′, y′) = (x,−y) with x ̸= 0. In other words, we start with
the two lines where y = 1 and y = −1 and then we glue them together, except that we leave the points
(0, 1) and (0,−1) unglued. The quotient space X/E is called the line with doubled origin. It has various
unpleasant properties, and we mostly choose not to study spaces with those properties; that is the point of
the Hausdorff condition to be introduced in Section 8.

Remark 7.28. There is one more construction that we would like to treat, but will not. Let X be any
metric space. From the Metric Spaces course, you should remember that the set C(X,R) = Top(X,R) (of
continuous functions from X to R) has a metric of its own, which is useful for many purposes. It would also
be useful to define a similar topology on Top(X,Y ) for arbitrary topological spaces X and Y . This seems
natural, because it is easy to imagine what we mean by saying that two functions are close to each other,
which is the basic idea that we need when defining a topology. Unfortunately this leads to a host of technical
difficulties and subtle distinctions. A huge detour is necessary before one can set up a clear and coherent
theory. Thus, we will motivate various constructions using the idea of treating Top(X,Y ) as a topological
space, but we will not use this idea in our formal definitions.
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Proposition 7.29. Let Y and Z be disjoint spaces, and take X = Y ∪Z, with the coproduct topology. Then
π0(X) is the disjoint union of π0(Y ) and π0(Z).

Proof. We can define f : X → {1,−1} ⊂ R by f(y) = 1 for y ∈ Y , and f(z) = −1 for z ∈ Z. This is clearly
continuous when restricted to Y or Z, so it is continuous on all of X by Proposition 7.3. If u : [0, 1]→ X is
a continuous path, then f ◦ u : [0, 1]→ {−1, 1} is also continuous, so it clearly must be constant. (Formally,
the proof uses the Intermediate Value Theorem.) Thus, the path lies wholly in Y or wholly in Z. Given
this, the claim is clear from the definitions. □

Proposition 7.30. Let Y and Z be topological spaces. Then π0(Y ×Z) can be identified with π0(Y )×π0(Z).
More precisely, let Y

p←− Y ×Z q−→ Z be the projections, which give rise to maps π0(Y )
p∗←− π0(Y ×Z)

q∗−→ π0(Z)
as in Proposition 5.20. We can therefore define a map

ϕ : π0(Y × Z)→ π0(Y )× π0(Z)

by ϕ(u) = (p∗(u), q∗(u)), and this is a bijection.

Proof. We would like to define ψ : π0(Y ) × π0(Z) → π0(Y × Z) as follows: an element of π0(Y ) × π0(Z)
can be written as ([a], [b]) for some a ∈ Y and b ∈ Z, and these give a point (a, b) ∈ Y × Z and a path
component [(a, b)] ∈ π0(Y,Z), and we want to define ψ([a], [b]) = [(a, b)]. We must check that this is well-
defined. Suppose that ([a], [b]) = ([a′], [b′]) in π0(Y ) × π0(Z). This means that [a] = [a′] in π0(Y ), so there
is a continuous path u : a ⇝ a′ in Y . It also means that [b] = [b′] in π0(Z), so there is a continuous path
v : b⇝ b′ in Z. We define w : [0, 1]→ Y ×Z by w(t) = (u(t), v(t)) (which is continuous by Proposition 7.11).
This gives a path (a, b)⇝ (a′, b′) in Y ×Z, proving that [(a, b)] = [(a′, b′)], as required. Thus, our definition
of ψ is valid. We can describe ϕ in similar terms by ϕ([a, b]) = ([a], [b]). (We do not need to check separately
that this is well-defined, because that was done already in Proposition 5.20 which we used to define p∗ and
q∗.) It is now clear that ϕ and ψ are inverse to each other, so ϕ is a bijection as claimed. □

8. The Hausdorff property, and compactness

Video (Definition 8.1 to Proposition 8.8)

Let X be a metric space, and let a and b be points in X such that a ̸= b. By the first axiom of metric
spaces, this means that d(a, b) > 0. We can choose r with 0 < r ≤ d(a, b)/2 and put U = OB(a, r) and
V = OB(b, r). Then U and V are open, and a ∈ U and b ∈ V , and we have U ∩ V = ∅. This is an obvious
and natural construction that occurs frequently in the theory of metric spaces.

a

b

U
V

Now suppose that X is a general topological space, and we again have points a, b ∈ X with a ̸= b. We
might again want to have open sets U and V with properties as above, but there is no longer any obvious
way to produce them, and in fact, they need not exist in all cases. This leads us to introduce the following
definition.

Definition 8.1. Let X be a topological space. If a, b ∈ X with a ̸= b, then a Hausdorff separation for a and
b is a pair of open sets U and V such that a ∈ U and b ∈ V and U ∩ V = ∅. We say that X is a Hausdorff
space if every pair of distinct points has a Hausdorff separation.
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Example 8.2. As in our previous discussion, if a and b are distinct points in a metric space X, then the
open balls U = OB(a, d(a, b)/2) and V = OB(b, d(a, b)/2) give a Hausdorff separation of a and b. Thus, all
metric spaces are Hausdorff spaces.

Example 8.3. Let X be a space with the indiscrete topology, as in Example 3.15, so the only open sets are
∅ and X. Suppose also that |X| ≥ 2, so we can choose two distinct points a, b ∈ X with a ̸= b. It is then
clear that there can be no Hausdorff separation of a and b (because both sets U and V would have to be
equal to X). Thus, X is not Hausdorff.

Example 8.4. The Sierpiński space X is defined as follows: the underlying set is {0, 1}, and the sets ∅, {1}
and {0, 1} are declared to be open, but the set {0} is not open. One can check that this is indeed a topology,
and that there is no Hausdorff separation for 0 and 1, so we do not have a Hausdorff space.

Example 8.5. Consider the line with doubled origin X/E as in Example 7.27. This contains two distinct
points a = π(0, 1) and b = π(0,−1). One can check that there is no Hausdorff separation for these points,
so X/E is not a Hausdorff space. In particular, this illustrates the fact that a quotient of a Hausdorff space
need not be Hausdorff.

Although non-Hausdorff spaces are important in various different branches of mathematics, we will mostly
restrict attention to Hausdorff spaces.

Proposition 8.6. Let X be a Hausdorff space, and let Y be a subset of X, with the subspace topology. Then
Y is also Hausdorff.

Proof. Let a and b be distinct points in Y . As X is Hausdorff, we can choose sets U, V that are open in X
with a ∈ U and b ∈ V and U ∩ V = ∅. Put U ′ = U ∩ Y and V ′ = V ∩ Y . By the definition of the subspace
topology, these are open in Y . It is also clear that a ∈ U ′ and b ∈ V ′ and U ′ ∩ V ′ = U ∩ V ∩ Y = ∅, so U ′

and V ′ give a Hausdorff separation of a and b in Y .

X

Y

a

b

U

V

Y

a

b

U ′

V ′

□

Proposition 8.7. Let Y and Z be disjoint topological spaces, and put X = Y ∪Z, and give X the coproduct
topology as in Definition 7.1. Suppose that Y and Z are both Hausdorff; then X is also Hausdorff.

Proof. Consider a pair of distinct points a, b ∈ X. There are four possible cases:

(1) Both a and b lie in Y
(2) Both a and b lie in Z
(3) a is in Y and b is in Z
(4) a is in Z and b is in Y .

In case (a), we use the fact that Y is Hausdorff. We can thus find sets U and V that are open in Y with
a ∈ U and b ∈ V and U ∩ V = ∅. From the definition of the coproduct topology we see that U and V
are still open when considered as subsets of X, so they provide the required Hausdorff separation of a and
b. Case (2) is essentially the same. In case (3) the pair (Y,Z) is the required Hausdorff separation, and in
case (4) we use (Z, Y ) instead.
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a bY

Z

case (1)

a b

case (2)

a

b

case (3)

a

b

case (4)

□

Proposition 8.8. Let Y and Z be topological spaces, and consider the space Y ×Z with the product topology.
Suppose that Y and Z are both Hausdorff; then Y × Z is also Hausdorff.

Proof. Consider a pair of distinct points a = (y, z) ∈ Y × Z and b = (u, v) ∈ Y × Z. As a ̸= b, we must
either have y ̸= u or z ̸= v. First suppose that y ̸= u in Y . As Y is Hausdorff, we can choose a Hausdorff
separation (U, V ) for y and u in Y . It is then not hard to see that the pair (U × Z, V × Z) is a Hausdorff
separation for a and b in Y × Z. Similarly, if z ̸= v then we can choose a Hausdorff separation (P,Q) for z
and v in Z, and we find that the pair (Y × P, Y ×Q) is a Hausdorff separation for a and b in Y × Z.

a

b

y u

U V

Y

First case (y ̸= u)

a

b

z

v

P

Q

Z

Second case case (y = u, z ̸= v)

□

We now turn to the notion of compactness. Compactness for metric spaces was covered in some detail
in [MS, Section 7]. In particular, it was shown as [MS, Theorem 7.8] that a subset X ⊆ Rn is compact iff
it is bounded and closed. For our purposes, you should think of this as a prototypical example: a space is
compact if it is similar to a bounded, closed subset of Rn. It was also proved in [MS, Theorem 7.20] that a
metric space is compact iff it has the Heine-Borel property. In the context of general topological spaces, we
take the Heine-Borel property as the definition of compactness. We now recall the relevant details.

Video (Definition 8.9 to Example 8.16)

Definition 8.9. Let X be a topological space. By an open cover of X we mean a family of open subsets
(Ui)i∈I such that X =

⋃
i∈I Ui. Equivalently, for every point x ∈ X there must exist a set Ui in the family

such that x ∈ Ui. By a finite subcover we mean a subcollection Ui1 , . . . , Uir , containing only finitely many
of the subsets Ui, such that we still have X = Ui1 ∪ · · · ∪Uir . We say that X is compact if every open cover
of X has a finite subcover.
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Example 8.10. Consider the space R. The sets Un = (n − 1, n + 1) (for n ∈ Z) form an open cover of
R. However, we claim that there is no finite subcover. In other words, if we take any finite collection of
these sets, say Un1

, . . . , Unr
, we claim that the union U∗ = Un1

∪ · · · ∪ Unr
is not all of R. This is clear: if

p = min(n1, . . . , nr) and q = max(n1, . . . , nr) then U
∗ ⊆ (p− 1, q+1) and so q+2 ̸∈ U∗, for example. From

this it follows that R is not compact. (We could also have deduced this from the results in [MS, Section 7].)

Example 8.11. Now consider the space X = (0, 1) and the subspaces Un = (1/n, 1 − 1/n) (for n > 1).
These form an open cover of X but there is no finite subcover, so X is again not compact.

Definition 8.12. Let X be a subset of Rn. We say that X is bounded if there is a constant R ≥ 0 such
that ∥x∥ ≤ R for all x ∈ X.

Lemma 8.13. Let X be a space with only finitely many points; then X is compact.

Proof. Supose that X = {x1, . . . , xn}. Let (Ui)i∈I be an open cover of X. For each t, the element xt must
lie in some set of the cover, say xt ∈ Uit . This means that X ⊆ Ui1 ∪ · · · ∪ Uin , so we have a finite subcover
as required. □

Proposition 8.14. Let X be a subset of Rn, with the subspace topology. Then X is compact iff it is bounded,
and closed in Rn.

Proof. This follows from [MS, Theorems 7.8 and 7.20]. (It is apparently identical to Theorem 7.8, but that
is slightly misleading because [MS] uses a different definition of compactness; we need Theorem 7.20 as well
to show that the two versions of compactness are the same.) □

Example 8.15. The spaces Sn−1, ∆n−1 and Bn are bounded and closed in Rn, so they are all compact.

Example 8.16. Recall that On = {A ∈Mn(R) | ATA = I}. We will show that this is closed and bounded in

Mn(R) ≃ Rn2

, so it is compact. We can define f : Mn(R)→Mn(R) by f(A) = ATA− I. This is continuous,
and {0} is closed in Mn(R), and On = f−1{0}, so On is closed in Mn(R) ≃ Rn2

. We have also explained
that the standard metric on Mn(R) can be expressed in the form

d(A,B) =
√

trace((A−B)T (A−B)).

For the identity matrix I ∈Mn(R) we have trace(I) = n. From this we see that d(A, 0) =
√
n for all A ∈ On,

so On is bounded.

Video (Proposition 8.17 to Corollary 8.19)

Proposition 8.17. Let X be a compact space, and let Y be a closed subset of X, equipped with the subspace
topology. Then Y is also compact.

Proof. Let (Vi)i∈I be an open cover of Y . By the definition of the subspace topology, we can find sets Ui that
are open in X such that Vi = Ui ∩Y . As Y =

⋃
i Vi, we see that Y ⊆

⋃
i Ui. Note that the set Y c = X \Y is

also open in X (because Y is assumed to be closed). The set Y c together with the sets Ui then form an open
cover of X. As X is compact, we can choose a finite subcover, which will consist of some finite collection
of sets Ui1 , . . . , Uir , possibly together with Y c. These sets cover all of X, so in particular they cover Y . It
is clear that Y c cannot contribute to covering Y , so we must have Y ⊆ Ui1 ∪ · · · ∪ Uir . This means that
Y = Vi1 ∪ · · · ∪ Vir , so we have a finite subcover of the original cover, as required. □

Proposition 8.18. Let X be a Hausdorff space, and let Y be a subset that is compact with respect to the
subspace topology. Then Y is closed in X.

Proof. We must show that the set Y c = X \ Y is open. Choose a point x ∈ Y c. For each point y ∈ Y we
have x ̸= y, so we can choose a Hausdorff separation, say (Uy, Vy). This means that Uy and Vy are open
in X and x ∈ Uy and y ∈ Vy and Uy ∩ Vy = ∅. Now put Wy = Vy ∩ Y , which is open for the subspace
topology on Y . As y ∈ Wy, we see that the sets Wy cover Y . By the compactness property, we can choose
a finite subcollection Wy1 , . . . ,Wyr that still covers Y . This means that Y ⊆ Vy1 ∪ · · · ∪ Vyr . Now put
U# = Uy1 ∩ · · · ∩ Uyr . This is a finite intersection of open sets, so it is still open in X. Each of the sets Uyi
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contains x, so we have x ∈ U#. We also claim that U# ⊆ Y c, or equivalently U# ∩ Y = ∅. To see this,
suppose (for a contradiction) that we have y ∈ U# ∩ Y . This means that y ∈ Y , and Y ⊆ Vy1 ∪ · · · ∪ Vyr , so
we have y ∈ Vyt for some t. On the other hand, we have y ∈ U# = Uy1 ∩ · · · ∩ Uir , so in particular y ∈ Uyt .
We now see that y ∈ Uyt ∩ Vyt , which is impossible because Uz ∩ Vz = ∅ for all z. This contradiction shows
that we in fact have U# ⊆ Y c. We started with an arbitrary element x ∈ Y c, and we produced an open set
U# that contains x and is contained in Y c. By Lemma 3.33, this is enough to prove that Y c is open. □

Corollary 8.19. Let X be a compact Hausdorff space, and let Y be a subset of X. Then Y is closed in X
iff it is compact (in the subspace topology).

Proof. This follows easily by combining Propositions 8.17 and 8.18. □

Video (Proposition 8.20 to Proposition 8.23)

Proposition 8.20. Let X and Y be topological spaces. Suppose that X is compact, and that we have a
surjective, continuous map f : X → Y . Then Y is also compact.

Proof. Consider an open cover (Vi)i∈I of Y . Put Ui = f−1(Vi) ⊆ X, so that Ui is open by the definition of
continuity. If x is any point in X, then f(x) ∈ Y , and the sets Vi cover Y , so we can choose i with f(x) ∈ Vi,
which means that x ∈ Ui. This shows that the sets Ui form an open cover of X. As X is assumed to be
compact, there must be a finite subcover, say Ui1 , . . . , Uir . We claim that the corresponding sets Vi1 , . . . , Vir
cover Y . To see this, consider an arbitrary point y ∈ Y . As f is assumed to be surjective, we can choose
x ∈ X with f(x) = y. As the sets Ui1 , . . . , Uir cover X, we can choose t such that x ∈ Uit . Here Uit was
defined to be f−1(Vit), so we must have f(x) ∈ Vit , or in other words y ∈ Vit as required. Thus, the list
Vi1 , . . . , Vir is a finite subcover of our original cover. □

Corollary 8.21. Let X be a compact space, and let E be an equivalence relation on X. Then the quotient
space X/E is also compact.

Proof. The quotient map π : X → X/E is surjective and continuous, so this follows from Proposition 8.20. □

Example 8.22. We can define an equivalence relation E on Sn by xEy iff y = ±x. The real projective
space RPn is defined to be the quotient space Sn/E. This is compact, because Sn is compact. Similarly, we
can regard S2n+1 as the unit sphere in the space Cn+1 = R2n+2. We can then define another equivalence
relation F on S2n+1 by declaring that xFy iff y = eiθx for some θ ∈ R. The complex projective space CPn
is defined to be S2n+1/F ; this is again compact.

Proposition 8.23. Let Y and Z be disjoint spaces, and take X = Y ∪Z, with the coproduct topology. If Y
and Z are both compact, then so is X.

Proof. Let (Ui)i∈I be an open cover of X. Then each set Ui must have the form Vi ∪Wi, where Vi is an
open subset of Y , and Wi is an open subset of Z. It is easy to see that the sets Vi form an open cover of
Y , so there must be a finite subcover, say Yi1 , . . . , Yir . Similarly, the sets Wi form an open cover of Z, so
there must be a finite subcover, say Wj1 , . . . ,Wjs . We then find that the list Ui1 , . . . , Uir , Uj1 , . . . , Ujs forms
a finite subcover of our original cover. □

Video (Theorem 8.24 to Lemma 8.26)

Theorem 8.24. Let Y and Z be compact spaces. Then the product Y ×Z is also compact (under the product
topology).

We will give the proof after some preliminary definitions and results.

Definition 8.25. Let Y and Z be as above, and let (Ui)i∈I be an open cover of Y × Z. We will say that a
subset K ⊆ Y ×Z is finitely covered if there is a finite subcollection Ui1 , . . . , Uir such that K ⊆ Ui1∪· · ·∪Uir .

We need to prove that the whole space Y × Z is finitely covered, but we will build up to this by proving
that certain other sets are finitely covered first.
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Lemma 8.26. In the above context, let y be a point in Y . Then there is an open set S ⊆ Y such that y ∈ S
and S × Z is finitely covered.

Proof. For each z ∈ Z, choose an index iz such that (y, z) ∈ Uiz . As Uiz is open in the product topology, we
can then choose a box Bz = Vz ×Wz such that y ∈ Vz and z ∈ Wz and Vz ×Wz ⊆ Uiz . As z ∈ Wz for all
z, we see that the sets (Wz)z∈Z form an open cover of Z. As Z is compact, we can choose a finite subcover,
say Z = Wz1 ∪ . . . ∪Wzr . Now put S = Vz1 ∩ · · · ∩ Vzr . This is the intersection of a finite list of open sets,
each of which contains y; so S itself is an open set containing y. We next claim that S×Z ⊆ Bz1 ∪ · · ·∪Bzr .
Indeed, suppose we have a point (s, z) ∈ S×Z. As Z =Wz1 ∪ . . .∪Wzr , we can choose k such that z ∈Wzk .
Now s ∈ S = Vz1 ∩ · · · ∩Vzr , so we also have s ∈ Vzk . This proves that (s, z) ∈ Vzk ×Wzk = Bzk , as required.
We also have Bzk ⊆ Uizk , so

S × Z ⊆ Uiz1 ∪ · · · ∪ Uizr .
This shows that S × Z is finitely covered. □

Proof of Theorem 8.24. For each y ∈ Y , the lemma tells us that we can choose an open set Sy containing y
such that Sy ×Z is finitely covered. The family (Sy)y∈Y is then an open cover of Y . As Y is assumed to be
compact we can choose a finite subcover, say Y = Sy1 ∪ · · · ∪ Syr . It follows that Y × Z =

⋃r
i=1(Syi × Z).

Here each of the subsets Syi × Z is finitely covered, and there are only finitely many of them, so the union
is also finitely covered. This means that Y × Z is finitely covered, or in other words that our original cover
of Y × Z has a finite subcover, as required. □

Video (Proposition 8.27 and Example 8.28)

Proposition 8.27. Let X be a compact space, and let Y be a Hausdorff space. Let f : X → Y be a continuous
bijection. Then the inverse map f−1 : Y → X is also continuous, so f is a homeomorphism.

Proof. Let g : Y → X be the inverse of f , so the claim is that g is continuous. By Proposition 3.23, it will
be enough to check that for every closed subset F ⊆ X, the preimage g−1(F ) is closed in Y . Here F is
a closed subset of a compact space, so it is compact by Proposition 8.17. As g is inverse to f , we have
g−1(F ) = f(F ). We can regard f as a continuous surjective map from F to f(F ) (where F and f(F ) are
given the respective subspace topologies). It follows by Proposition 8.20 that f(F ) is also compact. Now
f(F ) is a compact subspace of the Hausdorff space Y , so it is closed by Proposition 8.18. In other words,
the preimage g−1(F ) is closed, as required. □

Example 8.28. In Example 7.24 we considered a space X consisting of two disjoint discs, and the space
Y = S2. We introduced an equivalence relation E on X (corresponding to the idea of gluing the boundary
circles of the two discs) and defined a continuous bijection f : X/E → Y . Now X/E is a quotient of a
closed bounded subset of R3, so it is compact, and Y is a metric space, so it is Hausdorff. It follows from
Proposition 8.27 that f is actually a homeomorphism.

Example 8.29. In Example 7.26 we constructed a continuous bijection f : R2/E → T , where T is the torus
and the equivalence relation E is given by xEy iff x − y ∈ Z2. Here T is a metric space and therefore
Hausdorff. It is easy to see that the composite

[0, 1]2
inc−−→ R2 π−→ R2/E

is surjective, and [0, 1]2 is compact, so R2/E is compact by Proposition 8.20.

We conclude with some slightly different results about open covers, that are only relevant for metric
spaces. Their use will become apparent later.

Video (Definition 8.30 and Proposition 8.31)

Definition 8.30. Let X be a metric space, and let (Ui)i∈I be an open cover. A Lebesgue number for this
cover is a number ϵ > 0 with the following property: for every point x ∈ X, there is an index i such that
OB(x, ϵ) ⊆ Ui.
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You should think of a Lebesgue number as something like the minimum size of overlaps between adjacent
sets in the cover.

Proposition 8.31. Let X be a compact metric space. Then every open cover of X has a Lebesgue number.

Proof. Let (Ui)i∈I be an open cover of X. For each point x ∈ X, we can choose an index ix such that
x ∈ Uix . As Uix is open, we can then choose rx > 0 such that OB(x, rx) ⊆ Uix . Put Vx = OB(x, rx/2), so
Vx is an open subset of X containing x. The sets Vx then form an open cover of X, so we can choose a finite
subcover, say X = Vx1

∪ · · · ∪ Vxn
. Put ϵ = min(rx1

, . . . , rxn
)/2. We claim that this is a Lebesgue number.

To see this, let x be an arbitrary point in X. As the sets Vx1
, . . . , Vxn

form a cover, we can choose k such that
x ∈ Vxk

, or in other words d(x, xk) < rxk
/2. If u ∈ OB(x, ϵ) then d(u, x) < ϵ ≤ rxk

/2 and d(x, xk) < rxk
/2

so d(u, xk) < rxk
. This proves that OB(x, ϵ) ⊆ OB(xk, rrk) ⊆ Uixk

, so OB(x, ϵ) is contained in one of the
sets Ui, as required. □

9. Homotopy

Video (Definition 9.1 to Example 9.6)

We would like to make the following definition:

Definition 9.1 (Bogus). Let X and Y be topological spaces, and let f, g : X → Y be two continuous maps
from X to Y , or in other words, two elements of Top(X,Y ). We say that f and g are homotopic if there is a
path u : [0, 1]→ Top(X,Y ) from f to g, so that f and g lie in the same path component of Top(X,Y ). This
is an equivalence relation, by Proposition 5.9; the equivalence classes are called homotopy classes of maps.
We define [X,Y ] = π0 Top(X,Y ), so [X,Y ] is the set of all homotopy classes of maps from X to Y .

This is bogus, because we have not introduced a topology on the set Top(X,Y ), so it is not meaningful
to talk about continuous paths. As we mentioned in Remark 7.28, it is possible to introduce an appropriate
topology on Top(X,Y ), but this involves many subtle technicalities. We therefore reformulate the definition
in a different way.

Definition 9.2. Let X and Y be topological spaces, and let f, g : X → Y be two continuous maps from
X to Y . A homotopy from f to g is a continuous map h : [0, 1] × X → Y such that h(0, x) = f(x) and
h(1, x) = g(x) for all x ∈ X. We say that f and g are homotopic if there is a homotopy between them, and
we write f ≡ g in this case.

Proposition 9.3. The relation of being homotopic is an equivalence relation.

Proof. This is closely analogous to Proposition 5.9.

(a) We can define a homotopy h from f to f by h(t, x) = f(x) for all t. This proves that f ≡ f , so the
relation is reflexive.

(b) Suppose that f ≡ g, so we can choose a homotopy h from f to g. The function h(t, x) = h(1− t, x)
then gives a homotopy from g to f , proving that g ≡ f . Thus, the relation is symmetric.

(c) Now suppose that e ≡ f and f ≡ g, so we can choose a homotopy k from e to f , and another
homotopy h from f to g. We then define k ∗ h : [0, 1]×X → Y by

(k ∗ h)(t, x) =

{
k(2t, x) if 0 ≤ t ≤ 1

2

h(2t− 1, x) if 1
2 ≤ t ≤ 1.

The two clauses are consistent, because when t = 1
2 we have

k(2t, x) = k(1, x) = f(x) = h(0, x) = h(2t− 1, x).

The combined map k ∗h is easily seen to be continuous on when restricted to the sets [0, 12 ]×X and

[ 12 , 1]×X. These sets are closed (in the product topology), and their union is all of [0, 1]×X, so the
full map k ∗ h is continuous by Proposition 3.35. It gives a homotopy from e to g, proving that the
homotopy relation is transitive.

□
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Definition 9.4. The equivalence class [f ] of a continuous map f : X → Y is called the homotopy class of
f . We define [X,Y ] = Top(X,Y )/ ≡, so this is the set of all homotopy classes.

Example 9.5. Consider a continuous map f : S1 → C \ {0}. Then f represents a closed loop in the
complex plane, which cannot pass through the origin, but which can wind around the origin. Let n(f) be
the total number of times the curve winds around the origin, with anticlockwise turns counting positively,
and clockwise turns counting negatively. We call this the winding number of f . (We will formulate the
definition more carefully at a later stage.)

f

n(f) = 2

It can be shown that two maps from S1 to C \ {0} are homotopic iff they have the same winding number.
It follows that the map n : Top(S1,C \ {0})→ Z induces a bijection [S1,C \ {0}]→ Z.

Example 9.6. Let X be an arbitrary topological space, and let Y be a subset of Rn, with the subspace
topology. Let f, g : X → Y be continuous maps. We can then define a map h : [0, 1]×X → Rn by

h(t, x) = (1− t) f(x) + t g(x).

In general, we have no right to expect that this will land in the subspace Y ⊆ Rn, so it will probably
not provide a homotopy between f and g. However, in some special cases we may be able to prove that
h([0, 1] × X) ⊆ Y , and in that case we do get a homotopy from f to g, which we will call a straight line
homotopy.

For the most extreme example of this, suppose that Y is convex (as in Example 5.11), so that for all
a, b ∈ Y , the line segment from a to b is contained wholly in Y . Let f and g be continuous maps from X
to Y , and put h(t, x) = (1− t) f(x) + t g(x) as before. Then h(t, x) lies on the line segment from f(x) ∈ Y
to g(x) ∈ Y , so h(t, x) ∈ Y for all t and x. Thus, h gives a homotopy from f to g, proving that [f ] = [g] in
[X,Y ]. As f and g were arbitrary, it follows that |[X,Y ]| = 1.

We next check that the notion of homotopy is compatible with composition.

Video (Proposition 9.7 to Definition 9.9)

Proposition 9.7. Suppose we have continuous maps

X Y Z
f0

f1

g0

g1

Suppose that f0 is homotopic to f1, and that g0 is homotopic to g1. Then g1 ◦ f1 is homotopic to g0 ◦ f0.

Proof. We are assuming that f0 is homotopic to f1, which means that there is a homotopy h : [0, 1]×X → Y
with h(0, x) = f0(x) and h(1, x) = f1(x) for all x ∈ X. We are also assuming that g0 is homotopic to g1,
which means that there is a homotopy k : [0, 1] × Y → Z with k(0, y) = g0(y) and k(1, y) = g1(y) for all
y ∈ Y . We can therefore define m : [0, 1]×X → Z by

m(t, x) = k(t, h(t, x)).

This satisfies m(0, x) = k(0, h(0, x)) = k(0, f0(x)) = g0(f0(x)) and m(1, x) = k(1, h(1, x)) = k(1, f1(x)) =
g1(f1(x)). Thus, m gives the required homotopy, provided that we can check that it is continuous. The

43

https://youtu.be/Xg1zxHXBMJM


tidiest proof of continuity is as follows: we let p : [0, 1]×X → [0, 1] be the projection, and note that m can
be written as the composite

[0, 1]×X ⟨p,h⟩−−−→ [0, 1]× Y k−→ Z.

Here p is continuous by Lemma 7.10, so ⟨p, h⟩ is continuous by Proposition 7.11, so m is continuous by
Proposition 3.24. □

Corollary 9.8. For u ∈ [X,Y ] and v ∈ [Y,Z], there is a well-defined composite v ◦ u ∈ [X,Z], given by
v ◦ u = [g ◦ f ] for any choice of maps f, g with u = [f ] and v = [g].

Proof. Immediate from the proposition. □

Definition 9.9. We can now define a new category hTop, called the homotopy category. The objects are
topological spaces (just as for the category Top), but the morphisms are now homotopy classes of maps, so

hTop(X,Y ) = Top(X,Y )/ ≡= [X,Y ].

The composition rule is given by Corollary 9.8. The identity morphism in hTop for an object X is just the
homotopy class [idX ] corresponding to the identity function.

Video (Definition 9.10 to Proposition 9.20)

Definition 9.10. A continuous map f : X → Y is a homotopy equivalence if the corresponding homotopy
class [f ] is an isomorphism in the homotopy category. Explicitly, this means that there must exist a continu-
ous map g : Y → X such that g ◦ f ≡ idX and f ◦ g ≡ idY . Any such map g is called a homotopy inverse for
f . If there exists a homotopy equivalence from X to Y , we will say that X and Y are homotopy equivalent.
We will sometimes use the notation X ∼= Y to indicate this.

Lemma 9.11. Every homeomorphism is a homotopy equivalence.

Proof. Let f : X → Y be a homeomorphism, with inverse g : Y → X. This means that g ◦ f = idX and
f ◦ g = idY . As g ◦ f is equal to idX , it is certainly homotopic to idX . As f ◦ g is equal to idY , it is certainly
homotopic to idY . Thus, g is also a homotopy inverse for f , so f is a homotopy equivalence. □

A basic example is as follows:

Proposition 9.12. For n > 0, the sphere X = Sn−1 is homotopy equivalent to the space Y = Rn \ {0}.

Proof. Recall that X = Sn−1 = {x ∈ Rn | ∥x∥ = 1}. We define f : X → Y to be the inclusion function, so
we just have f(x) = x. We define g : Y → X by g(y) = y/∥y∥. (It is important here that Y is the space of
nonzero vectors in Rn, so ∥y∥ > 0 and it is valid to divide by ∥y∥.) Note that for x ∈ X we have ∥x∥ = 1
so g(f(x)) = x/∥x∥ = x, so g ◦ f = idX . As g ◦ f is equal to idX , it is certainly homotopic to idX . In
the opposite direction, however, the composite g ◦ f is not equal to the identity. Nonetheless, we can define
h : [0, 1]× Y → Rn by

h(t, y) = (1− t) y

∥y∥
+ ty =

(
(1− t)∥y∥−1 + t

)
y.

Here (1− t)∥y∥−1+ t is always strictly positive (for 0 ≤ t ≤ 1), so h(t, y) can never be zero, so we can regard
h as a map [0, 1] × Y → Y . Now h(0, y) = f(g(y)) and h(1, y) = y, so h is a homotopy from g ◦ f to idY .
This proves that g is a homotopy inverse for f , so that f is a homotopy equivalence.
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y = h(1, y)

y/∥y∥ = f(g(y)) = h(0, y)

h(0.6, y)

□

Definition 9.13. Let X be a topological space, and let a be a point in X. A contraction of X to a is a
continuous map h : [0, 1]×X → X such that h(0, x) = a for all x, and h(1, x) = x for all x. We say that X
is contractible if it has a contraction (to some point a ∈ X).

Example 9.14. Let X ⊆ Rn be a convex space, and let a be a point in X. We can then define a linear
contraction of X to a by h(t, x) = (1− t)a+ tx, so X is contractible. In particular, the spaces Bn, ∆n and
[0, 1]n are all contractible.

Example 9.15. The sphere S2 is not contractible, as you will probably agree if you try to imagine a
contraction. However, at the moment we do not have any way of proving this.

Definition 9.16. We write 1 for the set {0} (or any other set with precisely one element). We regard this
as a topological space using the discrete topology (which is in fact the only possible topology in this case).

Proposition 9.17. A space X is contractible iff it is homotopy equivalent to 1.

Proof. Suppose thatX is homotopy equivalent to 1. This means that we have maps f : X → 1 and g : 1→ X,
and a homotopy h from g ◦ f to idX , and a homotopy k from f ◦ g to id1. As 1 = {0} there is no choice
about f : we must have f(x) = 0 for all x. Similarly, there is no choice about k: we must have k(t, 0) = 0
for all t. However, there is some choice about g and h. Put a = g(0) ∈ X. We then have g(f(x)) = g(0) = a
for all x. Moreover, h is a homotopy from g ◦ f to idX , so we have h(0, x) = g(f(x)) = a and h(1, x) = x for
all x. Thus, h is a contraction t a, showing that X is contractible.

Conversely, suppose that we start from the assumption that X is contractible. All the above steps can be
reversed in a straightforward way to prove that X is homotopy equivalent to 1. □

Remark 9.18. The map [0, 1] → 1 is the most basic example of a homotopy equivalence that is not a
homeomorphism.

Proposition 9.19. The relation of being homotopy equivalent is an equivalence relation.

Proof. The identity function from X to itself is clearly a homotopy equivalence, so the relation is reflexive.
Suppose that X is homotopy equivalent to Y , so we can choose a homotopy equivalence f : X −→ Y and a
homotopy inverse g : Y −→ X, so fg : Y −→ Y and gf : X −→ X are homotopic to the respective identity maps.
This means that g is a homotopy equivalence with homotopy inverse f , so Y is homotopy equivalent to X.
This proves that our relation is symmetric. Finally, suppose that X is homotopy equivalent to Y and Y is
homotopy equivalent to Z. Let d and e be homotopy inverses for f and g, so df ≃ 1X and fd ≃ 1Y ≃ eg
and ge ≃ 1Z . Using Proposition 9.7, we deduce that

degf = d(eg)f ≃ d1Y f = df ≃ 1X

gfde = g(fd)e ≃ g1Y e = ge ≃ 1Z .

This proves that gf : X −→ Z is a homotopy equivalence, with homotopy inverse de : Z −→ X. This in turn
shows that our relation is transitive, as required. □
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Proposition 9.20. Suppose that X0 is homotopy equivalent to Y0 and X1 is homotopy equivalent to Y1.
Then X0 ×X1 is homotopy equivalent to Y0 × Y1.

Proof. For i = 0, 1 we let fi : Xi → Yi be a homotopy equivalence, with homotopy inverse gi : Yi → Xi. This
means that we have homotopies hi from gi ◦ fi to idXi , and homotopies ki from fi ◦ gi to idYi . Now make
the following definitions:

f : X0 ×X1 → Y0 × Y1 f(x0, x1) = (f0(x0), f1(x1))

g : Y0 × Y1 → X0 ×X1 g(y0, y1) = (g0(y0), g1(y1))

h : [0, 1]×X0 ×X1 → X0 ×X1 h(t, x0, x1) = (h0(t, x0), h1(t, x1))

k : [0, 1]× Y0 × Y1 → Y0 × Y1 k(t, y0, y1) = (k0(t, y0), k1(t, y1)).

We find that h gives a homotopy from g ◦f to the identity, and k gives a homotopy from f ◦g to the identity,
so we have a homotopy equivalence between X0 ×X1 and Y0 × Y1, as required. □

Example 9.21. The solid torus, the Möbius band, and C \ {0} are all homotopy equivalent to S1. To
explain this in more detail, let D be the vertical disc in the xz plane of radius 1 centred at (2, 0, 0). The
“solid torus” is the space obtained by revolving D around the z-axis; this is easily seen to be homeomorphic
to S1 × D2. Now D2 is convex, so it is homotopy equivalent to 1. It follows that S1 × D2 is homotopy
equivalent to S1 × 1 = S1.

Next, for θ ∈ [0, 2π], let Pθ be the vertical plane through the z-axis in R3 that has angle θ with the
xz-plane. Let Dθ be the intersection of Pθ with the solid torus, which is a vertical disc of radius 1 centred
at (2 cos(θ), 2 sin(θ), 0). Let Iθ be the diameter of Dθ that makes an angle of θ/4 to the vertical, and let M
be the union of all the sets Dθ. This is a version of the Möbius band. It is homeomorphic to the space

M ′ = {(z, w) ∈ S1 ×B2 | w2/z is real and nonnegative }.

Interactive demo

Define f : S1 −→M ′ and g : M ′ −→ S1 and h : I ×M ′ −→M ′ by

f(z) = (z, 0)

g(z, w) = z

h(t, (z, w)) = (z, tw).

Then gf = 1 and h is a homotopy from fg to 1, so g is a homotopy inverse for f , so M ′ is homotopy
equivalent to S1 as claimed.

Interactive demo

Finally, Proposition 9.12 tells us that R2 \ {0} is homotopy equivalent to S1, and C can be identified with
R2, so C \ {0} is also homotopy equivalent to S1.

Interactive demo

Definition 9.22. Let X and Y be topological spaces. We say that X is a homotopy retract of Y if there

exist continuous maps X
f−→ Y

g−→ X such that g ◦ f is homotopic to idX . (We make no assumption about
f ◦ g.) Any pair (f, g) with this property will be called a homotopy retraction pair for (X,Y ).
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Example 9.23. Put

X = R2 \ {0}
Y = figure eight = {(x, y) ∈ C | (x− 1)2 + y2 = 1 or (x+ 1)2 + y2 = 1}.

Note that X is two-dimensional whereas Y is one-dimensional so there is no injective continuous map from
X to Y , so X is not an actual retract of Y . However, it is a homotopy retract of Y . To see this, define maps

X
f−→ Y

g−→ X by

f(x, y) = (1, 0) + (x, y)/∥(x, y)∥
g(x, y) = (x− 1, y).

The composite g ◦ f : X → X is just (g ◦ f)(x, y) = (x, y)/∥(x, y)∥. The straight line joining (x, y) to
(x, y)/∥(x, y)∥ does not pass through the origin, so g ◦ f is homotopic to the identity as required. (The map
f ◦ g : Y → Y is not homotopic to the identity, so we do not have a homotopy equivalence, but that is not
important.)

Proposition 9.24. Suppose that X is a homotopy retract of Y and that Y is contractible. Then X is also
contractible.

Proof. By hypothesis, we have continuous maps

X Y 1
f p

g q

such that gf , qp and pq are homotopic to the respective identity maps. Now put m = pf : X → 1 and
n = gq : 1 → X. We then have nm = gqpf ≃ gf ≃ id : X → X. Also, mn is a map from 1 to 1, and the
only map from 1 to 1 is the identity, so mn = id. Thus, m and n give a homotopy equivalence from X to 1,
proving that X is contractible. □

Proposition 9.25. Suppose we have two continuous maps f, g : X → Y , giving maps f∗, g∗ : π0(X)→ π0(Y )
as in Proposition 5.20. If f is homotopic to g, then f∗ = g∗.

Proof. Let h : [0, 1] ×X → Y be a homotopy between f and g, so h(0, x) = f(x) and h(1, x) = g(x) for all
x. For any a ∈ X we have f∗[a] = [f(a)] and g∗[a] = [g(a)]. We need to prove that these are the same.
Equivalently, we need to find a path u from f(a) to g(a) in Y . We can just take u(t) = h(t, a). □

10. Homology

Video (Definition 10.1 to Example 10.9)

Definition 10.1. Let X be a space. A singular k-simplex in X is a continuous map u : ∆k → X. We write
Sk(X) for the set of singular k-simplices in X.

Example 10.2. Recall that ∆0 is the set {e0} with just one point. To give a function u : ∆0 → X is the
same as to give a point u(e0) ∈ X; this, we can identify S0(X) with X.

Example 10.3. As usual, we identify ∆1 with [0, 1], with the point (1 − t, t) ∈ ∆1 corresponding to the
point t ∈ [0, 1]. Thus, a singular 1-simplex in X is the same as a continuous map u : [0, 1]→ X, or in other
words a path in X. This means that S1(X) is the set of all possible paths in X.

Example 10.4. Suppose that a0, . . . , ak ∈ RN . We can then define a map

⟨a⟩ = ⟨a0, . . . , ak⟩ : ∆k → RN

(or in other words an element ⟨a⟩ ∈ SkRN ) by

⟨a⟩(t0, . . . , tn) = t0a0 + · · ·+ tkak.

We call maps of this type linear simplices.
In the case k = 0 we have S0(X) = X and the map ⟨a0⟩ just corresponds to the point a0. In the case

k = 1, the map ⟨a0, a1⟩ corresponds to the straight line path from a0 to a1. In the case k = 2, the image of
the map ⟨a0, a1, a2⟩ : ∆2 → RN is the triangle with vertices a0, a1 and a2.
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Now suppose that X ⊆ RN and that a0, . . . , ak ∈ X. It may or may not happen that the image of the
map ⟨a⟩ : ∆k → RN actually lies in X; this must be checked carefully in any context where we want to use
this construction. If so, we can regard ⟨a⟩ as an element of Sk(X).

Example 10.5. This picture shows a space X ⊂ R2, together with:

• A linear 2-simplex ⟨a0, a1, a2⟩ ∈ S2R2, which is not an element of S2(X).
• Another linear 2-simplex ⟨b0, b1, b2⟩ ∈ S2(X) ⊂ S2(R2).
• A nonlinear 1-simplex u ∈ S1(X).

a0

a1

a2

b0 b1

b2

c0 c1u

X

Definition 10.6. Let P be a set. We write Z{P} for the set of formal Z-linear combinations of elements of
P . Thus, if p, q, r ∈ P then 5p−9q+7r ∈ Z{P}, for example. We call Z{P} the free abelian group generated
by P . (It is clearly an abelian group under addition.)

Remark 10.7. Suppose that P is finite, say P = {p1 . . . , pn}. We then have an isomorphism ϕ : Zn → Z{P}
given by

ϕ(a1, . . . , an) = a1p1 + · · ·+ anpn.

However, we will most often be considering cases where P is infinite.

Definition 10.8. A singular k-chain in X is a formal Z-linear combination of singular k-simplices, or in
other words, an element of Z{Sk(X)}. We write Ck(X) = Z{Sk(X)} for the group of singular k-chains. For
convenience, we also define Ck(X) = 0 for k < 0.

Example 10.9. Consider again the picture in Example 10.5:

• The expression 6a1 − 4b2 + 7c1 ∈ C0(X) is a singular 0-chain.
• The expression 3⟨a0, a2⟩ − ⟨b0, b1⟩+ u ∈ C1(X) is a singular 1-chain.
• The expression ⟨b0, b1, b2⟩ ∈ S2(X) ⊂ C2(X) is a singular 2-chain.
• No expression involving ⟨a0, a1⟩ gives a singular chain in X, because the straight line from a0 to a1

is not contained in X.

Remark 10.10. Suppose we have paths u : a ⇝ b and v : b ⇝ c in X. We can reverse u to get a path
u : b⇝ a, or we can join u and v to get a path u ∗ v : a⇝ c.

u

v

a b
c

u

a b

u ∗ v

a
c

We can regard u ∗ v and u+ v as elements of C1(X), but they are not the same. Similarly, we can regard u
and −u as elements of C1(X), but they are not the same. There is clearly an important relationship between
u ∗ v and u+ v, and between u and −u, but it will take a little work to formulate this mathematically.

Video (Predefinition 10.11 to Example 10.15)

We next need to define the algebraic boundary ∂u ∈ Ck−1(X) for a k-chain u ∈ Ck(X). We start by
considering the cases k = 0, k = 1 and k = 2.
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Predefinition 10.11.

• For u ∈ C0(X) = Z{X} we just define ∂u = 0.
• Now consider a singular 1-simplex u : ∆1 → X. This is a path with endpoints u(e0) and u(e1). These
endpoints are elements of the set X, which we identify with S0(X), so the difference u(e1) − u(e0)
can be regarded as an element of C0(X). We define ∂(u) = u(e1)− u(e0). More generally, suppose
we have a 1-chain u = n1u1 + · · ·+ nrur, with ui : ∆1 → X and ni ∈ Z. We then put

∂(u) = n1∂(u1) + · · ·+ nr∂(ur) =

r∑
i=1

ni(ui(e1)− ui(e0)).

This defines a homomorphism ∂ : C1(X)→ C0(X).
Note that for a linear 1-simplex ⟨a0, a1⟩, we just have ∂(⟨a0, a1⟩) = a1 − a0. Thus, in the picture

below we have a 1-chain

u = ⟨a0, a1⟩+ ⟨a1, a2⟩+ ⟨a2, a3⟩+ ⟨a3, a4⟩+ ⟨a4, a5⟩+ ⟨a5, a6⟩

with

∂(u) = (a1 − a0) + (a2 − a1) + (a3 − a2) + (a4 − a3) + (a5 − a4) + (a6 − a5) = a6 − a0.

a0

a1 a2

a3 a4

a5 a6

• We now consider 2-chains. For the simplest case, suppose that X ⊆ RN and u = ⟨a0, a1, a2⟩ is a
linear 2-simplex. In this case, we define

∂(⟨a0, a1, a2⟩) = ⟨a1, a2⟩ − ⟨a0, a2⟩+ ⟨a0, a1⟩.

a0
a1

a2

u = ⟨a0, a1, a2⟩

a0
a1

a2

∂(u) = ⟨a1, a2⟩ − ⟨a0, a2⟩+ ⟨a0, a1⟩

The rule for nonlinear singular 2-simplices is essentially a straightforward adaptation of the linear
case, but it will rely on some auxiliary definitions given below. Once we have defined ∂(u) for all
u ∈ S2(X), we will then define ∂(u) for all u ∈ C2(X) by the rule

∂(n1u1 + · · ·+ nrur) = n1∂(u1) + · · ·+ nr∂(ur),

just as we did for singular 1-chains. This gives a homomorphism ∂ : C2(X)→ C1(X).
• For a linear 3-simplex u = ⟨a0, a1, a2, a3⟩, we will have

∂(u) = ⟨a1, a2, a3⟩ − ⟨a0, a2, a3⟩+ ⟨a0, a1, a3⟩ − ⟨a0, a1, a2⟩.

For a general linear k-simplex u = ⟨a⟩ = ⟨a0, · · · , ak⟩, we will have

∂(u) =

k∑
i=0

(−1)i(⟨a⟩ with ai omitted ).
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Definition 10.12. For 0 ≤ i ≤ n with n > 0 we define δi : ∆n−1 → ∆n by

δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1).

Equivalently, we have

δi(t)j =


tj if j < i

0 if j = i

tj−1 if j > i.

Thus, the coordinates of δi(t) are the same as the coordinates of t, except that we insert a zero in position i.

Example 10.13. In the case n = 1 we have maps δ0, δ1 : ∆0 = {e0} = {1} → ∆1. These are given by
δ0(e0) = δ0(1) = (0, 1) = e1 and δ1(e0) = δ1(1) = (1, 0) = e0.

In the case n = 2, we have

δ0(t0, t1) = (0, t0, t1) δ1(t0, t1) = (t0, 0, t1) δ2(t0, t1) = (t0, t1, 0).

Thus, the image of δi : ∆1 → ∆2 is the edge of ∆2 opposite the vertex ei.

e0

e1 e2
δ0(∆1)

δ1(∆1)δ2(∆1)

Similarly, in the case n = 3, we have a map δi from the triangle ∆2 to the tetrahedron ∆3, and the image
δi(∆2) is the face of the tetrahedron that is opposite the vertex δi. The case i = 0 is shown below.

e0

e1

e2

e3

δ0(∆2)

Interactive demo

Even more generally, we see that the map δi : ∆n−1 → ∆n gives a homeomorphism from ∆n−1 to {t ∈
∆n | ti = 0}.

Definition 10.14. Consider an element u ∈ Sk(X) (with k > 0), or equivalently a continuous map u : ∆k →
X. For each i with 0 ≤ i ≤ k we have a map δi : ∆k−1 → ∆k and we can compose this with u to get a map
u ◦ δi : ∆k−1 → X, or in other words an element u ◦ δi ∈ Sk−1(X) ⊂ Ck−1(X). We put

∂(u) =

k∑
i=0

(−1)i(u ◦ δi) ∈ Ck−1(X).

More generally, given an element u =
∑r
p=1 apup ∈ Ck(X), we define ∂(u) =

∑r
p=1 ap∂(up) ∈ Ck−1(X).

Example 10.15.

• For a singular 1-simplex u : ∆1 → X we have ∂(u) = (u ◦ δ0) − (u ◦ δ1). Here δ0 sends the unique
point of ∆0 to e1, so the map u ◦ δ0 : ∆0 → X corresponds to the point u(e1) ∈ X. Similarly, δ1
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sends the unique point of ∆0 to e0, so the map u ◦ δ1 : ∆0 → X corresponds to the point u(e0) ∈ X.
We therefore have ∂(u) = u(e1)− u(e0), just as in Predefinition 10.11.

• Now consider a linear 2-simplex u = ⟨a0, a1, a2⟩, so
u(t0, t1, t2) = t0a0 + t1a1 + t2a2.

We find that

(u ◦ δ0)(t0, t1) = u(0, t0, t1) = t0a1 + t1a2 = ⟨a1, a2⟩(t0, t1)
(u ◦ δ1)(t0, t1) = u(t0, 0, t1) = t0a0 + t1a2 = ⟨a0, a2⟩(t0, t1)
(u ◦ δ2)(t0, t1) = u(t0, t1, 0) = t0a0 + t1a1 = ⟨a0, a1⟩(t0, t1),

so u ◦ δ0 = ⟨a1, a2⟩ and u ◦ δ1 = ⟨a0, a2⟩ and u ◦ δ2 = ⟨a0, a1⟩. This gives
∂(u) = ⟨a1, a2⟩ − ⟨a0, a2⟩+ ⟨a0, a1⟩,

just as in Predefinition 10.11. It should be clear that the same pattern works for all k, giving

∂(⟨a0, . . . , ak⟩) =
k∑
i=0

(−1)i(⟨a0, . . . , ak⟩ with ai omitted).

The following result is crucial for the development of homology theory.

Video (Proposition 10.16 to Definition 10.21)

Proposition 10.16. For all u ∈ Ck(X), we have ∂2(u) = ∂(∂(u)) = 0 in Ck−2(X). Thus, the composite

Ck(X)
∂−→ Ck−1(X)

∂−→ Ck−2(X)

is zero.

Example 10.17. Recall that we defined Cj(X) = 0 for j < 0, and any homomorphism to the zero group
is automatically the zero homomorphism. Thus, the proposition has no content for k < 2. For the first
nontrivial case, suppose that X ⊆ RN , and consider a linear 2-simplex u = ⟨a0, a1, a2⟩. We then have

∂(u) = ⟨a1, a2⟩ − ⟨a0, a2⟩+ ⟨a0, a1⟩
∂2(u) = ∂(⟨a1, a2⟩)− ∂(⟨a0, a2⟩) + ∂(⟨a0, a1⟩)

= (a2 − a1)− (a2 − a0) + (a1 − a0) = 0.

We will often use abbreviated notation for this kind of calculation, writing 012 for ⟨a0, a1, a2⟩ and 02 for
⟨a0, a2⟩, for example. With this notation, the above calculation becomes

∂2(012) = ∂(12)− ∂(02) + ∂(01) = (2− 1)− (2− 0) + (1− 0) = 0.

We now discuss ∂2(u) where u = ⟨a0, a1, a2, a3, a4⟩ ∈ C4(X), using the same kind of notation. First, we have

∂(u) = 1234− 0234 + 0134− 0124 + 0123.

We can write the terms of ∂2(u) in a square array, with ∂(1234) in the first column, ∂(−0234) in the second
column, and so on. The result is as follows:

+234

−134

+124

−123

−234

+034

−024

+023

+134

−034

+014

−013

−124

+024

−014

+012

+123

−023

+013

−012

We find that the terms above the wavy line cancel in the indicated groups with the terms below the wavy
line, leaving ∂2(u) = 0 as claimed.

51

https://youtu.be/mRyoBn5x_b4


Lemma 10.18. If 0 ≤ i < j ≤ k then δjδi = δiδj−1 : ∆k−2 → ∆k.

Proof. Consider a point t = (t0, . . . , tk−2) ∈ ∆k−2. To form δi(t), we insert a zero in position i. To form
δj(δi(t)), we insert another zero in position j. Because j > i, inserting this second zero does not move the
first zero, so we end up with zeros in positions i and j.

Similarly, to form δj−1(t), we insert a zero in position j − 1. To form δi(δj−1(t)), we insert another zero
in position i. As j − 1 ≥ i we see that the first zero is to the right of the point where we insert the second
zero, so the first zero gets moved over by one space into position j. Thus, we again end up with zeros in
positions i and j. In the remaining positions, we have the numbers t0, . . . , tk−2 in order. Thus, we have
δj(δi(t)) = δi(δj−1(t)) as claimed. □

Example 10.19. In the case where (i, j, k) = (2, 4, 6) the claim is that δ4δ2 = δ2δ3 : ∆4 → ∆6. Explicitly,
for t = (t0, . . . , t4) ∈ ∆4 we have

0 1 2 3 4 5 6

δ2(t) =( t0, t1, 0, t2, t3, t4)

δ4(δ2(t)) =( t0, t1, 0, t2, 0, t3, t4)

δ3(t) =( t0, t1, t2, 0, t3, t4)

δ2(δ3(t)) =( t0, t1, 0, t2, 0, t3, t4)

Example 10.20. We will now prove Proposition 10.16 in the case k = 4. Consider a continuous map
u : ∆4 → X, or equivalently an element u ∈ S4(X) ⊂ C4(X). We have

∂(u) = uδ0 − uδ1 + uδ2 − uδ3 + uδ4.

We can write the terms of ∂2(u) in a square array, with ∂(uδ0) in the first column, ∂(−uδ1) in the second
column, and so on. The result is as follows:

+uδ0δ0

−uδ0δ1

+uδ0δ2

−uδ0δ3

−uδ1δ0

+uδ1δ1

−uδ1δ2

+uδ1δ3

+uδ2δ0

−uδ2δ1

+uδ2δ2

−uδ2δ3

−uδ3δ0

+uδ3δ1

−uδ3δ2

+uδ3δ3

+uδ4δ0

−uδ4δ1

+uδ4δ2

−uδ4δ3

Lemma 10.18 gives us the following identities:

δ1δ0 = δ0δ0 δ2δ0 = δ0δ1 δ3δ0 = δ0δ2 δ4δ0 = δ0δ3

δ2δ1 = δ1δ1 δ3δ1 = δ1δ2 δ4δ1 = δ1δ3

δ3δ2 = δ2δ2 δ4δ2 = δ2δ3

δ4δ3 = δ3δ3

Using this, we see that in the previous array, the terms above the wavy line cancel in the indicated groups
with the terms below the wavy line, showing that ∂2(u) = 0 as claimed. This generalises the argument for
linear simplices given in Example 10.17.

Proof of Proposition 10.16. Consider a continuous map u : ∆k → X, or equivalently an element u ∈ Sk(X) ⊂
Ck(X). We have

∂2(u) =

k∑
j=0

(−1)j∂(u ◦ δj) =
k−1∑
i=0

k∑
j=0

(−1)i+ju ◦ δj ◦ δi.
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We can write this as A+B, where

A =
∑

0≤i<j≤k

(−1)i+ju ◦ δj ◦ δi

B =
∑

0≤j≤i≤k−1

(−1)i+ju ◦ δj ◦ δi.

Here i and j are just dummy variables, so we can rewrite B as

B =
∑

0≤q≤p≤k−1

(−1)p+qu ◦ δq ◦ δp.

We now reindex again, taking q = i and p = j − 1. The condition q ≤ p becomes i ≤ j − 1 or equivalently
i < j. The condition p ≤ k − 1 becomes j − 1 ≤ k − 1 or equivalently j ≤ k. The sign (−1)p+q becomes
(−1)i+j−1 = −(−1)i+j . This gives

B = −
∑

0≤i<j≤k

u ◦ δi ◦ δj−1.

However, Lemma 10.18 tells us that δi ◦ δj−1 = δj ◦ δi here, so B = −A, so ∂2(u) = A+B = 0 as claimed.
This proves that ∂2(u) = 0 whenever u is a singular k-simplex. More generally, and singular k-chain has

the form u = a1u1 + · · · + arur for some integers ai and singular k-simplices ui : ∆k → X. We then have
∂2(ui) = 0 for all i and so ∂2(u) =

∑
i ai∂

2(ui) = 0. □

Definition 10.21.

(a) We say that an element u ∈ Ck(X) is a k-cycle if ∂(u) = 0. We write Zk(X) for the abelian group
of k-cycles, so Zk(X) = ker(∂ : Ck(X)→ Ck−1(X)).

(b) We say that an element u ∈ Ck(X) is a k-boundary if there exists v ∈ Ck+1(X) with ∂(v) = u. We
write Bk(X) for the abelian group of k-boundaries, so Bk(X) = img(∂ : Ck+1(X)→ Ck(X)).

(c) We note that if u ∈ Bk(X) then u = ∂(v) for some v, so ∂(u) = ∂2(v) = 0 by Proposition 10.16,
so u ∈ Zk(X). This means that Bk(X) ≤ Zk(X), so we can form the quotient abelian group
Hk(X) = (Zk(X))/(Bk(X)). We call this the k’th homology group of X.

Remark 10.22. The elements of Hk(X) are cosets z+Bk(X) with z ∈ Zk(X), so z ∈ Ck(X) with ∂(z) = 0.
We will often write [z] for z+Bk(X). Before writing notation like [z] one must check that ∂(z) = 0; it is an
error to use that notation in other cases. Note that [z] = [z′] iff z− z′ ∈ Bk(X) iff there exists w ∈ Ck+1(X)
with ∂(w) = z − z′.

There is essentially only one example that we can calculate directly from the definition.

Proposition 10.23. If X consists of a single point, then H0(X) = Z and Hk(X) = 0 for k ̸= 0.

Proof. There is only one possible map from ∆k to X, sending all possible points in ∆k to the unique point
of X. We call this map sk, so Sk(X) = {sk} and Ck(X) = Z.sk for all k ≥ 0 (whereas Ck(X) = 0 for k < 0

by definition). For k > 0 we have ∂(sk) =
∑k
i=0(−1)isk ◦ δi. Here sk ◦ δi is a map from ∆k−1 to X so it can

only be equal to sk−1. This gives

∂(s1) = s0 − s0 = 0

∂(s2) = s1 − s1 + s1 = s1

∂(s3) = s2 − s2 + s2 − s2 = 0

and so on. In general, we have ∂(s2n+1) = 0 and ∂(s2n+2) = s2n+1. It follows that B2n+1(X) = Z2n+1(X) =
Z.s2n+1 and B2n+2(X) = Z2n+2(X) = 0. In particular, for all k > 0 we have Zk(X) = Bk(X) so the
quotient group Hk(X) = (Zk(X))/(Bk(X)) is trivial. On the other hand, Z0(X) = Z.s0 and B0(X) = 0 so
H0(X) = (Z.s0)/0 ≃ Z. All this can be tabulated as follows:
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CkX

ZkX

BkX

Z.s0 Z.s1 Z.s2 Z.s3 Z.s4 Z.s5 Z.s6
∂ ∂ ∂ ∂ ∂ ∂

0 ≃ 0 ≃ 0 ≃

Z.s1

Z.s1

Z.s3

Z.s3

Z.s5

Z.s5

0

0

0

0

0

0

Z.s0

0

□

Remark 10.24. We leave the following slight generalisation to the reader. Suppose that X is a finite,
discrete set of points, so that every continuous map ∆k → X is constant. Then H0(X) = C0(X) = Z{X},
and Hk(X) = 0 for k ̸= 0.

We can also calculate H0(X) for all X.

Proposition 10.25. There is a canonical isomorphism H0(X) ≃ Z{π0(X)} for all topological spaces X.
Thus, if |π0(X)| = r then H0(X) ≃ Zr.

This should not be a surprise. Both H0(X) and Z{π0(X)} are ways of constructing an abelian group
from X, in such a way that points connected by a path give the same element of the group. We just need
to check that the technical differences between these two constructions do not affect the final answer.

Proof. First note that C−1(X) is zero by definition, so the map ∂ : C0(X) → C−1(X) sends everything
to zero, so Z0(X) = C0(X). This means that the quotient group H0(X) = Z0(X)/B0(X) is the same as
C0(X)/B0(X).

Next, let π : X → π0(X) be the usual quotient map, which sends every point x ∈ X to the corresponding
path component [x] ∈ π0(X). We can extend this linearly to give a homomorphism π : Z{X} = Z{S0(X)} =
C0(X)→ Z{π0(X)}, by the rule

π(n1x1 + · · ·+ npxp) = n1π(x1) + · · ·+ npπ(xp) = n1[x1] + · · ·+ np[xp] ∈ Z{π0(X)}.

We will show that π is surjective, with kernel B0(X). Assuming this, the First Isomorphism Theorem will
give us an isomorphism from C0(X)/B0(X) = H0(X) to Z{π0(X)}, as required.

Next, for each path component c ∈ π0(X), we choose a point σ(c) ∈ c, so c = [σ(c)]. This means that the
composite

π0(X)
σ−→ X

π−→ π0(X)

is the identity. We can also extend σ linearly to give a homomorphism σ : Z{π0(X)} → C0(X) by the rule
σ(n1c1 + · · ·+ n+ pcp) = n1σ(c1) + · · ·+ npσ(cp). In this context, we see that the composite

Z{π0(X)} σ−→ C0(X)
π−→ Z{π0(X)}

is again the identity. In particular, any element u ∈ Z{π0(X)} is the same as π(σ(u)), so it is in the image
of π; this proves that π is surjective.

Now suppose we have a path v ∈ S1(X). We then have ∂(v) = v(e1) − v(e0) ∈ C0(X), so π(∂(v)) =
π(v(e1))− π(v(e0)) = [v(e1)]− [v(e0)] ∈ Z{π0(X)}. However, we have a path v joining v(e0) to v(e1), so the
corresponding path components are the same, so π(∂(v)) = 0. As everything is extended linearly, the rule
π(∂(v)) = 0 remains valid for all v ∈ C1(X). The image of ∂ : C1(X)→ C0(X) is B0(X), so this means that
π(B0(X)) = 0, or equivalently B0(X) ≤ ker(π).

Next, consider a point x ∈ X and the corresponding path component c = [x] = π(x). The points x and
σ(c) = σ(π(x)) both lie in the same path component c, so there must exist a path from σ(π(x)) to x in X. We
choose such a path and call it γ(x). This defines a function γ from X to the set S1(X) of paths in X, which
we extend linearly to get a hoomorphism γ : C0(X)→ C1(X). For any point x we know that γ(x) runs from
σ(π(x)) to x, so ∂γ(x) = x− σ(π(x)). As everything is extended linearly, the rule ∂(γ(u)) = u− σ(π(u)) is
valid for all u ∈ C0(X). In particular, if u ∈ ker(π) then π(u) = 0 so this simplifies to ∂(γ(u)) = u, proving
that u is in the image of ∂, or in other words u ∈ B0(X).
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We can now conclude that π is surjective with kernel B0(X). By the First Isomorphism Theorem, there
is a well-defined homomorphism π : H0(X) = C0(X)/B0(X)→ Z{π0(X)} given by π(u+B0(X)) = π(u) for
all u ∈ C0(X), and this is in fact an isomorphism. □

Example 10.26. The above proof can be illustrated by the following diagram. It shows a space X with
three path components A, B and C, so π0(X) = {A,B,C} and

Z{π0(X)} = {kA+ nB +mC | k, n,m ∈ Z} ≃ Z3.

We have chosen points σ(A) ∈ A and σ(B) ∈ B and σ(C) ∈ C, soA = [σ(A)] andB = [σ(B)] and C = [σ(C)].
To say the same thing in different notation, we have π(σ(A)) = A and π(σ(B)) = B and π(σ(C)) = C, so
π ◦ σ = id. The points a1 and a2 also lie in A, so [a1] = [a2] = A, or equivalently π(a1) = π(a2) = A. The
path γ(a1) runs from σ(A) = σ(π(a1)) to a1. Similarly, we have π(b1) = π(b2) = π(b3) = B, and we have
labelled a path γ(b3) running from σ(π(b3)) = σ(B) to b3.

A B C

σ(A) σ(B)
σ(C)

a1 a2
b1

b2

b3

γ(a1) γ(b3)

A typical example of an element of ker(π : C0(X)→ Z{π0(X)}) could be the element u = a1−a2+b1+b3−2b2.
This has γ(u) = γ(a1)− γ(a2) + γ(b1) + γ(b3)− 2γ(b2), so

∂(γ(u)) = (a1 − σ(A))− (a2 − σ(A)) + (b1 − σ(B)) + (b3 − σ(B))− 2(b2 − σ(B))

= a1 − a2 + b1 + b3 − 2b2 = u,

so u = ∂(γ(u)) ∈ img(∂) = B0(X). This illustrates the fact that ker(π) = img(∂), which is a key step in our
proof of Proposition 10.25.

We next discuss homology classes of paths, revisiting Remark 10.10.

Lemma 10.27. Let X be a topological space.

(a) For any a ∈ X the constant path ca ∈ S1(X) ⊆ C1(X) actually lies in B1(X), so ca +B1(X) = 0 in
the quotient group C1(X)/B1(X).

(b) For any path u : a ⇝ b in X with reversed path u : b ⇝ a, we have u + u ∈ B1(X) so u + B1(X) =
−u+B1(X) in C1(X)/B1(X).

(c) For any paths u : a ⇝ b and v : b ⇝ c we have (u ∗ v) + B1(X) = (u + B1(X)) + (v + B1(X)) in
C1(X)/B1(X).

Proof. Exercise.

Video

□

Video (Path homotopy, loop homotopy and homology)

Video (Definition 10.28 and Proposition 10.29)

Definition 10.28. Let X be a topological space. A loop in X is a path u : ∆1 → X with u(e0) = u(e1), so
that ∂(u) = 0, so we have a coset [u] = u + B1(X) ∈ H1(X). If u(e0) = u(e1) = a, we say that u is a loop
based at a.
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Proposition 10.29. Let X be a path connected space, and let a be a point in X. Then for every h ∈ H1(X)
there exists a loop u based at a with h = [u]. Moreover, if u and v are loops based at a then so are ca, u and
u ∗ v, and we have [ca] = 0 and [u] = −[u] and [u ∗ v] = [u] + [v] in H1(X).

Proof. Let L be the subset of H1(X) consisting of classes that can be expressed as [u] for some loop u based
at a. We must show that this is all of H1(X).

It is clear that if u and v are loops based at a, then so are ca, u and u ∗ v. By specialising Lemma 10.27,
we see that [ca] = 0 and [u] = −[u] and [u ∗ v] = [u] + [v] in H1(X). It follows from this that L is a subgroup
of H1(X).

Now let v be a loop based at a point b ∈ X which may be different from a. As X is path connected, we
can choose a path m from a to b. The path u = (m∗v)∗m is then a loop based at a, and using Lemma 10.27
again we see that

u+B1(X) = m+ v −m+B1(X) = v +B1(X),

or in other word [u] = [v] in H1(X). This proves that L contains all loops, irrespective of the base point.
Now let h be an arbitrary element of H1(X). We can write h as z + B1(X), where z is a Z-linear

combination of paths in X. Any term with negative coefficient like −m.u can be replaced by +m.u without
affecting the coset, so we can assume that all coefficients are positive. Then we can replace any term like
m.u by u repeated m times; this gives an expression like

h = u1 + · · ·+ un +B1(X)

for some list of paths ui. As this is a homology class, the representing chain must be a cycle, so we must
have ∂(u1 + · · ·+ un) = 0 in C0(X). As ∂(ui) = ui(e1)− ui(e0), this means that

u1(e1) + · · ·+ un(e1) = u1(e0) + · · ·+ un(e0).

As this is happening in the free abelian group Z{X}, the terms on the left hand side must just be a
permutation of those on the right hand side, so we have a permutation σ of {1, . . . , n} with ui(e1) = uσ(i)(e0)
for all i. We can now write σ as a product of disjoint cycles. If one of these cycles is (i j k l), for example, then
the paths ui, uj , uk and ul meet end-to-end and so can be joined together to form a loop ((ui ∗ uj) ∗ uk) ∗ ul
which is congruent to ui + uj + uk + ul modulo B1(X). By doing this for all cycles, we see that h can be
expressed as a sum of loops (probably with different basepoints). Our earlier discussion shows that each of
these loops lies in L and then that the sum lies in L, so h ∈ L as claimed. □

Definition 10.30. Let u : ∆1 → X be a loop based at a. A filling in of u is a map v : ∆2 → X with
v ◦ δ0 = u and v ◦ δ1 = v ◦ δ2 = ca.

Lemma 10.31. If u can be filled in, then [u] = 0 in H1(X).

Proof. Let v be a filling in of u. Then

∂(v) = v ◦ δ0 − v ◦ δ1 + v ◦ δ2 = u− ca + ca = u,

so u ∈ B1(X), so [u] = u+B1(X) = 0. □

11. Homology of the punctured plane

Later we will prove that for all n ≥ 2 we have

Hk(Rn \ {0}) = Hk(S
n−1) =

{
Z if k = 0 or k = n− 1

0 otherwise.

For this we will need the Mayer-Vietoris sequence, which is a very important and useful tool, but it will
take some work to set that up. In this section, we outline a different approach which is more direct and
elementary but which works only for n = 2. We will identify R2 with C and write C× = C\{0}, so our main
task will be to prove that H1(C×) = Z.

Video (Definition 11.2 to Theorem 11.11)
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Definition 11.1. Let z ∈ C× be a nonzero complex number. This can be expressed as z = r eiθ for a
unique pair or real numbers r, θ with r > 0 and −π < θ ≤ π. We put plog(z) = log(r) + iθ, and call this the
principal logarithm of z.

Note that plog : C× → C and exp(plog(z)) = z for all z, but plog is not continuous (because for small
ϵ > 0 we have plog(−1+iϵ) ≈ iπ but plog(−1−iϵ) ≈ −iπ). This cannot be fixed by adjusting the definitions:
there is no continuous map f : C× → C with exp(f(z)) = z for all z. To work around this we make the
following definition:

Definition 11.2. For any z ∈ C× we put

LOG(z) = {z̃ ∈ C | exp(z̃) = z} = plog(z) + 2πiZ.
Any element of LOG(z) will be called a logarithm of z. More generally, suppose we have a topological space
T and a continuous map u : T → C×. By a continuous logarithm of u we mean a continuous map ũ : T → C
with exp ◦ũ = u, or equivalently ũ(t) ∈ LOG(u(t)) for all t.

Note that the cosets iπ+2πiZ and −iπ+2πiZ are the same, and that LOG(−1+ iϵ) is close to this coset
for all small ϵ, independent of whether ϵ is positive or negative. Thus, LOG(z) depends continuously on z
even though plog(z) does not.

Given a continuous map u : T → C×, we could attempt to define a continuous logarithm of u by ũ =
plog ◦u. This works provided that the image u(T ) does not touch the negative real axis where plog is
discontinuous. If u(T ) does touch the negative real axis then it may be possible to find a continuous
logarithm by a different method, but in some cases, no continuous logarithm exists.

Lemma 11.3. Let u : [0, 1]→ C× be continuous, and suppose that x ∈ LOG(u(0)). Then there is a unique
continuous logarithm ũ : [0, 1]→ C with ũ(0) = x.

We will prove this properly later when we come to discuss covering maps.

Sketch proof. If we choose N sufficently large, then when |s− t| ≤ 1/N the points u(s)/u(t) will be close to
1 in C× and so will be far from the negative real axis where plog is discontinuous. We can thus define

ũ(t) = x+

N∑
k=1

plog

(
u

(
kt

N

)
/u

(
(k − 1)t

N

))
.

This is a continuous function of t. When t = 0 we see that all the terms in the sum are plog(u(0)/u(0)) =
plog(1) = 0, so ũ(0) = x. In general we have

exp(ũ(t)) = exp(x).

N∏
i=1

u(kt/N)

u((k − 1)t/N)
= u(0).

N∏
i=1

u(kt/N)

u((k − 1)t/N)
,

and most of the terms in the product cancel out leaving only exp(ũ(t)) = u(t). □

Corollary 11.4. Let K ⊆ RN be convex, and suppose that k ∈ K. Let u : K → C× be continuous, and
suppose that x ∈ LOG(u(k)). Then there is a unique continuous logarithm ũ : K → C with ũ(k) = x. (In
particular, this applies when K = ∆d for some d.)

Sketch proof. For m ∈ K we can define vm : [0, 1] → C× by vm(t) = u(tm + (1 − t)k). By the lemma,
there is a unique continuous logarithm ṽm : [0, 1] → C with ṽm(0) = x. We define ũ(m) = ṽm(1), so
exp(ũ(m)) = exp(ṽm(1)) = vm(1) = u(m). We have vk(t) = u(k) for all t so ṽk must be the constant path
at x so ũ(k) = ṽk(1) = x. With some work one can check that ũ is continuous. □

Definition 11.5. Given any path u : ∆1 → C× we define

ω(u) = (ũ(e1)− ũ(e0))/(2πi) ∈ C,
where ũ is any continuous logarithm of u. (This is well-defined, because any two continuous logarithms differ
by a constant of the form 2nπi, and the constant cancels out when we calculate ũ(e1) − ũ(e0).) We then
extend this linearly to get a homomorphism ω : C1(C×)→ C, given by

ω(n1u1 + · · ·+ nrur) = n1ω(u1) + · · ·+ nrω(ur).
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Example 11.6. The standard loop un : ∆1 → C× of winding number n is given by un(1−t, t) = exp(2πint).
The obvious continuous logarithm is ũn(t) = 2πint, and using this we get ω(un) = n.

Lemma 11.7. For u : ∆2 → C× we have ω(∂(u)) = 0. Thus, we have ω(B1(C×)) = 0.

Proof. For i = 0, 1, 2 we put vi = u ◦ δi : ∆1 → C×, so ∂(u) = v0− v1 + v2. By Corollary 11.4, we can choose
a continuous logarithm ũ : ∆2 → C for u. We then note that the map ṽi = ũ ◦ δi : ∆1 → C is a continuous
logarithm for for vi, so ω(vi) = (ṽi(e1)− ṽi(e0))/(2πi). This gives

2πiω(∂(u)) = (ṽ0(e1)− ṽ0(e0))− (ṽ1(e1)− ṽ1(e0)) + (ṽ2(e1)− ṽ2(e0)).

However, we have

δ0(e1) = e2 δ1(e1) = e2 δ2(e1) = e1

δ0(e0) = e1 δ1(e0) = e0 δ2(e0) = e0,

so the above expression becomes

2πiω(∂(u)) = (ũ(e2)− ũ(e1))− (ũ(e2)− ũ(e0)) + (ũ(e1)− ũ(e0)) = 0,

so ω(∂(u)) = 0 as claimed. More generally, if u ∈ C2(C×) then u = n1u1 + · · · + nrur for some integers ni
and maps ui : ∆2 → C×, and this gives

ω(∂(u)) =
∑
i

niω(∂(ui)) =
∑
i

ni.0 = 0

as before. Thus, if w ∈ B1(C×) then w = ∂(u) for some u ∈ C2(C×) giving ω(w) = ω(∂(u)) = 0 as
claimed. □

Definition 11.8. We now define homomorphisms β : C → C× and γ : C0(C×) → C× by β(z) = exp(2πiz)
and

γ(n1z1 + · · ·+ nrzr) = zn1
1 zn2

2 · · · znr
r .

(Here we regard C and C0(C×) as groups under addition and C× as a group under multiplication, so to say
that β and γ are homomorphisms means that β(w + z) = β(w)β(z) and γ(u + v) = γ(u)γ(v); it is easy to
see that both of these identities are valid.)

Lemma 11.9. The following square commutes (or in other words, β(ω(u)) = γ(∂(u)) for all u ∈ C1(C×)).

C1(C×) C0(C×)

C C×

∂

ω γ

β

Proof. In general u will be a Z-linear combination of paths in C×, but all the maps are homomorphisms,
so it will be enough to consider the case where u : ∆1 → C× is just a single path. We then have ∂(u) =
u(e1)−u(e0) ∈ C0(C×) and so γ(∂(u)) = u(e1)/u(e0) ∈ C×. Now choose a continuous logarithm ũ : ∆1 → C
for u. By definition we have ω(u) = (ũ(e1)− ũ(e0))/(2πi), so

β(ω(u)) = exp(ũ(e1)− ũ(e0)) = exp(ũ(e1))/ exp(ũ(e0)) = u(e1)/u(e0) = γ(∂(u)).

□

Corollary 11.10. We have ω(Z1(C×)) = Z and ω(B1(C×)) = 0, so ω induces a homomorphism ω : H1(C×)→
Z given by ω(z +B1(C×)) = ω(z).

Proof. Suppose that z ∈ Z1(C×), so ∂(z) = 0, so γ(∂(z)) = γ(0) = 1. By the Lemma we then have
β(ω(z)) = 1, or in other words exp(2πiω(z)) = 1, so ω(z) ∈ Z. As in Example 11.6 we also have standard
loops un ∈ Z1(C×) with ω(un) = n, so the image ω(Z1(C×)) is the whole group Z. We saw in Lemma 11.7
that ω(B1(C×)) = 0, and it follows that the rule ω(z +B1(C×)) = ω(z) gives a well-defined homomorphism
from the quotient group H1(C×) = Z1(C×)/B1(C×) to Z. □

Theorem 11.11. The homomorphism ω : H1(C×)→ Z is an isomorphism.
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Proof. We have already remarked that ω(un + B1(C×)) = ω(un) = n for all n ∈ Z; this shows that ω is

surjective. Now suppose we have h ∈ H1(C×) with ω(h) = 0. By Proposition 10.29, we can find a loop
u : ∆1 → C× based at 1 ∈ C× with h = [u]. By Lemma 11.3, there is a unique continuous logarithm
ũ : ∆1 → C with ũ(e0) = 0. We then have ω(u) = (ũ(e1) − ũ(e0))/(2πi) = ũ(e1)/(2πi). However, we also
know that ω(u) = ω([u]) = ω(h) = 0, so we must have ũ(e1) = 0 as well. We now define ṽ : ∆2 → C by

ṽ(t0, t1, t2) =

{
(1− t0)ũ(t1/(1− t0), t2/(1− t0)) if t0 < 1

0 if t0 = 1.

We leave it to the reader to check that ṽ is continuous even at e0. (A full proof of a more general fact will
be given later.) We then define v = exp ◦ṽ : ∆2 → C×. It is easy to see that ṽ is a filling in for ũ, and thus
that v is a filling in for u, so [u] = 0 in H1(X) by Lemma 10.31, or in other words h = 0. This proves that
ω is also injective, and so is an isomorphism as claimed. □

12. Abelian groups

To go further with homology, we will need some additional theory of abelian groups.

Video (Lemma 12.1 to Corollary 12.3)

We will almost always use additive notation for abelian groups, so the group operation will be denoted
by a+ b, the identity element by 0, and the inverse of a by −a. The product of groups A and B will usually
be written A⊕B rather than A×B.

The basic examples of finitely generated abelian groups are Z and Z/n. Recall that the elements of Z/n
are the cosets i = i+nZ. These can be defined for all i ∈ Z, but they repeat with period n, so {0, . . . , n− 1}
is a complete list of elements.

Lemma 12.1. Let n, m and k be integers such that n,m > 0 and kn is divisible by m. Then there is a
well-defined homomorphism ϕ : Z/n→ Z/m given by ϕ(i+ nZ) = ik +mZ.

Proof. We can certainly define a homomorphism ϕ0 : Z→ Z/m by ϕ0(i) = ik+mZ. By assumption we have
kn = qm for some q, so ϕ0(in) = ink+mZ = iqm+mZ, and this is the same as 0+mZ because iqm ∈ mZ.
This shows that nZ ≤ ker(ϕ0), so we have a well-defined homomorphism ϕ as described. □

Proposition 12.2 (The Chinese Remainder Theorem). Suppose that n and m are positive integers that are
coprime. Then there is an isomorphism ϕ : Z/nm→ Z/n⊕ Z/m given by

ϕ(i+ nmZ) = (i+ nZ, i+mZ).

Proof. It is clear that the above formula gives a well-defined homomorphism. Next, as n and m are coprime,
we can find integers a, b such that an + bm = 1. By the lemma, there are well-defined homomorphisms
α : Z/n → Z/nm and β : Z/m → Z/nm given by α(j + nZ) = bmj + nmZ and β(k +mZ) = ank + nmZ.
We can combine these to define ψ : Z/n ⊕ Z/m → Z/nm by ψ(u, v) = α(u) + β(v). Taking account of the
identity an+ bm = 1, this can be written more explicitly as

ψ(j + nZ, k +mZ) = bmj + ank + nmZ = j + an(k − j) + nmZ = k + bm(j − k) + nmZ.
From the third and fourth expressions we see that this is equal to j mod n and equal to k mod m, so
ϕ ◦ ψ = id. On the other hand, we have

ψ(ϕ(i+ nmZ)) = ψ(i+ nZ, i+mZ) = bmi+ ani+ nmZ = (an+ bm)i+ nmZ = i+ nmZ,
so ψ ◦ ϕ is also the identity. □

Corollary 12.3. Suppose that n = pv11 · · · pvrr , where p1, . . . , pr are distinct primes and v1, . . . , vr ≥ 0. Then
there is an isomorphism

ϕ : Z/n→ Z/pv11 ⊕ · · · ⊕ Z/pvrr
given by

ϕ(i+ nZ) = (i+ pv11 Z, . . . , i+ pvrr Z).

Proof. This follows from Proposition 12.2 by induction on r. □
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Video (Definition 12.4 to Example 12.11)

Definition 12.4. Let A be an abelian group, and let L = (a1, . . . , ar) be a finite list of elements of A. Put

B = {n1a1 + · · ·+ nrar | n1, . . . , nr ∈ Z}.

This is easily seen to be a subgroup of A. We say that L generates A if B = A. We say that A is finitely
generated if there is a finite list that generates it.

Example 12.5.

(a) The list (1) generates Z.
(b) For r ≥ 0, the standard basis vectors (e1, . . . , er) generate Zr.
(c) The list (1 + nZ) generates Z/n.
(d) If (a1, . . . , ar) generates A and (b1, . . . , bs) generates B then the list

((a1, 0), . . . , (ar, 0), (0, b1), . . . , (0, bs))

generates A⊕B. Thus, if A and B are finitely generated, then so is A⊕B.
(e) We can now see by induction that any group of the form

A = Zr ⊕ Z/n1 ⊕ · · · ⊕ Z/ns
is finitely generated.

(f) Suppose again that (a1, . . . , ar) generates A. Let B be a subgroup of A, and let π : A → A/B be
the usual projection homomorphism, given by π(x) = x + B. It is then easy to see that the list
(π(a1), . . . , π(ar)) generates A/B, so A/B is again finitely generated.

(g) If A is a finite group then it is certainly finitely generated, because we can just take the full list of
elements as generators.

Example 12.6. Consider the polynomial ring Z[x] as an abelian group under addition; we will show that
this is not finitely generated. Let L = (f1, . . . , fr) be a finite list of elements of Z[x], and let B be the
subgroup of Z-linear combinations of this list. Let d be the maximum of the degrees of all the polynomials
fi. Any element of B has the form

∑
i nifi for some integers ni, and so has degree at most d. It follows that

xd+1 ̸∈ B, so B is not all of Z[x], so L does not generate Z[x].

Example 12.7. Consider the field Q as an abelian group under addition; we will show that this is not
finitely generated. Let L = (q1, . . . , qr) be a finite list of elements of Q, and let B be the subgroup of Z-linear
combinations of this list. We can write qi as ai/bi for some ai, bi ∈ Z with bi > 0. Put b = b1b2 · · · br, so
bqi ∈ Z for all i. It follows easily that bx ∈ Z for all x ∈ B, so 1/(2b) ̸∈ B, so B is not all of Q, so L does
not generate Q.

We now quote two theorems whose proofs can be found in almost any textbook on abstract algebra.

Proposition 12.8. Let A be a finitely generated abelian group, and let B be a subgroup of A. Then B is
also finitely generated. □

Theorem 12.9. Let A be a finitely generated abelian group. Then A can be expressed (up to isomorphism)
as the direct sum of a finite list of summands of the form Z or Z/pv (with p prime and v > 0). Moreover,
the list of summands is unique up to order. □

Example 12.10. Put A = Z3 and B = {(2n, 2n, 2n) | n ∈ Z} < A and C = A/B. We claim that
C ≃ Z2 ⊕ Z/2. Indeed, we can define maps

Z2 ⊕ Z/2 ϕ−→ C
ψ−→ Z2 ⊕ Z/2

by

ϕ(i, j, k + 2Z) = (i+ k, j + k, k) + C

ψ((p, q, r) + C) = (p− r, q − r, r + 2Z)

It is an exercise to check that these are well-defined and inverse to each other.
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Example 12.11. Consider an abelian group A with |A| = 72 = 2332. Theorem 12.9 tells us that this can be
decomposed as a direct sum of groups of the form Z/pv, where p is prime and v > 0. If Z/pv is a summand,
then the order pv must divide |A|. Thus, the only possible summands are Z/2, Z/4, Z/8, Z/3 and Z/9. The
only possibilities for the 2-power summands are Z/8 or Z/2⊕Z/4 or Z/2⊕Z/2⊕Z/2. The only possibilities
for the 3-power summands are Z/9 or Z/3⊕ Z/3. Thus, there are six possibilities for A:

A1 = Z/8⊕ Z/9
A2 = Z/2⊕ Z/4⊕ Z/9
A3 = Z/2⊕ Z/2⊕ Z/2⊕ Z/9
A4 = Z/8⊕ Z/3⊕ Z/3
A5 = Z/2⊕ Z/4⊕ Z/3⊕ Z/3
A6 = Z/2⊕ Z/2⊕ Z/2⊕ Z/3⊕ Z/3.

One might think that there were additional possibilities like Z/36⊕Z/2, but the Chinese Remainder Theorem
gives Z/36 ≃ Z/4⊕ Z/9, so Z/36⊕ Z/2 ≃ A2. Similarly, we have Z/72 ≃ A1.

Video (Definition 12.12 to Lemma 12.20)

The following definition will turn out to be very important.

Definition 12.12. Consider a pair of homomorphisms A
α−→ B

β−→ C of abelian groups. Recall that we have
subgroups

img(α) = {α(a) | a ∈ A} = {b ∈ B | b = α(a) for some a ∈ A} ≤ B
ker(β) = {b ∈ B | β(b) = 0} ≤ B.

We say that the pair is exact if img(α) = ker(β). We also say that the pair is short exact if it is exact, and
α is injective, and β is surjective.

Remark 12.13. It is standard that α is injective iff ker(α) = 0 and β is surjective iff img(β) = C. Thus,
the sequence is short exact iff we have ker(α) = 0 and img(α) = ker(β) and img(β) = C.

Example 12.14.

(a) For any abelian groups A and B we have a short exact sequence A
j−→ A ⊕ B

q−→ B given by
j(a) = (a, 0) and q(a, b) = b.

(b) For any n > 0 we have a short exact sequence Z µ−→ Z π−→ Z/n given by µ(x) = nx and π(y) = y+nZ.
(c) For any n,m > 0 we have a short exact sequence Z/n α−→ Z/nm β−→ Z/m given by α(i + nZ) =

mi+ nmZ and β(j + nmZ) = j +mZ.
(d) If we define α : Z2 → Z2 by α(x, y) = (y, 0), then the sequence Z2 α−→ Z2 α−→ Z2 is exact but not short

exact.

Proposition 12.15.

(a) A sequence 0 −→ B
β−→ C is exact iff β is injective.

(b) A sequence A
α−→ B −→ 0 is exact iff α is surjective.

(c) If A
α−→ B

β−→ C is exact, then α = 0 iff β is injective.

(d) If A
α−→ B

β−→ C is exact, then β = 0 iff α is surjective.
(e) A sequence 0 −→ A −→ 0 is exact iff A = 0.

Proof.

(a) Consider a sequence 0 −→ B −→ C. The image of the first map can only be zero, so the sequence is
exact iff ker(β) = 0, which means that β is injective.

(b) Consider a sequence A
α−→ B −→ 0. The kernel of the second map is all of B, so the sequence is exact

iff img(α) = B, which means that α is surjective.
61

https://youtu.be/oZOTl4VY4a0


(c) Consider an exact sequence A
α−→ B

β−→ C. It is clear that α is the zero homomorphism iff img(α) is
the zero subgroup of B, and β is injective iff ker(β) = 0. As img(α) and ker(β) are the same, we see
that α = 0 iff β is injective.

(d) Similarly, it is clear that α is surjective iff img(α) = B, and β = 0 iff ker(β) = B. As img(α) and
ker(β) are the same, we see that α is surjective iff β = 0.

(e) Consider a sequence 0 −→ A −→ 0. The image of the first map is 0, and the kernel of the second map
is A. The sequence is exact iff these two subgroups are the same, iff A = 0.

□

Definition 12.16. Consider a longer sequence

· · ·Ai−2
αi−2−−−→ Ai−1

αi−1−−−→ Ai
αi−→ Ai+1

αi+1−−−→ Ai+2 · · ·

We say that this is exact at Ai if img(αi−1) = ker(αi), so the subsequence

Ai−1
αi−1−−−→ Ai

αi−→ Ai+1

is exact. We say that the whole sequence is exact if it is exact at Ai for all i.

Example 12.17. Consider a sequence

0 −→ A
α−→ B

β−→ C −→ 0.

This is exact at A iff α is injective, and exact at C iff β is surjective. Thus, the whole sequence is exact iff

A
α−→ B

β−→ C is short exact.

Example 12.18. Consider the group Z/4 = {0, 1, 2, 3} and the homomorphism α : Z/4 → Z/4 given by
α(a) = 2a. We then find that img(α) = ker(α) = {0, 2}, so the sequence

· · · α−→ Z/4 α−→ Z/4 α−→ Z/4 α−→ Z/4 α−→ Z/4 α−→ Z/4 α−→ · · ·

is exact.

Lemma 12.19. A sequence 0 −→ A
α−→ B −→ 0 is exact iff α is an isomorphism.

Proof. The sequence is exact iff ker(α) is the image of the map 0 → A (so ker(α) = 0) and img(α) is the
kernel of the map B → 0 (which is all of B). The first condition means that α is injective, and the second
means that α is surjective, so the two conditions together mean that α is an isomorphism. □

Lemma 12.20. Let A
α−→ B

β−→ C be a short exact sequence. Then A is isomorphic to the subgroup
img(α) = α(A) ≤ B, and the quotient group B/α(A) is isomorphic to C. Moreover, the group B is finite iff
A and C are both finite, and if so, we have |B| = |A||C|.

Proof. As the sequence is assumed to be short exact, we know that α is injective and β is surjective and
img(α) = ker(β).

We can considar α as a homomorphism from A to α(A). In this context it is surjective (by definition of
α(A)) and injective (by assumption) so it is an isomorphism, as required.

Next, as β : B → C is a surjective homomorphism, the First Isomorphism Theorem tells us that it
induces an isomorphism B/ ker(β) → C. By the exactness assumption we have ker(β) = α(A), so we have
B/α(A) ≃ C as claimed.

Suppose that A and C are finite. We can divide B into cosets for the subgroup α(A). As α : A→ α(A) is
an isomorphism we have |α(A)| = |A|, so each coset has size |A|. There is one coset for each element of the
group B/α(A) ≃ C, so the number of cosets is |C|. Thus, the total number of elements is |B| = |A||C| <∞.

Conversely, suppose that B is finite. As A is isomorphic to a subgroup of B, it is also finite. As C
is isomorphic to a quotient of B, it is also finite. We can then go back to the last paragraph to see that
|B| = |A||C| again. □
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13. Chain complexes and homology

Video (Definition 13.1 to Example 13.7)

Given a topological space X, we previously defined a system of groups Ck(X) = Z{Sk(X)} and homomor-
phisms ∂ : Ck(X) → Ck−1(X). In Proposition 10.16 we showed that ∂2 = 0, and this allowed us to define
the homology groups Hk(X). In this section we will place all those constructions in a wider context, which
will be useful for calculating Hk(X).

Definition 13.1. A chain complex is a sequence of abelian groups and homomorphisms like

· · · ←− A−2
d−1←−− A−1

d0←− A0
d1←− A1

d2←− A2
d3←− · · · ,

such that di ◦ di+1 = 0: Ai+1 → Ai−1 for all i. We will often suppress the indices and just write d2 = 0
instead of di ◦ di+1 = 0. We now put

Zi(A) = ker(di : Ai → Ai−1) ≤ Ai
Bi(A) = img(di+1 : Ai+1 → Ai) ≤ Ai.

The elements of Zi(A) are called cycles, and the elements of Bi(A) are called boundaries. As in Remark 12.13,
the condition di ◦ di+1 = 0 means that Bi(A) ≤ Zi(A), so every boundary is a cycle. Because of this, it is
legitimate to define

Hi(A) = Zi(A)/Bi(A).

This is called the i’th homology group of the complex. Given a cycle z ∈ Zi(A), we write [z] for the coset
z + Bi(A) ∈ Hi(A), and call this the homology class of z. Thus [z] is defined iff dz = 0, and [z] = [z′] iff
z′ = z + dy for some y. The homomorphisms di are called differentials.

Remark 13.2. We use the notation A∗ to refer to the whole chain complex as a single object. We also
write Z∗(A) for the whole system of groups Zi(A), and similarly for B∗(A) and H∗(A).

Remark 13.3. The content of Section 10 can now be expressed as follows: the groups C∗(X) form a chain
complex (with differential ∂), and the homology groups of the space X are defined to be the homology groups
of the chain complex C∗(X).

Remark 13.4. Note that the quotient Hi(A) = Zi(A)/Bi(A) is zero iff Zi(A) = Bi(A) iff ker(di : Ai →
Ai−1) = img(di+1 : Ai+1 → Ai) iff the sequence Ai+1

di+1−−−→ Ai
di−→ Ai−1 is exact. Thus, the size of the group

Hi(A) can be regarded as a measure of how badly the chain complex fails to be exact at Ai.

Example 13.5. Consider a chain complex in which Ai = 0 for i > 0, so the complex just has the form

←− 0
d0←− A0

d1←− 0
d2←− 0

d3←− · · ·

Every differential either starts or ends at the zero group, so all differentials are zero. We find that Z0(A) = A0

and B0(A) = 0 so H0(A) = A0/0 = A0. For i ̸= 0 we just have Zi(A) = 0 and Bi(A) = 0 and Hi(A) = 0.

Example 13.6. Now consider a chain complex in which Ai = 0 for i > 1, so the complex just has the form

←− 0
d0←− A0

d1←− A1
d2←− 0

d3←− · · ·

It is clear that di = 0 for all i ̸= 1, but d1 may be nonzero. It follows that

Z0(A) = A0 B0(A) = d1(A1) H0(A) = A0/d1(A1)

Z1(A) = ker(d1) B1(A) = 0 H1(A) = ker(d1).

Example 13.7. We now consider a specific chain complex A of the type discussed in Example 13.6, so
Ak = 0 for k > 1. We fix n > 0, and take A0 and A1 to be free abelian groups as follows:

A0 = Z{v0, . . . , vn−1}
A1 = Z{e0, . . . , en−1}.
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These indices are supposed to be read modulo n, so vn = v0 and v−1 = vn−1 and so on. We define
d1 : A1 → A0 by d1(ei) = vi+1− vi (so in particular d1(en−1) = v0− vn−1). We claim that the groups H0(A)
and H1(A) are both isomorphic to Z.

The easiest way to see this is to introduce some alternative bases for these groups. We put

e′i = e0 + e1 + · · ·+ ei =

i∑
j=0

ej ( for 0 ≤ i < n)

v′0 = v0

v′i = vi − v0 ( for 0 < i < n).

For example, when n = 4 we have

e′0 = e0 e0 = e′0 v′0 = v0 v0 = v′0

e′1 = e0 + e1 e1 = e′1 − e′0 v′1 = v1 − v0 v1 = v′1 + v′0

e′2 = e0 + e1 + e2 e2 = e′2 − e′1 v′2 = v2 − v0 v2 = v′2 + v′0

e′3 = e0 + e1 + e2 + e3 e3 = e′3 − e′2 v′3 = v3 − v0 v3 = v′3 + v′0

It is easy to see that the list (e′0, . . . , e
′
n−1) is a basis for A1 over Z, and (v′0, . . . , v

′
n−1) is a basis for A0. We

also have

d1(e
′
i) = (v1 − v0) + (v2 − v1) + · · ·+ (vi+1 − vi).

Most of the terms cancel, giving d1(e
′
i) = vi+1 − v0. For 0 ≤ i < n − 1 we can write this as d1(e

′
i) = v′i+1.

However, vn is the same as v0, so d
′
1(e

′
n−1) = 0. In summary, we have

d1(e
′
0) = v′1 d1(e

′
1) = v′2 d1(e

′
2) = v′3 · · · d1(e

′
n−2) = v′n−1 d1(e

′
n−1) = 0.

From this it is clear that ker(d1) = Z.e′n−1 and img(d1) = Z{v′1, . . . , v′n−1} so A0/ img(d1) = Z.v′0. In other
words, we have H1(A) = Z.e′n−1 and H0(A) = Z.v′0.

We will typically express this answer by writing H∗(A) = (Z,Z). The first group listed is H0, the second
one is H1, and it is implicit that all subsequent groups are zero.

Remark 13.8. The method used above is fairly typical for calculation of the homology of small chain
complexes. To calculate H∗(A), we try to find bases for all the groups Ai such that the differential sends
every basis element to another basis element or to zero. We can then take the basis for A and discard all
pairs of basis elements (a, a′) with da = a′. The remaining elements will then give a basis for H∗(A) over Z,
so in particular all the groups Hi(A) are free abelian groups.

There are some chain complexes A for which the groups Hi(A) are not free abelian groups, and in those
cases we will not be able to find a basis with properties as above. There is a more complicated algorithm
that will still work in those cases, but we will not explain it here.

Video (Definition 13.9 to Remark 13.13)

Definition 13.9. Let A and A′ be chain complexes. A chain map from A to A′ is a sequence of group
homomorphisms fn : An → A′

n such that for all n ≥ 0 we have fn ◦ dAn+1 = dA
′

n+1 ◦ fn+1. In other words, the
following diagram must commute:

An+1 A′
n+1

An A′
n.

fn+1

dAn+1 dA
′

n+1

fn

We will typically suppress all subscripts and superscripts and just write fd = df rather than fn ◦ dAn+1 =

dA
′

n+1 ◦ fn+1.
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Definition 13.10. We write idA∗ for the sequence of identity maps idAn : An → An. This is clearly a

chain map from A to itself. Now suppose we have chain maps A
f−→ A′ f ′

−→ A′′. We define a chain map
f ′ ◦ f : A→ A′′ by the obvious rule (f ′ ◦ f)n = f ′n ◦ fn; this satisfies

d ◦ (f ′ ◦ f) = d ◦ f ′ ◦ f = f ′ ◦ d ◦ f = (f ′ ◦ f) ◦ d
as required. It is easy to see that this kind of composition is associative and that id ◦f = f = f ◦ id, so we
have a category Chain of chain complexes and chain maps.

Proposition 13.11. Let f : A→ A′ be a chain map. Then

(a) For all n we have fn(Zn(A)) ≤ Zn(A′)
(b) For all n we have fn(Bn(A)) ≤ Bn(A′)
(c) There is a well-defined map f∗ : Hn(A)→ Hn(A

′) given by f∗[z] = [f(z)].

Moreover, these constructions give functors Zn, Bn, Hn : Chain→ Ab.

Proof. (a) Suppose that z ∈ Zn(A), so d(z) = 0. We then have f(z) ∈ A′
n with d(f(z)) = f(d(z)) =

f(0) = 0, so f(z) ∈ Zn(A′) as required. (As mentioned in Remark 10.22, the notation [z′] is only
meaningful if d(z′) = 0. Now we have checked that d(f(z)) = 0, we see that the notation [f(z)] used
in (c) is valid.)

(b) Suppose that b ∈ Bn(A), so b = d(x) for some x ∈ An+1. We then have f(b) = fd(x) = df(x) ∈
d(A′

n+1) = Bn(A
′) as required.

(c) From (a) and (b) we see that if z+Bn(A) = z′+Bn(A) then z−z′ ∈ Bn(A) so f(z)−f(z′) = f(z−z′) ∈
Bn(A

′) so f(z) + Bn(A
′) = f(z′) + Bn(A

′). It follows that there is an induced homomorphism
f∗ : Hn(A)→ Hn(A

′) given by

f∗(z +Bn(A)) = f(z) +Bn(A
′),

or in other words f∗[z] = [f(z)].
We can make Zn into a functor by defining

Znf = fn|Zn(A) : Zn(A)→ Zn(A
′).

As this is just a restriction of fn, it is clearly compatible with composition and identity morphisms, as
required. We can make Bn into a functor in the same way. Finally, suppose we have chain maps

A
f−→ A′ f ′

−→ A′′.

For a homology class [z] ∈ Hn(A) we have

(f ′ ◦ f)∗([z]) = [(f ′ ◦ f)(z)] = [f ′(f(z))] = f ′∗[f(z)] = f ′∗f∗[z].

From this it is clear that Hn : Chain→ Ab is also a functor. □

Construction 13.12. We now want to make homology into a functor from topological spaces to abelian
groups. Let f : X → Y be a continuous map. Let u be an element of the set Sk(X), or equivalently, a
continuous map u : ∆k → X. We define f#(u) ∈ Sk(Y ) to be the composite function f ◦ u : ∆k → Y . Next,
given an element u =

∑r
i=1 niui ∈ Ck(X) we define f#(u) =

∑r
i=1 nif#(ui) ∈ Ck(Y ). This extends the map

f# : Sk(X) → Sk(Y ) linearly to give a homomorphism f# : Ck(X) → Ck(Y ). We claim that this is a chain
map, or in other words that f#(∂(u)) = ∂(f#(u)) whenever u ∈ Ck(X). As everything is extended linearly,
it will be enough to prove this when u ∈ Sk(X), or equivalently u : ∆k → X. We then have

f#(u) = f ◦ u

∂(u) =

k∑
i=0

(−1)i(u ◦ δi)

f#(∂(u)) =

k∑
i=0

(−1)i(f ◦ u ◦ δi) = ∂(f#(u)),

as required. It is clear that id# = id and (g ◦f)# = g# ◦f#, so we have defined a functor C∗ : Top→ Chain.
We can compose this with the functor Hn : Chain → Ab to get a functor Top → Ab which is traditionally
also denoted by Hn.
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Remark 13.13. Now that we know that Hn is a functor, we can use Propositions 6.17 and 6.25. These tell
us that:

(a) If X is homeomorphic to Y , then Hn(X) is isomorphic to Hn(Y ).
(b) If X is a retract of Y , then Hn(X) is a retract of Hn(Y ).

Remark 13.14. Suppose that f : X → Y is constant, say f(x) = b for all x ∈ X. We then claim that

f∗ = 0: Hn(X) → Hn(Y ) for all n > 0. Indeed, we can define X
p−→ {0} q−→ Y by p(x) = 0 and q(0) = b, so

f = q ◦ p. Thus, the map f∗ : Hn(X) → Hn(Y ) is the composite of the maps p∗ : Hn(X) → Hn({0}) and
q∗ : Hn({0}) → Hn(Y ). However, Proposition 10.23 tells us that Hn({0}) = 0, and the claim is clear from
this.

14. Chain homotopy

We next need to build a connection between the concept of homotopy in topology, and the behaviour of
chain complexes and homology in algebra.

Video (Definition 14.1 to Proposition 14.7)

Definition 14.1. Let A∗ and A′
∗ be chain complexes, and let f, g : A∗ → A′

∗ be chain maps (so df = fd
and dg = gd). A chain homotopy between f and g is a system of maps sr : Ar → A′

r+1 such that gr − fr =
dA

′

r+1sr + sr−1d
A
r for all r (or more briefly, g − f = ds + sd). In the case r = 0, we should interpret s−1 as

0, so the condition is g0 − f0 = d1s0. We say that f and g are chain homotopic if there is a chain homotopy
between them. If so, we write f ∼= g.

Remark 14.2. In Section 2 we introduced a crude intuitive version of homology involving chains as subsets
of a space X. For such a chain u ⊆ X we can define σ(u) = [0, 1] × u, which is a chain in [0, 1] × X; we
call this the thickening of u. If u is a filled triangle in X, then σ(u) is a triangular prism. Now ∂σ(u) is the
boundary of this triangular prism, which consists of the top, the bottom and the sides. On the other hand,
σ∂(u) is what we get by thickening the boundary of u, which is just the sides of the prism. After adjusting
the ±-signs to account for orientations, we end up with the relation

∂σ(u) + σ∂(u) = top− bottom.

This is a relation between chains in [0, 1] × X, but if we have two maps f, g : X → Y and a homotopy
h : [0, 1] × X → Y between them, then we can apply h∗ to get a relation between chains in Y . The main
point of this section is to provide a rigorous and general version of this picture.

Example 14.3. In Example 13.7 we introduced a chain complex A with

Ak =


Z{ei | i ∈ Z/n} if k = 1

Z{vi | i ∈ Z/n} if k = 0

0 otherwise.

The differential is given by d(ei) = vi+1 − vi and d(vi) = 0. Define f : A∗ → A∗ by f(ei) = ei+1 and
f(vi) = vi+1. This is a chain map because d(f(ei)) = vi+2 − vi+1 = f(d(ei)). We claim that f is chain
homotopic to the identity. Indeed, we can define s0 : A0 → A1 by s0(vi) = ei, and we define si : Ai → Ai+1

to be zero for all i ̸= 0. We then find that

(ds+ sd)(ei) = d(0) + s(vi+1 − vi) = ei+1 − ei = f(ei)− id(ei)

(ds+ sd)(vi) = d(ei) + s(0) = vi+1 − vi = f(vi)− id(vi)

Proposition 14.4. The relation of being chain homotopic is an equivalence relation.

Proof. The zero map is a chain homotopy from f to itself. If s is a chain homotopy from f to g, then −s
is a chain homotopy from g to f . If t is also a chain homotopy from g to h, then s+ t is a chain homotopy
from f to h. □

Proposition 14.5. Suppose we have chain maps
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A B C
f0

f1

g0

g1

Suppose that f0 is chain homotopic to f1, and that g0 is homotopic to g1. Then g1 ◦ f1 is chain homotopic
to g0 ◦ f0.

Proof. We are assuming that f0 is chain homotopic to f1, which means that there is a chain homotopy s
with f1 − f0 = ds + sd. Similarly, there is a chain homotopy t with g1 − g0 = dt + td. Put u = g1s + tf0.
Using dg1 = g1d we get du = g1ds+ dtf0. Using f0d = df0 we get ud = g1sd+ tdf0. By adding these, we get

du+ ud = g1(ds+ sd) + (td+ dt)f0 = g1(f1 − f0) + (g1 − g0)f0 = g1f1 − g1f0 + g1f0 − g0f0 = g1f1 − g0f0,

as required. □

Definition 14.6. We write hChain(A∗, A
′
∗) for the set of chain homotopy classes of chain maps from A∗

to A′
∗, or in other words equivalence classes under the equivalence relation defined above. Using Proposi-

tion 14.5, we see that these are the morphism sets of a well-defined category hChain, whose objects are chain
complexes. This is analogous to the category hTop introduced in Definition 9.9.

Proposition 14.7. Let A∗ and A′
∗ be chain complexes, and let f, g : A∗ → A′

∗ be chain maps that are chain
homotopic. Then the induced maps f∗, g∗ : H∗(A)→ H∗(A

′) are the same.

Proof. Let s be a chain homotopy from f to g, so g − f = ds + sd. Consider an element [z] ∈ Hr(A),
so z ∈ Ar with dz = 0. Recall from Proposition 13.11 that f(z), g(z) ∈ Zr(A

′) so that the expressions
[f(z)] and [g(z)] are meaningful and refer to elements of Hr(A

′). By definition we have f∗[z] = [f(z)] and
g∗[z] = [g(z)], so we need to check that these are the same. We have g(z) − f(z) = d(s(z)) + s(d(z)) but
d(z) = 0 so g(z) = f(z) + d(s(z)) ∈ f(z) + Br(A

′). It follows that [g(z)] = [f(z)] in Hr(A
′), or in other

words f∗[z] = g∗[z]. This means that f∗ = g∗ as claimed. □

Proposition 14.8. Let X and Y be topological spaces, and let f, g : X → Y be continuous maps that are
homotopic to each other. Then the chain maps f#, g# : C∗(X)→ C∗(Y ) are chain homotopic to each other,
so the induced maps f∗, g∗ : H∗(X)→ H∗(Y ) are the same.

For the proof, we will first choose a homotopy h from f to g, so h is a continuous map [0, 1] × X → Y
with h(0, x) = f(x) and h(1, x) = g(x) for all x ∈ X. We need to use this to construct a chain homotopy
between f# and g#, or equivalently a system of maps σk : Ck(X) → Ck+1(Y ) with ∂σ + σ∂ = g# − f#.
Before giving the general proof, we will discuss the cases k = 0 and k = 1.

Consider a point a ∈ S0(X) = X. We can define a continuous map v : ∆1 → Y by v(1 − t, t) = h(t, a).
This can be regarded as an element of S1(Y ) ⊂ C1(Y ), and it satisfies

∂(v) = v(e1)− v(e0) = h(1, a)− h(0, a) = g(a)− f(a) = g#(a)− f#(a).

We define σ0(a) = v and extend linearly to get a homomorphism σ0 : C0(X) → C1(Y ) with ∂(σ0(u)) =
g#(u)− f#(u) for all u ∈ C0(X).

Now consider instead an element u ∈ S1(X), or in other words, a continuous map u : ∆1 → X. We want
to define σ1(u) ∈ C2(Y ), so σ1(u) should be a Z-linear combination of continuous maps from the triangle
∆2 to Y . We have a map m : [0, 1] × ∆1 → Y given by m(t, s) = h(t, u(s)). Here ∆1 is homeomorphic to
[0, 1] so [0, 1]×∆1 is a square, with corners (0, e0), (0, e1), (1, e0) and (1, e1). We can divide this square into
two triangles and restrict k to these triangles, giving two different maps ∆2 → Y , which will be the terms
in σ1(u). In detail, we define maps ζ0, ζ1 : ∆2 → [0, 1]×∆1 by

ζ0(t0, t1, t2) = t0(0, e0) + t1(1, e0) + t2(1, e1)

ζ1(t0, t1, t2) = t0(0, e0) + t1(0, e1) + t2(1, e1).
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[0, 1]

∆1

(0, e0) (1, e0)

(0, e1) (1, e1)

ζ0

ζ1

The composites (∆2
ζi−→ [0, 1]×∆1

m−→ Y ) (for i = 0, 1) can be regarded as elements of S2(Y ) ⊂ C2(Y ). We
define σ1(u) = mζ0 −mζ1 ∈ C2(Y ). This can be extended linearly to give a homomorphism σ1 : C1(X) →
C2(Y ). We claim that ∂σ1(u) + σ0∂(u) = g#(u) − f#(u) for all u ∈ C1(X). Indeed, it will be enough to
prove this when u ∈ S1(X). We then have

∂σ1(u) = ∂(mζ0)− ∂(mζ1) = mζ0δ0 −mζ0δ1 +mζ0δ2 −mζ1δ0 +mζ1δ1 −mζ1δ2
(where m(t, s) = h(t, u(s)) as before). Here, for t = (t0, t1) = (1− t1, t1) ∈ ∆1 we have

(ζ0δ0)(t) = ζ0(0, t0, t1) = t0(1, e0) + t1(1, e1) = (1, t)

(ζ0δ1)(t) = ζ0(t0, 0, t1) = t0(0, e0) + t1(1, e1) = (t1, t)

(ζ0δ2)(t) = ζ0(t0, t1, 0) = t0(0, e0) + t1(1, e0) = (t1, e0)

(ζ1δ0)(t) = ζ1(0, t0, t1) = t0(0, e1) + t1(1, e1) = (t1, e1)

(ζ1δ1)(t) = ζ1(t0, 0, t1) = t0(0, e0) + t1(1, e1) = (t1, t)

(ζ1δ2)(t) = ζ1(t0, t1, 0) = t0(0, e0) + t1(0, e1) = (0, t).

This can be displayed as follows:

(0, e0) (1, e0)

(0, e1) (1, e1)

ζ0δ2

ζ1δ0

ζ1δ2 ζ0δ0ζ0δ1 = ζ1δ1

It follows that

mζ0δ0(t) = h(1, u(t)) = g(u(t))

mζ0δ1(t) = h(t1, u(t)) = mζ1δ1(t0, t1)

mζ0δ2(t) = h(t1, u(e0)) = σ0(u(e0))(t)

mζ1δ0(t) = h(t1, u(e1)) = σ0(u(e1))(t)

mζ1δ2(t) = h(0, u(t)) = f(u(t)).

Thus, in our formula for ∂(σ1(u)) we see that the first and last terms give g#(u) − f#(u), the second and
fifth terms cancel out, and the third and fourth terms give σ0(u(e0) − u(e1)) = −σ0(∂(u)). Putting this
together, we get ∂σ1(u) + σ0∂(u) = g#(u)− f#(u) as required.

We now extend the above discussion to cover k > 1.
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Video (Definition 14.9 to Lemma 14.12)

Definition 14.9. For 0 ≤ i ≤ k we define ζi : ∆k+1 → [0, 1]×∆k by

ζi(t0, . . . , tk+1) =

i∑
j=0

tj .(0, ej) +

k+1∑
j=i+1

tj .(1, ej−1)

= t0(0, e0) + · · ·+ ti(0, ei) + ti+1(1, ei) + · · ·+ tk+1(1, ek)

= (ti+1 + · · ·+ tk+1, (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tk+1))

If it is necessary to specify k, we will write ζk,i instead of ζi.

Example 14.10. When k = 2 the maps ζi : ∆3 → [0, 1]×∆2 are given by

ζ0(x0, x1, x2, x3) = (x1 + x2 + x3, (x0 + x1, x2, x3))

ζ1(x0, x1, x2, x3) = (x2 + x3 + x4, (x0, x1 + x2, x3))

ζ2(x0, x1, x2, x3) = (x3 + x4, (x0, x1, x2 + x3)).

We saw above that [0, 1] × ∆1 is the union of the triangles ζ0(∆2) and ζ1(∆2), which fit together nicely
along one edge. In the same way, it can be shown that [0, 1] × ∆2 is the union of the images of the maps
ζi : ∆3 → [0, 1]×∆2, and the intersection of any two of these images is another simplex of lower dimension.
However, we will not need this so we omit the proof.

Interactive demo

When k = 3 we have

ζ0(x0, x1, x2, x3, x4) = (x1 + x2 + x3 + x4, (x0 + x1, x2, x3, x4))

ζ1(x0, x1, x2, x3, x4) = (x2 + x3 + x4, (x0, x1 + x2, x3, x4))

ζ2(x0, x1, x2, x3, x4) = (x3 + x4, (x0, x1, x2 + x3, x4))

ζ3(x0, x1, x2, x3, x4) = (x4, (x0, x1, x2, x3 + x4)).

Definition 14.11. Given h : [0, 1]×X → Y and u : ∆k → X as before, we put

σk(u) =

k∑
i=0

(−1)i(h ◦ (id×u) ◦ ζi) ∈ Ck+1(Y ).

We extend this linearly to define σk : Ck(X)→ Ck+1(Y ).

Lemma 14.12.

(a) Suppose that 0 ≤ i ≤ k and 0 ≤ j ≤ k + 1, so we can form the composite

∆k
δj−→ ∆k+1

ζi−→ [0, 1]×∆k.

If j < i then ζiδj is the same as the composite

∆k
ζi−1−−−→ [0, 1]×∆k−1

id×δj−−−−→ [0, 1]×∆k,

or in other words ζiδj = (id×δj)ζi−1.
(b) On the other hand, if j ≥ i+ 2 then ζiδj = (id×δj−1)ζi.
(c) For 1 ≤ i ≤ k we also have ζiδi = ζi−1δi.
(d) Finally, we have ζ0δ0(x) = (1, x) and ζkδk+1(x) = (0, x).

Proof. All the maps under discussion are affine maps from ∆k to [0, 1]×∆k. To check that two such maps
agree, it suffices to check that they have the same effect on the vertices of ∆k. The map δj sends ep to ep (if
p < j) or ep+1 (if p ≥ j). The map ζi sends ep to (0, ep) (if p ≤ i) or (1, ep−1) (if p > i).
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(a) When j < i we find that both ζiδj and (id×δj)ζi−1 have the following effect:

ep 7→


(0, ep) if p < j

(0, ep+1) if j ≤ p < i

(1, ep) if i ≤ p.

(b) When j ≥ i+ 2 we find that both ζiδj and (id×δj−1)ζi have the following effect:

ep 7→


(0, ep) if p ≤ i
(1, ep−1) if i < p < j

(1, ep) if j ≤ p.

(c) When 1 ≥ i ≤ k we find that both ζiδi and ζi−1δi have the following effect:

ep 7→

{
(0, ep) if p < i

(1, ep) if i ≤ p.

(d) We also have ζ0δ0(ep) = ζ0(ep+1) = (1, ep) and ζkδk+1(ep) = ζk(ep) = (0, ep)

□

Video (Proposition 14.13 to Proposition 14.17)

Proposition 14.13. For all u ∈ Ck(X) we have

∂(σk(u)) + σk−1(∂(u)) = g#(u)− f#(u).

Proof. It will be enough to prove this when u ∈ Sk(X) ⊂ Ck(X), so u : ∆k → X. We can then define

m = h ◦ (id×u) : [0, 1]×∆k → X, so σk(u) =
∑k
i=0(−1)imζi. This gives

∂(σk(u)) =

k∑
i=0

k+1∑
j=0

(−1)i+jmζiδj .

We can divide this sum into four parts:

• A is the sum of the terms where j < i
• B is the sum of the terms where i+ 2 ≤ j
• C is the sum of the terms where j = i with 1 ≤ i ≤ k
• D is the sum of the terms where j = i+ 1 with 0 ≤ i < k
• E consists of the terms with (i, j) = (0, 0) or (i, j) = (k, k + 1).

We thus have ∂(σk(u)) = A+B + C +D + E.

Now note that ∂(u) =
∑k
q=0(−1)quδq, and

σk−1(uδq) =

k∑
p=0

(−1)p(h ◦ (id×uδq) ◦ ζp) =
k∑
p=0

(−1)pm(id×δq)ζp.

This gives

σk−1(∂(u)) =

k∑
p=0

k∑
q=0

(−1)p+qm(id×δq)ζp.

We let A′ be the sum of the terms where q ≤ p, and we let B′ be the sum of the terms where p < q.
Each term (−1)i+jmζiδj in A can be rewritten (using part (a) of the lemma) as (−1)i+jm(id×δj)ζi−1.

This can then be written as −(−1)p+qm(id×δq)δp, where p = i− 1 and q = j. Because j < i for terms in A,
we see that q ≤ p, so the rewritten term is the negative of a term in A′. Similarly, each term (−1)i+jmζiδj
in B can be rewritten (using part (b) of the lemma) as (−1)i+jm(id×δj−1)ζi. This can then be written as
−(−1)p+qm(id×δq)δp, where p = i and q = j − 1. Because j ≥ i + 2 for terms in B, we see that q > p, so

70

https://youtu.be/z1QMXgZfmEI


the rewritten term is the negative of a term in B′. Using this we see that A′ = −A and B′ = −B. A similar
argument with part (c) of the lemma shows that D = −C. We now have

∂(σk(u)) + σk−1(∂(u)) = (A+B + C +D + E) + (A′ +B′)

= (A+B + C − C + E) + (−A−B) = E.

Also, part (d) of the lemma gives

mζ0δ0(x) = m(1, x) = h(1, u(x)) = g(u(x))

mζkδk+1(x) = m(0, x) = h(0, u(x)) = f(u(x)).

The first of these terms has sign (−1)0+0 = +1, and the second has sign (−1)k+(k+1) = −1. We therefore
have E = g#(u)− f#(u) as required. □

We can gain some insight into the above proof by considering a simple special case. Suppose that X = RN
and Y = RM . Suppose that f : X → Y is affine, i.e. f(x) = Ax+ b for some matrix A and vector b. Suppose
that g : X → Y is also affine, and that h is just the linear homotopy h(t, x) = (1− t)f(x) + tg(x). Consider
a linear 3-simplex u = ⟨a0, a1, a2, a3⟩ ∈ C3(X). As all the maps involved are affine, we see that

f∗(u) = ⟨f(a0), f(a1), f(a2), f(a3)⟩
g∗(u) = ⟨g(a0), g(a1), g(a2), g(a3)⟩.

As in Example 10.17, we will use abbreviated notation, writing i for ai or f(ai), and i for g(ai), so the above
equations become f∗(0123) = 0123 and g∗(0123) = 0123. It is then not hard to check that

h ◦ (id×u) ◦ ζ2 = ⟨f(a0), f(a1), f(a2), g(a2), g(a3)⟩ = 01223,

and similarly for the other terms in σ(u). The terms in ∂(u), σ(u), ∂σ(u) and σ∂(u) can now be laid out as
follows:

σ(x) = +00123 −01123 +01223 −01233

∂σ(x) = +0123 −1123 +1223 −1233

−0123 +0123 −0223 +0233

+0023 −0123 +0123 −0133

−0013 +0113 −0123 +0123

+0012 −0112 +0122 −0123

∂(x) = +123 −023 +013 −012

σ∂(x) = +1123 −1223 +1233

−0023 +0223 −0233

+0013 −0113 +0133

−0012 +0112 −0122

Most terms cancel in the indicated groups, which correspond to the expressions A, . . . , E in the proof of
Proposition 14.13, leaving ∂σ(u) + σ∂(u) = 0123 − 0123 = g∗(u) − f∗(u) as expected. Here we have just
displayed the case k = 3, but the pattern generalises in an obvious way to other values of k. This presentation
is only directly relevant for linear simplices and affine maps. However, in the general case, most of the work
involves linear simplices in the space [0, 1] × ∆k ⊆ Rk+2, and then we finish up by applying the map
h ◦ (id×u) : [0, 1]×∆k → Y . Because of this, it is possible to deduce the general case from the linear case,
although we will not spell out the details here.

Corollary 14.14. If f : X → Y is a homotopy equivalence, then f∗ : H∗(X)→ H∗(Y ) is an isomorphism.

Proof. Choose a map g : Y → X which is homotopy inverse to f , so g ◦ f is homotopic to idX and f ◦ g
is homotopic to idY . As homology is a functor, the composite g∗ ◦ f∗ : H∗(X) → H∗(X) is the same as
(g ◦ f)∗. As g ◦ f is homotopic to idX , Proposition 14.8 tells us that (g ◦ f)∗ = (idX)∗. Using functoriality
again, we have (idX)∗ = idH∗(X). Putting this together, we see that g∗ ◦ f∗ = id: H∗(X) → H∗(X), and
essentially the same argument shows that f∗ ◦ g∗ = id: H∗(Y ) → H∗(Y ). Thus, f∗ and g∗ are mutually
inverse isomorphisms. □
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Remark 14.15. Another way to organise the above argument is as follows. Propositions 14.7 and 14.8
tell us that Hn can be regarded as a functor hTop → Ab. Any homotopy equivalence f : X → Y becomes
an isomorphism in hTop, and Corollary 6.18 tells us that functors send isomorphisms to isomorphisms, so
Hn(f) must be an isomorphism.

Proposition 14.16. If f : X → Y is homotopic to a constant map, then the map f∗ : Hn(X) → Hn(Y ) is
zero for all n > 0.

Proof. Let g : X → Y be a constant map that is homotopic to f . Then f∗ = g∗ by Proposition 14.8, but
g∗ = 0 by Remark 13.14. □

Proposition 14.17. Suppose that X is contractible. Then H0(X) = Z but Hn(X) = 0 for all n ̸= 0. In
particular, this applies if X is a convex subset of RN for some n.

Proof. Proposition 9.17 tells us that X is homotopy equivalent to a point, so it has the same homology as a
point, which is given by Proposition 10.23. □

15. Homology of spheres

Consider a topological space X with open subsets U and V such that X = U ∪ V . There are many cases
like this where we already understand three of the groupsH∗(U), H∗(V ), H∗(U∩V ) andH∗(U∪V ) = H∗(X),
and we want to determine the fourth one.

Video (Theorem 15.1 and Proposition 15.2)

We name the corresponding inclusion maps as shown on the left below; they induce homomorphisms of
homology groups as shown on the right.

U ∩ V U

V U ∪ V = X

i

j k

l

H∗(U ∩ V ) H∗(U)

H∗(V ) H∗(U ∪ V ) = H∗(X)

i∗

j∗ k∗

l∗

As the left hand diagram commutes and homology is functorial, we have k∗i∗ = l∗j∗ : H∗(U∩V )→ H∗(U∪V ).
We can now combine the above maps to get maps as follows:

Hn(U ∩ V )

[
i∗
−j∗

]
−−−−→ Hn(U)⊕Hn(V )

[ k∗ l∗ ]−−−−→ Hn(U ∪ V )

Here the notation
[
i∗
−j∗
]
refers to the map sending a to (i∗(a),−j∗(a)), and the notation [ k∗ l∗ ] refers to the

map sending (b, c) to k∗(b) + l∗(c). The composite of these two maps therefore sends a to k∗i∗(a)− l∗j∗(a),
but this is zero because k∗i∗ = l∗j∗. Thus, the above sequence has a chance to be exact. In fact, we have
the following result:

Theorem 15.1 (Mayer-Vietoris). In the above context, there are natural maps δ : Hn(U∪V )→ Hn−1(U∩V )
such that the resulting sequence

Hn+1(U ∪ V )
δ−→ Hn(U ∩ V )

[
i∗
−j∗

]
−−−−→ Hn(U)⊕Hn(V )

[ k∗ l∗ ]−−−−→ Hn(U ∪ V )
δ−→ Hn−1(U ∩ V )

is exact for all n.

In this section, we will explain some homology calculations based on the above theorem. The proof will
be given in Section 19, using preliminary results from Sections 17 and 18.

We first note that the exact sequences in the theorem can be chained together to make an infinite sequence
as follows:
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· · · H3(U ∩ V ) H3(U)⊕H3(V ) H3(X)

H2(U ∩ V ) H2(U)⊕H2(V ) H2(X)

H1(U ∩ V ) H1(U)⊕H1(V ) H1(X)

H0(U ∩ V ) H0(U)⊕H1(V ) H0(X) 0

δ

δ

δ

The following slightly modified form is often convenient.

Proposition 15.2. Suppose that U ∩ V is path connected (and therefore nonempty). Then we can modify
the Mayer-Vietoris sequence by replacing all the H0 terms by zero, and the resulting sequence is still exact.
Moreover, if U and V are also path connected then the same is true of U ∪ V , so all the H0 groups are
isomorphic to Z.

Proof. Pick a point a ∈ U ∩V , so H0(U ∩V ) = Z.[a]. Now H0(U) has a basis corresponding to the elements
of π0(U), and i∗[a] is one of these basis elements, so the map i∗ : H0(U ∩V )→ H0(U) is injective. It follows

that the map
[
i∗
−j∗
]
: H0(U ∩ V ) → H0(U) ⊕ H0(V ) is also injective. Now consider the tail end of the

Mayer-Vietoris sequence:

H1(U)⊕H1(V )
[ k∗ l∗ ]−−−−→ H1(U ∪ V )

δ−→ H0(U ∩ V )

[
i∗
−j∗

]
−−−−→ H0(U)⊕H0(V ).

The map
[
i∗
−j∗
]
is injective, and so the kernel is zero. As the sequence is exact, we see that the image of δ

is also zero, so δ is the zero homomorphism. Using exactness again, we deduce that the map [ k∗ l∗ ] must be
surjective. Using this together with the exactness of the original MV sequence, we see that the sequence

H1(U ∩ V )

[
i∗
−j∗

]
−−−−→ H1(U)⊕H1(V )

[ k∗ l∗ ]−−−−→ H1(U ∪ V ) −→ 0 −→ 0 −→ 0

is exact. The rest of the modified MV sequences is the same as the original MV sequence, and so is also
exact, as claimed.

Now suppose that U and V are also path connected. Any point in U can be joined to a by a path in U ,
and any point in V can be joined to a by a path in V , so any point in the space X = U ∪ V can be joined
to a by a path in X. This shows that X is also path connected. We therefore see that the groups H0(X),
H0(U), H0(V ) and H0(U ∩ V ) are all the same: a copy of Z, generated by [a]. □

We now want to calculate the homology groups of spheres Sn for n ≥ 0. We will do this by induction,
starting with n = 0. Note that the point e0 = (1, 0, · · · , 0) always lies in Sn and so gives an element
an = [e0] ∈ H0(S

n). Note also that

S0 = {x ∈ R | |x| = 1} = {e0,−e0}.
As in Remark 10.24, it follows that the elements a0 = [e0] and [−e0] give a basis for H0(S

0), and that
Hk(S

0) = 0 for k ̸= 0. However, it turns out to be more convenient to put b0 = [−e0] − [e0] ∈ H0(S
0); the

elements a0 and b0 also form a basis.

Theorem 15.3. For all n ≥ 1 there is an element bn ∈ Hn(S
n) such that

Hk(S
n) =


Zan if k = 0

Zbn if k = n

0 otherwise.

Proof.
Video
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Recall that

Sn = {(x0, . . . , xn) ∈ Rn+1 |
∑
i

x2i = 1}.

We will think of a point x ∈ Rn+1 as a pair (y, z) with y ∈ Rn and z ∈ R, so ∥x∥2 = ∥y∥2 + z2, and x lies in
Sn iff ∥y∥2 + z2 = 1. We put N = (0, 1) (the “North pole”) and U = Sn \ {N} = {(y, z) ∈ Sn | z ̸= 1} and
V = Sn \ {−N} = {(y, z) ∈ Sn | z ̸= −1}. These are open sets with U ∪ V = Sn and

U ∩ V = Sn \ {N,−N} = {(y, z) ∈ Sn | − 1 < z < 1} = {(y, z) ∈ Sn | y ̸= 0}.

Just as in Example 4.13 we have a homeomorphism f : U → Rn given by f(y, z) = y/(1 − z) with
f−1(y) = (2y, ∥y∥2 − 1)/(∥y∥2 + 1). This proves that U is contractible. The map (y, z) 7→ (y,−z) gives
a homeomorphism between U and V , so V is also contractible. It follows that H0(U) = H0(V ) = Z and
Hd(U) = Hd(V ) = 0 for d > 0.

We also have a homeomorphism g : U ∩ V → Sn−1 × (−1, 1) given by g(y, z) = y/∥y∥ and g−1(y, z) =
(
√
1− z2y, z). (It is valid to divide by ∥y∥ here because y ̸= 0 whenever (y, z) ∈ U ∩ V .) As (−1, 1) is

contractible, it follows that U ∩V is homotopy equivalent to Sn−1. More precisely, we can define p : Sn−1 →
U ∩V by p(y) = (y, 0), and we find that p is a homotopy equivalence, so the map p∗ : H∗(S

n−1)→ H∗(U ∩V )
is an isomorphism.

Now consider the Mayer-Vietoris sequence

Hd(U)⊕Hd(V )→ Hd(S
n)

δ−→ Hd−1(U ∩ V )→ Hd−1(U)⊕Hd−1(V ).

(a) For d ≥ 2 we have Hd(U) = Hd(V ) = Hd−1(U) = Hd−1(V ) = 0. Thus, Lemma 12.19 tells us that
in these cases the map δ : Hd(S

n) → Hd−1(U ∩ V ) = Hd−1(S
n−1) is an isomorphism. This almost

proves the induction step, apart from tweaks needed when d = 0, 1. We are assuming that n ≥ 1 so
Sn is path connected so H0(S

n) = Z.an. Thus, we just need to deal with the case d = 1.
(b) Using the known values of Hd(U) and Hd(V ) for d = 0, 1, the bottom end of the Mayer-Vietoris

sequence is as follows:

0→ H1(S
n)

δ−→ H0(S
n−1)

[ k∗ l∗ ]−−−−→ Z⊕ Z

[
i∗
−j∗

]
−−−−→ H0(S

n)→ 0.

(c) Consider the case where n = 1. Point (a) tells us that for d ≥ 2 we have Hd(S
1) = Hd−1(S

0) = 0.
Point (b) gives an exact sequence

0→ H1(S
1)

δ−→ Z{a0, b0}
[ k∗ l∗ ]−−−−→ Z⊕ Z

[
i∗
−j∗

]
−−−−→ H0(S

1)→ 0.

This means that δ gives an isomorphism from H1(S
1) to the kernel of the map [ k∗ l∗ ].

Here we have identified H0(U) with Z. More precisely, as U is connected and contains both e0
and −e0, we see that H0(U) = Z.[e0] and that [e0] = [−e0] in H0(U). It follows that k∗(a0) = [e0]
and k∗(b0) = [−e0] − [e0] = 0 in H0(U). For essentially the same reason we have l∗(a0) = [e0] and
l∗(b0) = 0 in H0(V ). Thus, the kernel of [ k∗ l∗ ] is Z.b0. The exact sequence therefore means that
there is a unique element b1 ∈ H1(S

1) such that δ(b1) = b0, and that H1(S
1) = Z.b1. As S1 is path

connected, we also know that H0(S
1) = Z.a1. This proves that H∗(S

1) is as claimed.
(d) Now suppose instead that n ≥ 2, and that we have already proved the claim for H∗(S

n−1). Point (a)
gives an isomorphism δ : Hn(S

n)→ Hn−1(S
n−1) = Z.bn−1, so there is a unique element bn ∈ Hn(S

n)
with δ(bn) = bn−1, and we have Hn(S

n) = Z.bn. Point (a) also shows that Hd(S
n) = 0 for d ≥ 2

with d ̸= n. As Sn is path connected, we have H0(S
n) = Z.an. This just leaves H1(S

n). The bottom
end of the modified Mayer-Vietoris sequence has the form 0 = H1(U)⊕H1(V )→ H1(S

n)→ 0, and
exactness forces H1(S

n) to be zero as expected.

□

Remark 15.4. If u ∈ Hd(X) then we sometimes say that u ∈ H∗(X) with |u| = d, and we call d the degree
of u. We could then say that the elements an and bn form a basis for H∗(S

n) with |an| = 0 and |bn| = n.
This formulation is valid for n = 0 as well as for n > 0.
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16. Applications of homology

Video (Theorems 16.1 and 16.2)

Theorem 16.1. No sphere Sn is contractible. Moreover, if n ̸= m then Sn is not homotopy equivalent to
Sm.

Proof. As homotopy equivalent spaces have isomorphic homology, it will suffice to prove that Hn(S
n) ̸≃

Hn(point) and that Hn(S
m) ̸≃ Hn(S

m) when n ̸= m. This is clear from the above calculations. □

Theorem 16.2. Suppose that n,m ≥ 0 with n ̸= m. Then Rn is not homeomorphic to Rm.

Note here that Rn and Rm are certainly homotopy equivalent, as they are both contractible. This is
perfectly consistent: homeomorphism implies homotopy equivalence but not conversely.

Proof. Suppose that n,m ≥ 0 and that we have a homeomorphism f : Rn → Rm. We must show that n = m.
If n = 0 then Rn is a single point so Rm is a single point so m = 0. Similarly, if m = 0 then n = 0. Thus,
we can restrict attention to the case where n,m ≥ 1.

Choose a ∈ Rn and put b = f(a) ∈ Rm. It is easy to see that f restricts to give a homeomorphism
f0 : Rn \ {a} → Rm \ {b}. We can now define maps

Sn−1 Rn \ {a} Rm \ {b} Sm−1i f0

p

q

f−1
0

j

by

i(x) = x+ a p(x) = (x− a)/∥x− a∥
j(y) = y + b q(y) = (y − b)/∥y − b∥.

A tiny adaptation of Proposition 9.12 shows that p and q are homotopy inverses for i and j respectively, so
that all maps in the above diagrams are homotopy equivalences, so Sn and Sm are homotopy equivalent. It
follows by Theorem 16.1 that n = m as required. □

Video (Theorem 16.3 to Lemma 16.5)

Theorem 16.3 (Brouwer Fixed Point Theorem). Let f : Bn → Bn be a continuous map (for some n > 0).
Then there is a point a ∈ Bn such that f(a) = a.

The proof will rely on the following construction.

Definition 16.4. Put Xn = {(a, b) ∈ Bn ×Bn | a ̸= b}. For (a, b) ∈ Xn we consider the map uab : R→ Rn
given by uab(t) = a + t(a − b), so uab traces out the straight line joining b to a, with uab(−1) = b and
uab(0) = a.

b a

t = −1 t = 0

m(a, b)
uab
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It is geometrically clear that this line crosses the sphere Sn−1 at precisely two points, one with t ≤ −1 and
the other with t ≥ 0. We define m(a, b) to be the intersection point with t ≥ 0.

Lemma 16.5. The map m : Xn → Sn−1 is continuous, and it satisfies m(a, b) = a if ∥a∥ = 1.

Proof. It is possible to argue geometrically, but more efficient to just find the formula for the point c =
m(a, b). Put v = a− b, so c = tv + a for some t ≥ 0, and must satisfy ⟨c, c⟩ = 1. Expanding this out, we get

∥v∥2t2 + 2⟨v, a⟩t+ ∥a∥2 − 1 = 0.

The quadratic formula tells us that the positive root is

t+ = (
√
⟨v, a⟩2 + (1− ∥a∥2)∥v∥2 − ⟨v, a⟩)/∥v∥2.

Note that the quantity under the square root is nonnegative, because squares are always nonnegative and
a ∈ Bn so 1 − ∥a∥2 ≥ 0. Also, the vector v = a − b is nonzero by the definition of Xn so ∥v∥2 > 0 so it is
harmless to divide by ∥v∥2. This shows that t+ is a well-defined continuous function of the pair (a, b). It
follows that the function m(a, b) = a+ t+b is also continuous.

It is clear from the geometry that if ∥a∥ = 1 (so a lies on the unit sphere Sn−1) then m(a, b) = a.
Alternatively, it is clear in this case that t = 0 is a nonnegative root of our quadratic, so it must be the same
as t+. □

Proof of Theorem 16.3. Suppose, for a contradiction, that we have a continuous map f : Bn → Bn with no
fixed points. This means that for any a ∈ Bn we have (a, f(a)) ∈ Xn so we can define r(a) = m(a, f(a)) ∈
Sn−1. If ∥a∥ = 1, then this is just r(a) = a. This means that Sn−1 is a retract (and thus a homotopy
retract) of Bn. As Bn is contractible, we can use Proposition 9.24 to see that Sn−1 is also contractible, but
this contradicts Theorem 16.1. □

Video (Theorem 16.6)

Theorem 16.6 (Fundamental Theorem of Algebra). Let p(x) ∈ C[x] be a non-constant complex polynomial.
Then p(x) has a complex root.

There are many different ways to prove this theorem. We will give a proof using homology.

Proof. Consider a non-constant polynomial p(x) of degree n > 0, so

p(x) = a0 + a1x+ · · ·+ anx
n

for some coefficients ai with an ̸= 0. Suppose, for a contradiction that p(x) is never zero. Choose some
very large radius R and define h : [0, 1] × S1 → C \ {0} by h(s, z) = p(Rsz)/p(Rs). As we are assuming
that p is never zero, the division is valid and h(s, z) lies in C \ {0} as required. Put f(z) = h(0, z) = 1
and g(z) = h(1, z) = p(Rz)/p(R). As f is constant, the map f∗ : H1(S

1) → H1(C \ {0}) is zero. As h
gives a homotopy between f and g, the map g∗ : H1(S

1) → H1(C \ {0}) must also be zero. However, as
R is very large and an ̸= 0, the term an(Rz)

n will be much larger than all the other terms in p(Rz), so
g(z) = p(Rz)/p(R) ≈ an(Rz)

n/(anR
n) = zn. Thus, if we put q(z) = zn then g(z) will be very close to q(z)

for all z ∈ S1, so the straight line from g(z) to q(z) will never pass through 0, so g will be linearly homotopic
to q, so q∗ = g∗ = 0: H1(S

1)→ H1(C \ {0}). However, it is clear from our earlier discussions in Section 11
that H1(S

1) = H1(C \ {0}) = Z and q∗ sends 1 to n ̸= 0, so we have a contradiction. □

17. The Snake Lemma

We now return to the task of constructing the Mayer-Vietoris sequence. There are two key ingredients:
the Snake Lemma (in this section) and subdivision (in the next section). The videos cover this material in
a slightly different order than the notes: the first video is attached to Definition 17.3 below.

The basic input for the Snake Lemma is as follows: we have chain complexes U∗, V∗ and W∗ and chain
maps

U∗
i−→ V∗

p−→W∗

which form a short exact sequence. One might hope that the resulting sequence

H∗(U)
i∗−→ H∗(V )

p∗−→ H∗(W )
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would also be a short exact sequence, but that is not quite right. We will show that the above sequence is
exact (in the sense that img(i∗) = ker(p∗)), but i∗ need not be injective, and p∗ need not be surjective. In
other words, ker(i∗) need not be zero, and img(p∗) need not be all of H∗(W ). We can still obtain a great
deal of information about ker(i∗) and img(p∗), but that will require some preparation. For the moment we
will just prove the easier statement mentioned above.

Proposition 17.1. Let U∗
i−→ V∗

p−→ W∗ be a short exact sequence of chain maps between chain complexes.

Then in the resulting sequence H∗(U)
i∗−→ H∗(V )

p∗−→ H∗(W ) we have img(i∗) = ker(p∗).

Proof. First, as the sequence U∗
i−→ V∗

p−→ W∗ is exact we have p ◦ i = 0. It follows that p∗ ◦ i∗ = (p ◦ i)∗ =
0∗ = 0, so img(i∗) ≤ ker(p∗).

Conversely, suppose we are given an element b ∈ ker(p∗); must show that it lies in img(i∗). If b ∈ Hr(V )
then we have b = [v] for some v ∈ Vr with d(v) = 0. We are assuming that p∗b = 0, which means that [p(v)] is
zero in the quotient group Zr(W )/Br(W ), which means that p(v) ∈ Br(W ), which means that p(v) = d(w′)

for some w′ ∈ Wr+1. Also, we are assuming that the sequence U∗
i−→ V∗

p−→ W∗ is short exact, which means
in particular that p is surjective. We can therefore choose v′ ∈ Vr+1 with p(v′) = w′. We now have

p(v − d(v′)) = p(v)− p(d(v′)) = p(v)− d(p(v′)) = p(v)− d(w′) = 0,

so v − d(v′) ∈ ker(p). We also have ker(p) = img(i) by our exactness assumption, so we can find u ∈ Ur
with i(u) = v − d(v′). From our initial assumptions we have d(v) = 0, and also d2 = 0 so d(d(v′)) = 0, so
d(i(u)) = 0. As i is a chain map this gives i(d(u)) = 0, and i is injective so d(u) = 0. This means we have
an element a = [u] ∈ Hr(U). This satisfies i∗(a) = [i(u)] = [v− d(v′)] but d(v′) ∈ Br(V ) so [v− d(v′)] is the
same as [v], which is b. We conclude that i∗(a) = b, so b ∈ img(i∗) as claimed.

We can display the relevant groups and elements as follows:

Ur+1 Vr+1 Wr+1

Ur Vr Wr

d d d

i

i

p

p

u v p(v) = d(w′)

w′v′

The two dotted arrows are supposed to indicate the relation d(v′) + i(u) = v. □

Theorem 17.2. For U∗
i−→ V∗

p−→W∗ as above, there is a natural map δ : Hn(W )→ Hn−1(U) such that the
sequence

Hn+1U Hn+1V Hn+1W

HnU HnV HnW

Hn−1U Hn−1V Hn−1W

i∗ p∗

δ

i∗ p∗

δ

i∗ p∗

is exact for all n.

The proof will be broken into a number of steps. The map δ will be defined in Definition 17.6, and
Propositions 17.1, 17.10 and 17.11 will show that the resulting long sequence is exact.
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Definition 17.3.
Video

A snake for the above sequence is a system (c, w, v, u, a) such that

• c ∈ Hn(W );
• w ∈ Zn(W ) is a cycle such that c = [w];
• v ∈ Vn is an element with p(v) = w;
• u ∈ Zn−1(U) is a cycle with i(u) = d(v) ∈ Vn−1;
• a = [u] ∈ Hn−1(U).

More specifically, we say that a system (c, w, v, u, a) as above is a snake from c to a.

Video (Lemma 17.4 to Remark 17.8)

Lemma 17.4. For any c ∈ Hn(W ), there is a snake starting with c.

Proof. Consider an element c ∈ Hn(W ). As Hn(W ) = Zn(W )/Bn(W ) by definition, we can certainly choose

w ∈ Zn(W ) such that c = [w]. As the sequence U∗
i−→ V∗

p−→W∗ is short exact, we know that p : Vn →Wn is
surjective, so we can choose v ∈ Vn with p(v) = w. As p is a chain map we have p(d(v)) = d(p(v)) = d(w) = 0
(the last equation because w ∈ Zn(W )). This means that d(v) ∈ ker(p), but ker(p) = img(i) because the
sequence is exact, so we have u ∈ Un−1 with i(u) = d(v). Note also that i(d(u)) = d(i(u)) = d(d(v)) = 0
(because i is a chain map and d2 = 0). On the other hand, exactness means that i is injective, so the relation
i(d(u)) = 0 implies that d(u) = 0. This shows that u ∈ Zn−1(U), so we can put a = [u] ∈ Hn−1(U). We
now have a snake (c, w, v, u, a) starting with c as required. □

Lemma 17.5. Suppose we have two snakes that have the same starting point; then they also have the same
endpoint.

Proof. Suppose we have two snakes that start with c. We can then subtract them to get a snake (0, w, v, u, a)
starting with 0. It will be enough to show that this ends with 0 as well, or equivalently that a = 0. The
first snake condition says that [w] = 0, which means that w = d(w′) for some w′ ∈ Wn+1. Because p is
surjective we can also choose v′ ∈ Vn+1 with w′ = p(v′) , and this gives w = d(w′) = d(p(v′)) = p(d(v′)).
The next snake condition says that p(v) = w. We can combine these facts to see that p(v − d(v′)) = 0, so
v − d(v′) ∈ ker(p) = img(i). We can therefore find u′ ∈ Un with v − d(v′) = i(u′). We can apply d to this
using d2 = 0 and di = id to get d(v) = i(d(u′)). On the other hand, the third snake condition tells us that
d(v) = i(u). Subtracting these gives i(u− d(u′)) = 0, but i is injective, so u = d(u′), so u ∈ Bn−1(U). The
final snake condition now says that a = [u] = u+Bn−1(U), but u ∈ Bn−1(U) so a = [u] = 0. □

Definition 17.6. For any c ∈ Hn(W ), we define δ(c) ∈ Hn−1(U) to be the endpoint of any snake that starts
with c. (This is well-defined by the last two lemmas.)

Remark 17.7. It is easy to see that the sum of two snakes is a snake, and from that we can deduce that δ
is a homomorphism.

Remark 17.8. The slogan behind the definition is that δ = i−1dp−1. In more detail, suppose we have
c ∈ Hn(W ). To calculate δ(c), we must find a snake of the form (c, w, v, u, a), then δ(c) = a. The slogan
glosses over the distinction between w and c = [w], and the distinction between u and a = [u]. The condition
p(v) = w means that v is a choice of p−1w, and the condition i(u) = d(v) means that u is essentially
i−1(d(v)) = i−1(d(p−1(w))). The point of the above definitions and lemmas is to make this slogan precise.

Remark 17.9. The Snake Lemma (in a slightly different incarnation) is probably the most advanced piece
of mathematics ever to appear in a mainstream movie:

Video

Video (Proposition 17.1, 17.10 and 17.11)

Proposition 17.10. The sequence Hn(V )
p∗−→ Hn(W )

δ−→ Hn−1(U) is exact (or equivalently, img(p∗) =
ker(δ)).
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Proof. First, suppose that b ∈ Hn(V ), so b = [v] for some v ∈ Vn with d(v) = 0. We find that (p∗(b), p(v), v, 0, 0)
is a snake starting with p∗(b), so δ(p∗(b)) = 0. From this we get δ ◦ p∗ = 0 and img(p∗) ≤ ker(δ).

Conversely, consider an element c ∈ ker(δ) ≤ Hn(W ). As c ∈ ker(δ), there must exists a snake of
the form (c, w, v, u, 0). The last snake condition says that [u] = 0, so we must have u = d(u′) for some
u′ ∈ Un. Another snake condition says that d(v) = i(u) = i(d(u′)) = d(i(u′)), so we have d(v − i(u′)) = 0.
This means that v − i(u′) is a cycle, so we have a homology class b = [v − i(u′)] ∈ Hn(V ). This satisfies
p∗(b) = [p(v − i(u′))], but pi = 0 and p(v) = w so this simplifies to p∗(b) = [w] = c, so c ∈ img(p∗). □

Proposition 17.11. The sequence Hn(W )
δ−→ Hn−1(U)

i∗−→ Hn−1(V ) is exact (or equivalently, img(δ) =
ker(i∗)).

Proof. First suppose we have an element c ∈ Hn(W ). Choose a snake (c, w, v, u, a) starting with c, so
δ(c) = a = [u]. We then have i∗δ(c) = i∗[u] = [i(u)], but one of the snake conditions says that i(u) = d(v) ∈
Bn−1(V ), so [i(u)] = 0, so i∗δ(c) = 0. This proves that i∗ ◦ δ = 0 and so img(δ) ≤ ker(i∗).

Conversely, suppose that a ∈ ker(i∗). We can choose u ∈ Zn−1(U) such that a = [u]. Now [i(u)] =
i∗(a) = 0, so i(u) ∈ Bn−1(V ), so there exists v ∈ Vn with d(v) = i(u). Put w = p(v) ∈ Wn. We then have
d(w) = d(p(v)) = p(d(v)) = p(i(u)), and this is zero because p ◦ i = 0. This means that w ∈ Zn(W ), so we
can define c = [w] ∈ Hn(W ). We now see that (c, w, v, u, a) is a snake, so a = δ(c), so a ∈ img(δ). □

18. Subdivision

Video (Introduction to subdivision)

Consider the following pictures:

∆1 ∆2 ∆3

Interactive demo

On the left we have the 1-simplex ∆1, divided into two pieces. In Lemma 10.27 we showed that if u and v
are joinable paths in X, then u ∗ v = u+ v (mod B1(X)). Equivalently, if we start with a path w and split
it in the middle to get two paths u and v, then w = u + v (mod B1(X)). Thus, there is a sense in which
subdivision of paths acts as the identity in homology.

In the middle picture we have divided the simplex ∆2 into 6 pieces. In the right hand picture, and
the interactive demonstration, we have divided ∆3 into 24 pieces. It will again turn out that this kind
of subdivision acts as the identity in homology. To prove this, we need to study the combinatorics of the
subdivision process.

We subdivide ∆1 by introducing a new vertex in the middle (which we call the barycentre), giving two
copies of ∆1. To subdivide ∆2, we first subdivide each of the 3 edges in the same way as ∆1, giving 3×2 = 6
edges altogether. We then take each of these subdivided edges and connect it to the barycentre of ∆2; this
divides ∆2 into 2 × 3 copies of ∆2. Next, we divide all 4 of the faces of ∆3 in the same way as ∆2, giving
4× 3× 2 = 24 triangles on the surface of ∆3. We connect all of these to the barycentre of ∆3; this divides
∆3 into 4 × 3 × 2 copies of ∆3. We can continue in the same way to divide ∆n into (n + 1)! copies of ∆n.
We now start to make this more formal.

79

https://youtu.be/XykhdAZFPjA
http://strickland1.org/courses/MAS61015/demos/tetra_subdiv.html


Video (Definition 18.1 to Proposition 18.10)

Definition 18.1.

(a) The barycentre of ∆n is the point bn = (1, . . . , 1)/(n + 1) ∈ ∆n (so b3 = ( 14 ,
1
4 ,

1
4 ,

1
4 ), for example).

We will write b instead of bn if there is no danger of confusion.
(b) Given any linear k-simplex u = ⟨a0, . . . , ak⟩ ∈ Ck(∆n), we define

β⟨a0, . . . , ak⟩ = ⟨b, a0, . . . , ak⟩ ∈ Ck+1(∆n).

More generally, if u = n1u1 + · · · + nrur with n1, . . . , nr ∈ Z and each ui being a linear k-simplex,
we define β(u) = n1β(u1) + · · ·+ nrβ(ur).

Remark 18.2. It is possible to define β for nonlinear k-simplices, but a little work is required to check that
the resulting maps ∆k+1 → ∆n are always continuous. We do not need the general case so we omit it.

Lemma 18.3. Let u be a linear combination of linear k-simplices in ∆n with k > 0. Then ∂β(u)+β∂(u) = u.

Proof. We can easily reduce to the case where u is a single linear k-simplex, say u = ⟨a0, . . . , ak⟩. Let ui
be the same as u except that ai is omitted, so ∂(u) =

∑
i(−1)iui, so β∂(u) =

∑
i(−1)iβ(ui). On the other

hand, we have β(u) = ⟨b, a0, a1, . . . , ak⟩. For the initial term in ∂β(u) we omit the b and we have a sign
(−1)0; this just gives us u. For each of the remaining terms in ∂β(u) we omit the ai appearing in position
i+1 of β(u), and multiply by (−1)i+1; this gives −(−1)iβ(ui), which cancels with a term in β∂(u). Putting
everything together gives ∂β(u) + β∂(u) = u as claimed. □

We now want to define certain elements θn ∈ Cn(∆n) for all n. The idea is that we subdivide ∆n into
smaller copies of ∆n as sketched previously, and take θn to be the sum of these smaller copies with suitable
±-signs to make the orientations match up correctly. We can mark some points in ∆1 and ∆2 as follows:

e0 e1e01

e0 e1

e2

e01

e02 e12

e012

It will work out that

θ0 = ⟨e0⟩
θ1 = ⟨e01, e1⟩ − ⟨e01, e0⟩
θ2 = ⟨e012, e12, e2⟩ − ⟨e012, e12, e1⟩ − ⟨e012, e02, e2⟩+ ⟨e012, e02, e0⟩+ ⟨e012, e01, e1⟩ − ⟨e012, e01, e0⟩

The general picture is as follows.

Definition 18.4. We start with θ0 = ⟨e0⟩ ∈ C0(∆0). Now suppose that we have n > 0 and we have already
defined an element θn−1 ∈ Cn−1(∆n−1) which is a Z-linear combination of linear simplices. For i = 0, . . . , n
we have an affine map δi : ∆n−1 → ∆n and thus a chain (δi)#(θn−1) ∈ Cn−1(∆n), which is again a Z-linear
combination of linear simplices. We put

θ′n =

n∑
i=0

(−1)i(δi)#(θn−1) ∈ Cn−1(∆n)

θn = β(θ′n) =

n∑
i=0

(−1)iβ((δi)#(θn−1)) ∈ Cn(∆n).
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This defines θn for all n by recursion. Next, suppose we have a space X and a map u : ∆n → X, so
u ∈ Sn(X) ⊂ Cn(X). The map u : ∆n → X then gives a map u# : Cn(∆n) → Cn(X), and we define
sd(u) = u#(θn).

Example 18.5. The map δ0 : ∆1 → ∆2 sends e0, e1 and e01 to e1, e2 and e12 respectively. It follows that

(δ0)#(θ1) = (δ0)#(⟨e01, e1⟩ − ⟨e01, e0⟩) = ⟨e12, e2⟩ − ⟨e12, e1⟩
β((δ0)#(θ1)) = ⟨e012, e12, e2⟩ − ⟨e012, e12, e1⟩.

After expressing β((δ1)#(θ1)) and β((δ2)#(θ1)) in the same way, we obtain the advertised formula for θ2:

θ2 = ⟨e012, e12, e2⟩ − ⟨e012, e12, e1⟩ − ⟨e012, e02, e2⟩+ ⟨e012, e02, e0⟩+ ⟨e012, e01, e1⟩ − ⟨e012, e01, e0⟩.

Example 18.6. Suppose we have a path u : ∆1 → X. We identify ∆1 with [0, 1] as usual, so the points
e0, e1 and e01 become 0, 1 and 1

2 respectively. The map ⟨e01, e1⟩ : ∆1 → ∆1 is thus t 7→ (1 + t)/2, and the
map ⟨e01, e0⟩ : ∆1 → ∆1 is t 7→ (1 − t)/2. This means that sd(u) = v − w, where v(t) = u((1 + t)/2) and
w(t) = ((1 − t)/2). In other words, v is the second half of u and w is the reverse of the first half of u, so
u = w ∗ v.

Remark 18.7. An alternative approach is as follows. Let π be a permutation of {0, . . . , n}. For 0 ≤ i ≤ n
we put eπi = (n− i+ 1)−1

∑n
j=i eπ(j) ∈ ∆n. This gives a linear n-simplex uπ = ⟨eπ0 , . . . , eπn⟩ ∈ Sn∆n. It can

be shown that θn =
∑
π sgn(π)uπ ∈ Cn(∆n). We could instead have taken this formula as the definition of

θn; that would make some things easier and some other things harder.

Lemma 18.8. For any f : X → Y and any u ∈ Cn(X) we have f#(sd(u)) = sd(f#(u)) in Cn(Y ).

Proof. We can easily reduce to the case where u ∈ Sn(X), or in other words u : ∆n → X. We then have

f#(sd(u)) = f#(u#(θn)) = (f ◦ u)#(θn) = sd(f#(u)).

□

Lemma 18.9. If we let ιn denote the identity map ∆n → ∆n considered as an element of Cn(∆n), then we
have θ′n = sd(∂(ιn)), and therefore θn = β(sd(∂(ιn))).

Proof. We have ∂(ιn) =
∑n
i=0(−1)i(ιn ◦ δi) =

∑n
i=0(−1)iδi. By definition sd is linear and has sd(δi) =

(δi)#(θn−1). It follows that sd(∂(ιn)) =
∑n
i=0(−1)i sd(δi) =

∑n
i=0(δi)#(θn−1) = θ′n as claimed. □

Proposition 18.10. The map sd: C∗(X)→ C∗(X) is a chain map.

Proof. We must show that for all n ≥ 0 and all u ∈ Cn(X) we have ∂(sd(u)) = sd(∂(u)) in Cn−1(X). If
n = 0 then Cn−1(X) = 0 and so the claim is clear. For n > 0 we will argue by induction. We can easily
reduce to the case where u ∈ Sn(X) ⊂ Cn(X), or in other words u : ∆n → X. We then have sd(u) = u#(θn),
and u# is a chain map, so ∂(sd(u)) = ∂(u#(θn)) = u#(∂(θn)). On the other hand, we have

sd(∂(u)) =

n∑
i=0

(−1)i sd(u ◦ δi) =
n−1∑
i=0

(−1)i(u ◦ δi)#(θn−1) = u#(θ
′
n).

It will therefore be enough to prove that ∂(θn) = θ′n.
We are assuming inductively that ∂(sd(v)) = sd(∂(v)) for all v ∈ Cn−1(X). We can take v = ∂(ιn),

so ∂(v) = ∂2(ιn) = 0; it follows that ∂(sd(∂(ιn))) = 0, or in other words ∂(θ′n) = 0. We also know from
Lemma 18.3 that ∂(β(θ′n))+β(∂(θ

′
n)) = θ′n. As β(θ′n) = θn and ∂(θ′n) = 0 this can be rewritten as ∂(θn) = θ′n,

as required. □

Proposition 18.11. The chain map sd: C∗(X)→ C∗(X) is chain-homotopic to the identity.

Proof.
Video

We define chains κn ∈ Cn+1(∆n) recursively as follows. We start with κ0 = 0. Now suppose that n > 0
and we have already defined κn−1 ∈ Cn(∆n−1). For 0 ≤ i ≤ n we have a face inclusion δi : ∆n−1 → ∆n,
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using which we can form (δi)#(κn−1) ∈ Cn(∆n). We put

κ′n = ιn − θn −
n∑
i=0

(−1)i(δi)#(κn−1) ∈ Cn(∆n),

and κn = β(κ′n) ∈ Cn+1(∆n); this completes the recursion step.
Next, given u ∈ Sn(X) we note that u : ∆n → X and κn ∈ Cn+1(∆n) so u#(κn) ∈ Cn+1(X). We define

σ(u) = u#(κn), and extend this linearly to get σ : Cn(X) → Cn+1(X). We will prove that this gives the
required chain homotopy.

As a first step, we will reformulate the definition of κ′n. We have (δi)#(κn−1) = σ(δi) so

n∑
i=0

(−1)i(δi)#(κn−1) =

n∑
i=0

(−1)iσ(δi) = σ

(
n∑
i=0

(−1)iδi

)
= σ(∂(ιn)).

It follows that
κ′n = ιn − θn − σ(∂(ιn)) = ιn − sd(ιn)− σ(∂(ιn)).

We will now prove by induction that ∂(σ(u)) + σ(∂(u)) = u− sd(u) for all spaces X and all u ∈ Cn(X).
When n = 0 the claim is just that 0 = 0, which is true. Suppose we have proved the claim for n − 1. We
can then apply it to the element ∂(ιn) ∈ Cn−1(∆n); we find that

∂(σ(∂(ιn))) + σ(∂(∂(ιn)) = ∂(ιn)− sd(∂(ιn)).

Using ∂2 = 0 and ∂ sd = sd ∂ we can rewrite this as

∂ (ιn − sd(ιn)− σ(∂(ιn))) = 0,

or in other words ∂(κ′n) = 0. We can therefore take u = κ′n in Lemma 18.3 to get ∂(β(κ′n)) = κ′n. After
recalling our formula above for κ′n and the definition σ(ιn) = κn = β(κ′n) we get

∂(σ(ιn)) = ιn − sd(ιn)− σ(∂(ιn)) ∈ Cn(∆n).

Now suppose we have a map u : ∆n → X. We apply u# to the above equation, noting that u#∂ = ∂u# and
u# sd = sdu# and u#σ = σu# and u#(ιn) = u. We get

∂(σ(u)) = u− sd(u)− σ(∂(u)),
or equivalently ∂(σ(u))+σ(∂(u)) = u− sd(u). We have proved this for u ∈ Sn(X), but it follows by linearity
for all u ∈ Cn(X), as required. □

Video (Definition 18.12 and Lemma 18.13)

Definition 18.12. Let u : ∆n → RN be a linear simplex. We define

diam(u) = max{∥u(s)− u(t)∥ | s, t ∈ ∆n} = max{∥u(ei)− u(ej)∥ | 0 ≤ i, j ≤ n},
and we call this the diameter of u. More generally, given a chain u = m1u1 + · · ·+mrur ∈ Cn(RN ) we put
diam(u) = max(diam(u1), . . . ,diam(ur)).

Lemma 18.13. If u ∈ Cn(RN ) is a Z-linear combination of linear simplices then we have diam(sd(u)) ≤
n
n+1 diam(u).

Proof. In the case n = 0 all diameters are zero so the claim is clear. We can therefore assume that n > 0
and argue by induction. The claim involves the number cn = n/(n + 1) = 1 − (n + 1)−1; from the second
form it is clear that 0 ≤ cn < cn+1 < 1.

We can easily reduce to the case where u is a single linear simplex, say u = ⟨a0, . . . , an⟩. Put d = diam(u),
so ∥ai − aj∥ ≤ d for all i, j. Put b = (a0 + · · · + an)/(n + 1), which is the barycentre of u. For any i we
can write ai as (n + 1)−1

∑n
j=0 ai. Using this, we get ai − b = (n + 1)−1

∑n
j=0(ai − aj). In the sum on

right hand side, the term for j = i is zero and the other n terms have norm at most d; it follows that
∥ai − b∥ ≤ n

n+1d = cnd. More generally, consider a point x ∈ u(∆n), say x =
∑n
i=0 tiai with ti ≥ 0 and∑

i ti = 1. We can write b as
∑
i tib, so

∥x− b∥ = ∥
∑
i

ti(ai − b)∥ ≤
∑
i

ti∥ai − b∥ ≤
∑
i

ticnd = cnd.
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Now let v be a simplex occuring in sd(u). Then v = β(w) for some w occuring in sd(u ◦ δi) for some i,
so the vertices of v are the vertices of w together with b. It is clear that diam(u ◦ δi) ≤ d so by induction
we have diam(w) ≤ cn−1d ≤ cnd. Also, from the discussion above, any vertex in w has distance at most cnd
from b. It follows that v has diameter at most cnd as required. □

19. Construction of the Mayer-Vietoris sequence

Video (All of Section 19)

This section will constitute the proof of Theorem 15.1. As before, let X be a topological space, and let U
and V be open sets with X = U ∪ V . We name the inclusion maps as shown below:

U ∩ V U

V U ∪ V = X

i

j k

l

This gives a sequence of chain maps as follows:

C∗(U ∩ V )

[
i∗
−j∗

]
−−−−→ C∗(U)⊕ C∗(V )

[ k∗ l∗ ]−−−−→ C∗(U ∪ V ).

If this was a short exact sequence, then we could apply Theorem 17.2 to get the Mayer-Vietoris sequence.
Unfortunately, however, this is not quite a short exact sequence: we will see that the first map is injective
and the image of the first map is the kernel of the second one, but the second map is not surjective. We will
need an extra step involving subdivision to deal with this issue.

Definition 19.1. Put

S′
n(U) = {u : ∆n → U | u(∆n) ̸⊆ U ∩ V }
S′
n(V ) = {u : ∆n → V | u(∆n) ̸⊆ U ∩ V }

S′
n(X) = {u : ∆n → X | u(∆n) ̸⊆ U and u(∆n) ̸⊆ V }

Sn(U, V ) = {u : ∆n → X | u(∆n) ⊆ U or u(∆n) ⊆ V }.

We also define C ′
n(U) = Z{S′

n(U)} and similarly for C ′
n(V ), C ′

n(X) and Cn(U, V ).

Remark 19.2. If u ∈ S′
n(U) then u does not send the whole of ∆n into U ∩ V , but it may send some faces

of ∆n into U ∩ V . Because of this, C ′
∗(U) need not be closed under ∂, so it need not be a subcomplex of

C∗(U). However, this will not matter for our immediate purposes.

We now note that

Sn(U) = Sn(U ∩ V ) ∪ S′
n(U)

Sn(V ) = Sn(U ∩ V ) ∪ S′
n(V )

Sn(U, V ) = Sn(U ∩ V ) ∪ S′
n(U) ∪ S′

n(V )

Sn(U ∪ V ) = Sn(U ∩ V ) ∪ S′
n(U) ∪ S′

n(V ) ∪ S′
n(X),

and all these unions involve disjoint sets. It follows that

Cn(U) = Cn(U ∩ V )⊕ C ′
n(U)

Cn(V ) = Cn(U ∩ V )⊕ C ′
n(V )

Cn(U, V ) = Cn(U ∩ V )⊕ C ′
n(U)⊕ C ′

n(V )

Cn(U ∪ V ) = Cn(U ∩ V )⊕ C ′
n(U)⊕ C ′

n(V )⊕ C ′
n(X),

Thus, in our earlier sequence, the map
[
i∗
−j∗
]
: Cn(U ∩ V )→ Cn(U)⊕ Cn(V ) becomes the map

Cn(U ∩ V )→ Cn(U ∩ V )⊕ C ′
n(U)⊕ Cn(U ∩ V )⊕ C ′

n(V )
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given by a 7→ (a, 0,−a, 0). Similarly, the map [ k∗ l∗ ] : Cn(U)⊕ Cn(V )→ Cn(U ∪ V ) becomes the map

Cn(U ∩ V )⊕ C ′
n(U)⊕ Cn(U ∩ V )⊕ C ′

n(V )→ Cn(U ∩ V )⊕ C ′
n(U)⊕ C ′

n(V )⊕ C ′
n(X)

given by (a, b, a′, c) 7→ (a+ a′, b, c, 0). From this it is clear that we have a short exact sequence

C∗(U ∩ V )

[
i∗
−j∗

]
−−−−→ C∗(U)⊕ C∗(V )

[ k∗ l∗ ]−−−−→ C∗(U, V ),

and an inclusion C∗(U, V ) → C∗(X) of chain complexes. By applying Theorem 17.2 to the short ex-
act sequence, we get something which is essentially the Mayer-Vietoris sequence except that it involves
H∗(C∗(U, V )) instead of H∗(U ∪V ) = H∗(X). To complete the construction of the Mayer-Vietoris sequence,
we need to show that H∗(C∗(U, V )) is actually the same as H∗(X).

Lemma 19.3. For any u ∈ Cn(X) there exists k ≥ 0 such that sdk(u) ∈ Cn(U, V ).

Proof. We can easily reduce to the case where u is a single map ∆n → X. Put U ′ = u−1(U) and V ′ = u−1(V ),
so U ′ and V ′ are open in ∆n with U ′ ∪ V ′ = ∆n. This means that {U ′, V ′} is an open cover of ∆n, so
Proposition 8.31 tells us that there is a Lebesgue number, say ϵ > 0. The identity chain ιn ∈ Cn(∆n)

has diameter
√
2, so sdk(ιn) has diameter at most (n/(n + 1))k

√
2. If we choose k large enough, then this

diameter will be less than ϵ, and it will follow that every simplex involved in sdk(ιn) is either contained in

U ′ or contained in V ′. It follows that every simplex involved in the chain sdk(u) = u∗(sd
k(ιn)) is either

contained in U or contained in V , so sdk(u) ∈ Cn(U, V ) as claimed. □

Corollary 19.4. The homology of the quotient complex Q∗ = C∗(X)/C∗(U, V ) is zero.

Proof. First, note that the subdivision map sd: C∗(X)→ C∗(X) sends C∗(U) to C∗(U) and C∗(V ) to C∗(V )
so it also sends the subcomplex C∗(U, V ) = C∗(U) + C∗(V ) to itself. We therefore have an induced map
sd: Q∗ → Q∗ given by sd(u + Cn(U, V )) = sd(u) + Cn(U, V ). Similarly, the chain homotopy σ : Cn(X) →
Cn+1(X) induces a chain homotopy σn : Qn → Qn+1. We showed previously that ∂σ + σ∂ = id− sd on
C∗(X), and it follows that we have the same relation on Q∗. We therefore deduce from Proposition 14.7
that the map sd∗ : Hn(Q∗) → Hn(Q∗) is the identity. Consider an element q ∈ Hn(Q∗). This has the form
q = z+Bn(Q∗) for some z ∈ Zn(Q∗) ≤ Qn = Cn(X)/Cn(U, V ). This in turn has the form z = u+Cn(U, V )

for some u ∈ Cn(X). For sufficiently large k we have sdk(u) ∈ Cn(U, V ), so sdk(z) = 0, so sdk∗(q) = 0. As
sd∗ is the identity this means that q = 0. Thus, we have Hn(Q∗) = 0 as claimed. □

Corollary 19.5. The inclusion C∗(U, V )→ C∗(X) induces an isomorphism H∗(C∗(U, V ))→ H∗(X).

Proof. We have a short exact sequence of chain complexes C∗(U, V )→ C∗(X)→ Q∗. Theorem 17.2 therefore
gives us exact sequences

Hn+1(Q∗)→ Hn(C∗(U, V ))→ Hn(C∗(X))→ Hn(Q∗).

The first and last groups are zero by Corollary 19.5, so exactness forces the middle map to be an isomorphism.
□

This completes the construction of the Mayer-Vietoris sequence.

20. Further calculations

Video (Lemma 20.1 and Proposition 20.2)

Suppose that n ≥ 2. We previously noted that Rn \ {0} is homotopy equivalent to Sn−1 and so has
H0 ≃ Hn−1 ≃ Z, with all other homology groups zero. One might ask what happens if we remove several
points a1, . . . , am from Rn instead of just removing the origin. One can answer this question by induction on
m, but to make the induction work smoothly, it is convenient to generalise slightly. Instead of just considering
Rn \ {a1, . . . , am}, we will consider W \ {a1, . . . , am}, where W is an arbitrary convex open subset of Rn.
We first need the following lemma:

Lemma 20.1. Suppose that X = U ∪V , where U and V are open and connected, and U ∩V is contractible.
Then H0(X) = Z and Hk(X) = Hk(U)⊕Hk(V ) for all k ≥ 1.
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Proof. This follows from Proposition 15.2 (the truncated Mayer-Vietoris sequence). That result includes the
fact that H0(X) = Z, and that there are exact sequences

Hk(U ∩ V )→ Hk(U)⊕Hk(V )→ Hk(X)→ Hk−1(U ∩ V )

for all k ≥ 2, and also an exact sequence

H1(U ∩ V )→ H1(U)⊕H1(V )→ H1(X)→ 0.

As Hj(U ∩ V ) = 0 for all j > 0, these exact sequences show that the map Hk(U) ⊕Hk(V ) → Hk(X) is an
isomorphism for all k ≥ 1. □

Proposition 20.2. Let W be a convex open subset of Rn (with n ≥ 2). Let A be a finite subset of W , with
|A| = m say, and put X =W \A. Then H0(X) = Z and Hn−1(X) = Zm and Hk(X) = 0 for k ̸∈ {0, n− 1}.

Proof. If m = 0 then X = W so X is contractible so the claim is clear. Suppose instead that m = 1 so
A = {a} say. Define r : X → Sn−1 by r(x) = (x − a)/∥x − a∥. Next, as W is open we can choose ϵ > 0
such that the open ball of radius ϵ around a is contained in W . We can then define j : Sn−1 → X by
j(y) = a+ ϵy/2. We find that rj is the identity, and that jr is homotopic to the identity by a straight-line
homotopy, so X is homotopy equivalent to Sn−1; the claim follows from this.

We now suppose that m > 1 and that we have already proved the claim for sets of size less than m.
We have only a finite number of vectors a − a′ with a, a′ ∈ A and a ̸= a′; choose any unit vector u
that is not perpendicular to any of these. We then find that the dot products u.a (for a ∈ A) are all
different, so we can list the elements of A as a1, . . . , am with u.a1 < · · · < u.am. Choose constants p, q with
u.am−1 < p < q < u.am. Put V = {x ∈ X | u.x < q} and U = {x ∈ X | u.x > p}, so U and V are open with
U ∪ V = X. The space V is obtained by removing {a1, . . . , am−1} from the convex set {w ∈ W | u.w < q},
so the homology of V is given by the induction hypothesis. The space U is obtained by removing am from
the set {w ∈W | u.w > p}, so the homology of U is given by the case m = 1. The intersection U ∩ V is just
the convex set {w ∈W | p < u.w < q} (with no points removed), so it is contractible. Lemma 20.1 therefore
gives H0(X) = Z and Hk(X) = Hk(U)⊕Hk(V ) for all k > 0, and the induction step is clear from this. □

Video (Examples 20.3 and 20.4)

Example 20.3. Let Ln be the union of n adjacent squares arranged horizontally. The case n = 3 is
illustrated below.

L3 U ∼= L2 V ∼= S1 U ∩ V ∼= 1

Let U be the space obtained by removing the rightmost vertical edge; this is easily seen to be homotopy
equivalent to Ln−1. Let V be the space obtained by removing Ln−2, leaving just the rightmost square with
two extra edges attached; this is easily seen to be homotopy equivalent to S1. The intersection U ∩ V is
a sideways H shape, and is easily seen to be contractible. We can therefore apply Lemma 20.1 to see that
Hk(Ln) = Hk(Ln−1)⊕Hk(S

1) for all k > 0. It follows inductively that H0(Ln) = Z and H1(Ln) = Zn and
Hk(Ln) = 0 for k > 1. Alternatively, we can let ap be the centre of the p’th square, so Ln ⊆ R2\{a1, . . . , an}.
It can be shown that the inclusion i : Ln → R2 \ {a1, . . . , an} is a homotopy equivalence. The homology of
Ln can therefore be obtained from Proposition 20.2; it is easy to see that this gives the same answer.

Example 20.4. Let Wn consist of n circles joined together at a single point. We can write this as U ∪ V
as illustrated below. Given this, essentially the same argument as in Example 20.3 gives H0(Wn) = Z and
H1(Wn) = Zn and Hk(Wn) = 0 for k ≥ 2.
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W5 = U ∪ V U ∼=W4 V ∼= S1 U ∩ V ∼= 1

Video (Proposition 20.5 and Remark 20.6)

Proposition 20.5. The homology of the torus T = S1×S1 is given by H0(T ) = H2(T ) = Z and H1(T ) = Z2

and Hk(T ) = 0 for k ≥ 3.

Proof. We can form the torus by taking a square, gluing the top to the bottom and the left edge to the right
edge. This is illustrated by the left hand picture below. The other pictures show two open sets U, V ⊆ T
with U ∪ V = T .

v

v

w w

T = U ∪ V

v

v

w w

U V

u

U ∩ V

Interactive demo

The set V is contractible, so H0(V ) = Z and Hk(V ) = 0 for k > 0. The set U ∩ V is homotopy equivalent
to S1, so H0(U ∩ V ) = Z and H1(U ∩ V ) = Z.[u] and Hk(U ∩ V ) = 0 for k > 1. It might appear that
U is also homotopy equivalent to S1, but that is misleading because the edges are glued together. The
linked demonstration makes it clear that U is the union of two circular bands, whose intersection is a filled
square (and so is contractible). It therefore follows from Lemma 20.1 that H0(U) = Z and H1(U) = Z⊕ Z
and Hk(U) = 0 for k > 1. More specifically, the two bands are thickenings of the loops v and w, so
H1(U) = Z{[v], [w]}. All the relevant spaces are connected, so H0(T ) = Z and we have a truncated Mayer-
Vietoris sequence as in Proposition 15.2. After filling in the known groups, we see that the tail end of this
sequence is as follows:

0→ H2(T )
δ−→ Z.[u] i∗−→ Z{[v], [w]} k∗−→ H1(T )→ 0.

In U , we can deform u outwards to the edge of the square (which does not change the homology class).
It then becomes equal to the join v ∗ w ∗ v ∗ w. As discussed in Proposition 10.29, this is homologous to
v + w − v − w = 0. This proves that i∗ = 0, so ker(i∗) = Z.[u] and img(i∗) = 0. As the sequence is exact,
it follows that img(δ) = Z.[u] and ker(k∗) = 0, so the maps δ and k∗ are isomorphisms, so H1(T ) ≃ Z2 and
H2(T ) ≃ Z. For k ≥ 3 we have an exact sequence

0 = Hk(U)⊕Hk(V )→ Hk(X)
δ−→ Hk−1(U ∩ V ) = 0,

which shows that Hk(T ) = 0. □

Remark 20.6. As an alternative, we could write the torus as the union of the following open sets:
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U V U ∩ V

Here U and V are both homotopy equivalent to S1, whereas U∩V is homotopy equivalent to the union of two
disjoint copies of S1. We leave it to the reader to understand how the resulting Mayer-Vietoris sequence gives
the same answer as before. This method can be generalised to calculate the homology of the d-dimensional

torus Td = (S1)d = S1 × · · · × S1. The answer is that Hk(Td) ≃ Z(
d
k) for all k, but we will not give the

details here.

Proposition 20.7. For the real projective plane RP 2 we have H0(RP 2) = Z and H1(RP 2) = Z/2 and
Hk(RP 2) = 0 for k ≥ 2.

Proof.
Video

Recall (perhaps from the Knots and Surfaces course) that we can form RP 2 by taking a disc as shown on
the left below, and identifying opposite points on the boundary circle. In particular, the two points marked
a are the same, and each point on the upper red semicircle is identified with the corresponding point on
the lower blue semicircle, so the two paths marked v are the same. We consider RP 2 as the union of the
indicated open sets U and V .

a a

RP 2 = U ∪ V

a a

v

v

U V

u

U ∩ V

It is clear that V is contractible, so H0(V ) = Z and Hk(V ) = 0 for k ≥ 1. It is also clear that that U ∩ V is
homotopy equivalent to a circle, so H0(U ∩ V ) = Z and H1(U ∩ V ) = Z.[u] and Hk(U ∩ V ) = 0 for k ≥ 2.

Next, we claim that U is homeomorphic to a Möbius strip, and therefore homotopy equivalent to a circle.
One way to see this is to use the following animated diagram:

Interactive demo

Alternatively, we can argue using the pictures below. The first one shows U together with two extra edges
marked p and q. If we cut along these, we get the middle picture. If we flip the top half over and glue it to
the bottom half along v, we get the third picture, which is the standard gluing diagram for a Möbius strip.

v

v

p q

v

v

p

p

q

q

v

q

p

p

q
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Either way, it follows that H0(U) = Z and H1(U) = Z.[v] and Hk(U) = 0 for k ≥ 2. We next need to
understand the map i∗ : H1(U ∩ V ) → H1(U). In U , we can push the loop u out to the boundary by a
loop homotopy, which does not change the homology class. The deformed loop then covers both copies of
v, so we have i∗([u]) = 2[v]. After taking account of the known homology groups, the end of the truncated
Mayer-Vietoris sequence looks like this:

0 0 H2(RP 2)

Z.[u] Z.[v] H1(RP 2) 0

δ

i∗ k∗

As i∗([u]) = 2[v] we see that ker(i∗) = 0 and so exactness forces H2(RP 2) to be zero. Also, the map k∗ is
surjective with kernel given by the image of i∗, which is 2Z.[v], so H1(RP 2) ≃ Z/2. For k ≥ 3 we also have
exact sequences

0 = Hk(U)⊕Hk(V )→ Hk(RP 2)→ Hk−1(U ∩ V ) = 0,

so Hk(RP 2) = 0. As RP 2 is connected, we have H0(RP 2) = Z. □

Example 20.8.
Video

Now consider a closed surface X presented as in the Knots and Surfaces course, by gluing edges of a
polygon according to a surface word. We illustrate this using the standard word aba−1b−1cdc−1d−1 for
an orientable surface of genus 2, but the method works for any word satisfying the usual conditions of
surface theory. We can calculate H∗(X) using essentially the same method that we used for the torus. The
conclusion is that H0(X) = H2(X) = Z, and Hk(X) = 0 for k ≥ 3, and H1(X) = Z2g, where g is the genus.
In particular, in the illustrated case we have H1(X) = Z4. To see this, we use open sets U and V illustrated
below.

a

ba−1

b−1

c

d c−1

d−1

X = U ∪ V U V U ∩ V

As with the case of the torus, the space V is contractible and the space U ∩ V is homotopy equivalent to a
circle, so their homology is easy to understand. The space U apparently has 8 edges and 8 marked vertices.
However, the edges are glued together in pairs, in such a way that all vertices get glued together; the result is
just the space W4 from Example 20.4. The full space U consists of W4 with a fringe attached, but that does
not affect the homotopy type, so we have H∗(U) = H∗(W4). This means that H0(U) = Z and H1(U) = Z4

and Hk(U) = 0 for k ≥ 2. If we let u be a loop once around U ∩ V , then in U we see that u becomes
a ∗ b ∗ a ∗ b ∗ c ∗ d ∗ c ∗ d. This has homology class [a] + [b] − [a] − [b] + [c] + [d] − [c] − [d] = 0, so the
homomorphism i∗ : H1(U ∩ V )→ H1(U) is zero. We now have an exact sequence

0→ H2(X)
δ−→ Z i∗=0−−−→ Z4 −→ H1(X)→ 0,

and the claimed description of H∗(X) follows easily from this.

Proposition 20.9. The group H1(RP 1) is isomorphic to Z, but for n ≥ 2 the group H1(RPn) is isomorphic
to Z/2. Moreover, for k > n we have Hk(RPn) = 0.
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Proof.
Video

We saw in Example 7.23 that RP 1 is homeomorphic to S1, so H1(RP 1) ≃ Z. The case n = 2 is given by
Proposition 20.7. We have an inclusion i : Sn → Sn+1 given by i(x0, . . . , xn) = (x0, . . . , xn, 0). This satisfies
i(−x) = −i(x), so it induces an inclusion Sn/{±1} → Sn+1/{±1}, or in other words RPn → RPn+1; we
again call this i. It will be enough to check that the map i∗ : H1(RPn)→ H1(RPn+1) is an isomorphism for
n ≥ 2.

Recall that Sn+1 = {x ∈ Rn+2 | ∥x∥2 = 1}. We can identify Rn+2 with Rn+1 × R; then

Sn+1 = {(y, z) ∈ Rn+1 × R | ∥y∥2 + z2 = 1}.

The subspace where z = 0 can be identified with Sn. Now let U+ and U− be the subspaces where z > 0 and

z < 0 respectively, and put Ũ = U+ ∪ U−. We also put

Ṽ = {(y, z) ∈ Sn+1 | y ̸= 0} = {(y, z) ∈ Sn+1 | − 1 < z < 1} = Sn+2 \ {(0, 1), (0,−1)}.

Now let π : Sn+1 → Sn+1/{±1} = RPn+1 be the quotient projection (so π(x) = π(x′) iff x′ = ±x). Put

U = π(Ũ) and V = π(Ṽ ). These sets are easily seen to be open with respect to the quotient topology on
RPn+1.

Let U ′ be the open ball of radius one in Rn+1. We have maps

U ′ f−→ U+
π−→ U,

where f(y) = (y,
√
1− ∥y∥2), and one can check that both of these are homeomorphisms. It follows that U

is contractible. The same maps also give homeomorphisms

U ′ \ {0} f−→ U+ \ {(0, 1)}
π−→ U ∩ V.

It follows that U ∩ V is homotopy equivalent to Sn.

Next, let j : Sn → Ṽ be the inclusion, and define r : Ṽ → Sn by r(y, z) = y/∥y∥ (which is valid because

y ̸= 0 when (y, z) ∈ Ṽ ). This satisfies r ◦ j = id: Sn → Sn. We also define h : [0, 1]× Ṽ → Ṽ by

h(t, (y, z)) = (y, tz)/
√
∥y∥2 + t2z2;

this gives a homotopy between j ◦ r and the identity. These maps satisfy j(−x) = −j(x) and r(−x) = −r(x)
and h(t,−x) = −h(t, x) so they induce maps j : RPn → V and r : V → RPn and h : [0, 1]× V → V . Using
this we see that j is a homotopy equivalence, so H1(V ) = H1(RPn).

The spaces U , V , U∩V and U∪V = RPn+1 are all path connected, so we have a truncated Mayer-Vietoris
sequence

H1(U ∩ V )→ H1(U)⊕H1(V )→ H1(RPn+1)→ 0.

Here U ∩ V is homotopy equivalent to Sn with n ≥ 2 so H1(U ∩ V ) = 0. The space U is contractible so
H1(U) = 0. The space V is homotopy equivalent to RPn, so we can assume inductively that H1(V ) = Z/2.
Exactness of the sequence now implies that H1(RPn+1) = Z/2 as required.

Now suppose that k > n+ 1. We have a Mayer-Vietoris sequence

Hk(U)⊕Hk(V )→ Hk(RPn+1)→ Hk−1(U ∩ V ),

or equivalently

Hk(RPn)→ Hk(RPn+1)→ Hk−1(S
n).

As k > n + 1 we have Hk−1(S
n) = 0. Also, we can assume inductively that Hj(RPn) = 0 for all j > n, so

in particular Hk(RPn) = 0. It follows by exactness that Hk(RPn+1) = 0 as claimed. □
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Remark 20.10. The full story is as follows. For m ≥ 0 we have

Hk(RP 2m+1) =


Z if k = 0 or k = 2m+ 1

Z/2 if 0 < k < 2m and k is odd

0 otherwise.

Hk(RP 2m+2) =


Z if k = 0

Z/2 if 0 < k < 2m+ 2 and k is odd

0 otherwise.

Equivalently, let P (n) be the following chain complex:

· · · ←− 0←− 0←− Z 0←− Z 2←− Z 0←− Z 2←− · · · ←− Z←− 0←− 0←− · · · .
There are copies of Z in degrees 0 to n inclusive, and the differentials alternate between zero and multiplication
by 2. Then H∗(RPn) ≃ H∗(P (n)) for all n. This can be proved using the same Mayer-Vietoris sequence as
mentioned above, but some extra work is needed to determine the maps in that sequence.

21. The Jordan Curve Theorem

Video (Statement of Theorem 21.1 and Remark 21.2)

The main aim of this section will be to prove the following theorem.

Theorem 21.1. Suppose that X ⊆ Sn and that X is homeomorphic to Sk for some k ≤ n.
(a) If k = n then X is just equal to Sn and so Sn \X is empty and H∗(S

n \X) = 0.
(b) If k = n− 1 then H0(S

n \X) ≃ Z2 and Hm(Sn \X) = 0 for all m > 0.
(c) If k < n− 1 then H0(S

n \X) ≃ Hn−k−1(S
n \X) ≃ Z and all other homology groups are trivial.

Remark 21.2. We can combine cases (b) and (c) in Theorem 21.1 by saying thatH∗(S
n\X) ≃ H∗(S

n−1−k).
For the most obvious case of the theorem, we can express Rn+1 as Rk+1 ⊕ Rn−k, so

Sn = {(y, z) | ∥y∥2 + ∥z∥2 = 1}.
The space X = {(y, 0) | ∥y∥ = 1} ⊆ Sn is then homeomorphic to Sk, with

Sn \X = {(y, z) | ∥y∥2 + ∥z2∥ = 1, z ̸= 0}.

We can define maps Sn−k−1 i−→ Sn \ X r−→ Sn−k−1 by i(z) = (0, z) and r(y, z) = z/∥z∥. We then have
r ◦ i = id, and we have a homotopy between i◦r and the identity given by h(t, y, z) = (ty, z)/∥(ty, z)∥. Thus,
in this case Sn \ X is actually homotopy equivalent to Sn−k−1. However, that is not true in general. For
example, let X be a knotted circle in R3. We can identify R3 with S3 \ {point} by stereographic projection,
and thus think of X as a subspace of S3. The theorem tells us that in this case S3\X has the same homology
as S1, but it can be shown that S3 \X is not homotopy equivalent to S1.

We will also deduce the following result, for which the case n = 2 is called the Jordan Curve Theorem:

Theorem 21.3. Suppose that n ≥ 2, and let f : Sn−1 → Rn be an injective continuous map. Then the
complementary set Rn \ f(Sn−1) has precisely two path components, one bounded and the other unbounded.

It is easy to see that the Jordan Curve Theorem is true for maps u : S1 → R2 that are reasonably simple.
However, it is hard to prove in the general case, where u may wiggle in an extremely complicated way and
can also be fractal or otherwise badly behaved.

We will work up to Theorem 21.1 by first considering Sn \X in cases where X is homeomorphic to Bk

(or equivalently, [0, 1]k) rather than Sk.

Video (Definition 21.4 to Corollary 21.13)

Definition 21.4. We say that a space X is acyclic if H0(X) = Z and Hi(X) = 0 for all i > 0.
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Remark 21.5. We have seen previously that all contractible spaces are acyclic. Conversely, most commonly
occurring acyclic spaces are contractible, but there are some exceptions.

Lemma 21.6. Let X be a space. Let 1 = {0} denote the one-point space, so we have a constant map
p : X → 1. Then X is acyclic iff the map p∗ : H∗(X)→ H∗(1) is an isomorphism.

Proof. If p∗ is an isomorphism then H∗(X) is isomorphic to H∗(1) i.e. H0(X) ≃ Z and Hi(X) ≃ 0 for i > 0,
which means that X is acyclic. Suppose instead we start withthe assumption that X is acyclic. For i > 0 the
groups Hi(X) and Hi(1) are both zero, so the map p∗ : Hi(X) → Hi(1) is automatically an isomorphism.
Next, we know that H0(X) ≃ Z{π0(X)}. As X is acyclic we have H0(X) ≃ Z so |π0(X)| = 1 so X is
nonempty and path connected. We can therefore choose a ∈ X and we have H0(X) = Z.[a]. We also have
p(a) = 0 and H0(1) = Z.[0] so p∗ : H0(X)→ H0(1) is an isomorphism. □

Theorem 21.7. Let X be a subset of Sn that is homeomorphic to [0, 1]k for some k ≤ n. Then Sn \X is
acyclic.

Before proving the theorem we will prove a simpler lemma. This will not directly contribute to the
theorem, but will introduce some relevant ideas.

Lemma 21.8. Suppose that Y and Z are closed subsets of Sn such that the sets Sn\Y , Sn\Z and Sn\(Y ∩Z)
are all acyclic. Then the set Sn \ (Y ∪ Z) is also acyclic.

Proof. Put V = Sn \ Y and W = Sn \ Z. These are open subsets of Sn with V ∪W = Sn \ (Y ∩ Z) and
V ∩W = Sn \ (Y ∪Z). Thus, our assumptions are that V , W and V ∪W are acyclic, and we need to prove
that V ∩W is acyclic. We have a Mayer-Vietoris sequence

Hm+1(V ∪W )
δ−→ Hm(V ∩W )

α−→ Hm(V )⊕Hm(W ) −→ Hm(V ∪W )

If m > 0 then the first and third terms are zero so Hm(V ∩W ) = 0 as expected. If m = 0 we instead have
an exact sequence

0→ H0(V ∩W )→ Z⊕ Z→ Z→ 0

and it is not hard to deduce that H0(V ∩W ) ≃ Z. □

In Theorem 21.7, we assume that X is homeomorphic to [0, 1]k. This means that we can choose an
injective continuous map f : [0, 1]k → Sn with f([0, 1]k) = X. We will make some constructions in that
context.

Definition 21.9. Let f : [0, 1]k → Sn be an injective continuous map. By a slice we mean a set of the form
f([0, 1]k−1 × [a, b]) with 0 ≤ a ≤ b ≤ 1. The width of such a slice is b− a. A coslice is the complement in Sn

of a slice; we define the width of a coslice to be the same as the width of the corresponding slice.

Remark 21.10. We could attempt to prove Theorem 21.7 as follows. We argue by induction on k, the case
k = 0 being easy. For k > 0, we divide X into a large number of very thin slices. Any slice of width 0 has
acyclic complement, by the induction hypothesis. Our slices have very small width, so it seems reasonable
to assume that they will also have acyclic complement. The intersection of two adjacent slices is a slice of
width 0, and so has acyclic complement. Using Lemma 21.8, we deduce that the union of two adjacent slices
again has acyclic complement. By repeating this procedure, we see that the union of any block of adjacent
slices has acyclic complement. In particular, the full set X has acyclic complement, as required.

The problem with this approach is that our “reasonable assumption” is hard to justify directly. Our
actual proof of Theorem 21.7 will use many of the same ideas, but arranged in a slightly different way.

Lemma 21.11. Suppose that Y and Z are closed subsets of Sn such that the set Sn \ (Y ∩ Z) is acyclic.
Note that we have inclusions

Sn \ Y i←− Sn \ (Y ∪ Z) j−→ Sn \ Z.
Suppose that u ∈ Hm(Sn \ (Y ∪ Z)) is nonzero; then either i∗(u) is nonzero in Hm(Sn \ Y ), or j∗(u) is
nonzero in Hm(Sn \ Z).
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Proof. We use the same notation and the same Mayer-Vietoris sequence as in Lemma 21.8:

Hm+1(V ∪W )
δ−→ Hm(V ∩W )

α−→ Hm(V )⊕Hm(W ) −→ Hm(V ∪W )

We again have Hm+1(V ∪W ) = 0, so α is injective, so α(u) ̸= 0. However, α(u) is just (i∗(u),−j∗(u)), so
either i∗(u) or j∗(u) must be nonzero. □

Lemma 21.12. Let U be a topological space, and let U0, U1, U2, . . . be a sequence of open sets with U0 ⊆
U1 ⊆ U2 ⊆ · · · and U =

⋃∞
i=0 Ui. Then any chain w ∈ Cp(U) is contained in Cp(Uj) for some j.

Proof. We can express w as m1w1+· · ·+mrwr for some integers mi and continuous maps wi : ∆p → U . Note

that the sets w−1
i (Uj) are open in ∆p, and the union of all these sets is w−1

i (U) = ∆p. As ∆p is compact, it

must be covered by a finite subcollection of the sets w−1
i (Uj). As these sets are nested inside each other, this

just means that there exists ji with w
−1
i (Uji) = ∆p. Equivalently, we have wi(∆p) ⊆ Uji or wi ∈ Cp(Uji).

Thus, if we put j = max(j1, . . . , jr) then we have wi ∈ Cp(Uj) for all i, and so w ∈ Cp(Uj). □

Corollary 21.13. In the context of Lemma 21.12, suppose we have an element u ∈ Hm(U0) which maps to
zero in Hm(U). Then u already maps to zero in Hm(Uj) for some j.

Proof. Choose a cycle z ∈ Zm(U0) such that u = [z]. As u maps to zero in Hm(U), there must be a chain
w ∈ Cm+1(U) with z = ∂(w) in Cm(U). By the lemma, the element w lies in Cm(Uj) for some j. We can
therefore interpret the equation ∂(w) = z as an equation in Cm(Uj), showing that [z] = 0 in Hm(Uj) as
required. □

Proof of Theorem 21.7.
Video

If k = 0 then X is just a single point, so U is homeomorphic to Rn by stereographic projection. This means
that U is contractible and therefore acyclic. For k > 0 we will argue by induction. Choose a homeomorphism
f : [0, 1]k → X.

Suppose (for a contradiction) that we have a nonzero element u ∈ Hm(Sn \X) for some m ≥ 0. If m = 0
we also assume that p∗(u) = 0 in H0(1) = Z. We will define a sequence of slices X(j) of width 2−j such that
u has nonzero image in Hm(Sn \X(j)) for all j.

We start with X(0) = X. Suppose we have already defined X(j). We can write X(j) as X(j) = X(j)+ ∪
X(j)−, where X(j)+ and X(j)− are slices of width 2−j−1, and the set X(j)0 = X(j)+ ∩X(j)− has width
0 and so is homeomorphic to [0, 1]k−1. Our induction hypothesis says that X(j)0 has acyclic complement,
so Lemma 21.11 tells us that u must have nonzero image in Hm(Sn \ X(j)+) or in Hm(Sn \ X(j)−). We
choose X(j + 1) = X(j)+ or X(j + 1) = X(j)− as appropriate to ensure that u has nonzero image in
Hm(Sn \X(j + 1)).

By construction we have X(j) = f([0, 1]k−1× [aj , aj +2−j ]) for some sequence (aj) with aj+1 ∈ {aj , aj +
2−j−1}. It follows that the numbers aj converge to a limit a∞, and that the set X(∞) =

⋂
j X(j) is just

f([0, 1]k−1 × {a∞}). This is homeomorphic to [0, 1]k−1 and so has acyclic complement by our induction
hypothesis. In particular, the element u must map to zero in Hm(Sn \X(∞)). (In the case m = 0, we are
using the assumption p∗(u) = 0 here.) However, we can regard Sn \X(∞) as the union of the nested open
sets Sn \X(j), so u must map to zero in Hm(Sn \X(j)) for some j, which contradicts our construction of
X(j).

This contradiction shows that no element u as described above can exist. In other words, for m > 0 we
have Hm(Sn \X) = 0, and also the kernel of the map p∗ : H0(S

n \X)→ Z is zero, so p∗ is injective. On the
other hand, X is contractible but Sn is not, so X cannot be equal to Sn, so we can choose a point a ∈ Sn\X,
and then p∗[a] = 1. This shows that p∗ is also surjective, so it is an isomorphism as required. □

Proof of Theorem 21.1.
Video

Suppose that X ⊆ Sn is homeomorphic to Sk for some k ≤ n. If k = 0 then this just means that X
consists of two points. If n = 0 this clearly means that X = S0 = {1,−1} as claimed. If n > 0 then we recall
that Sn \ {point} is homeomorphic to Rn, so removing two points gives Rn \ {point} which is homotopy
equivalent to Sn−1 and so has the same homology as Sn−1, as claimed.

92

https://youtu.be/RWasv-r7e0k
https://youtu.be/WTtcVQuG-kc


We now suppose that k > 0, and argue by induction on k. We can write Sk as the union of two hemispheres,
with intersection Sk−1. Correspondingly, we can write X as Y ∪Z, where Y and Z are homeomorphic to Bk

(or [0, 1]k) and Y ∩Z is homeomorphic to Sk−1. Theorem 21.7 tells us that the sets V = Sn\Y andW = Sn\Z
are acyclic. The induction hypothesis tells us that the space V ∪W = Sn \ (Y ∩ Z) has the same homology
as Sn−(k−1)−1 = Sn−k. We need to show that the space V ∩W = Sn \X has the same homology as Sn−1−k

(or that V ∩W = ∅ if k = n). For m > 0 we note that Hm(V ) = Hm(W ) = Hm+1(V ) = Hm+1(W ) = 0 so
the Mayer-Vietoris sequence

Hm+1(V )⊕Hm+1(W ) −→ Hm+1(V ∪W )
δ−→ Hm(V ∩W ) −→ Hm(V )⊕Hm(W )

shows that δ : Hm+1(V ∪W ) → Hm(V ∩W ) is an isomorphism. This means that Hm(V ∩W ) = 0 for all
m > 0 with m ̸= n− 1− k, but that if n− 1− k > 0 (or equivalently k < n− 1) then Hn−1−k(V ∩W ) ≃ Z.

This just leaves a few exceptional cases to consider. First suppose that k < n − 1, so n − k > 1, so
H1(V ∪W ) = H1(S

n−k) = 0. We then have a Mayer-Vietoris sequence

H1(V ∪W ) −→ H0(V ∩W ) −→ H0(V )⊕H0(W ) = Z2 −→ H0(V ∪W ) = Z −→ 0,

and it follows easily that H0(V ∩W ) ≃ Z as required.
Now suppose instead that k = n − 1. In this case we must show that V ∩W has the same homology as

S0, or in other words that H0(V ∩W ) ≃ Z2 and Hm(V ∩W ) = 0 for m > 0. The case m > 0 is covered by
our main discussion above. The induction hypothesis tells us that V ∪W has the same homology as S1, so
the Mayer-Vietoris sequence

H1(V )⊕H1(W )→ H1(V ∪W )→ H0(V ∩W )→ H0(V )⊕H0(W )→ H0(V ∪W )→ 0

becomes

0→ Z δ−→ H0(V ∩W )
α−→ Z2 β−→ Z→ 0.

We can describe H0 as the free abelian group generated by π0. Using this we see that β is essentially the
addition map (n,m) 7→ n+m, with kernel generated by (1,−1). We can choose an element u ∈ H0(V ∩W )
with α(u) = (1,−1), then it is not hard to deduce that {δ(1), u} is a basis for H0(V ∩W ). This means that
H0(V ∩W ) ≃ Z2, or in other words that V ∩W has precisely two path components.

Finally suppose that k = n. Here the induction hypothesis shows that V ∪W has the same homology
as S0, so in particular it has two path components. We must show that V ∩W = ∅. The Mayer-Vietoris
sequence

H1(V ∪W )→ H0(V ∩W )→ H0(V )⊕H0(W )→ H0(V ∪W )→ 0

becomes

0→ H0(V ∩W )
α−→ Z2 β−→ Z2 → 0.

Choose a ∈ V and b ∈ W , so H0(V ) = Z.[a] and H0(W ) = Z.[b]. The sequence shows that β is surjective,
but that is only possible if a lies in one path component of V ∪W and b lies in the other. That implies
that β is actually an isomorphism, and then exactness shows that H0(V ∩W ) = 0. However, we know that
H0(V ∩W ) is the free abelian group on π0(V ∩W ), so π0(V ∩W ) = ∅, so V ∩W = ∅ as claimed. □

Lemma 21.14.
Video

If U is an open subset of Rn, then every path component of U is also an open subset of Rn. Similarly, if
U is an open subset of Sn, then every path component of U is also an open subset of Sn.

Proof. First let U be open in Sn, and suppose we have a point a ∈ U , with path component A say. Suppose
that b ∈ A, so there is a path u from a to b in U . As U is open, we can find a radius ϵ > 0 such that
OB(b, ϵ)∩Sn ⊆ U . By reducing ϵ if necessary, we can assume that ϵ < 1. For any c ∈ OB(b, ϵ)∩Sn we have
a linear path v from b to c in Rn. As ∥b − c∥ < ϵ < 1 we see that this does not pass through 0, so we can
define w(t) = v(t)/∥v(t)∥; this gives a path from b to c in Sn. This stays within OB(b, ϵ) so it stays within
U . This means we have a path u ∗ w from a to c in U , so c ∈ A. This proves that OB(b, ϵ) ⊆ A. As b was
arbitrary, this proves that A is open as claimed.

The argument for Rn is similar but easier. □
93

https://youtu.be/gSRNw_YHJXI


Proof of Theorem 21.3.
Video

Let f : Sn−1 → Rn be an injective continuous map, where n ≥ 2. First note that f(Sn−1) is compact, so
it is bounded and closed in Rn. It will be harmless to multiply f by a small positive constant, so we can
assume that ∥f(x)∥ < 1 for all x ∈ Sn−1.

We now recall a few more details about stereographic projection. We identify Rn+1 with Rn × R, so
Sn = {(y, z) | ∥y∥2+z2 = 1}. We put a = (0, 1) and A+ = {(y, z) ∈ Sn | z > 0}. We have a homeomorphism
g : Rn → Sn\{a} given by g(u) = (u, ∥u∥2−1)/(∥u∥2+1). This also gives a homeomorphism Rn\f(Sn−1)→
U \ {a}, where U = Sn \ g(f(Sn−1)). Theorem 21.1 tells us that U has the same homology as S0, so in
particular H0(U) ≃ Z2, so U has precisely two path components. Let A be the path component containing
a, and let B be the other path component, so U is the disjoint union of A and B. For m > 0 we therefore
have 0 = Hm(U) = Hm(A)⊕Hm(B), so Hm(A) = Hm(B) = 0. This shows that both A and B are acyclic.

Because ∥f(x)∥ < 1 for all x ∈ Sn−1 we see that the last coordinate of g(f(x)) is always negative. Thus,
the whole upper hemisphere A+ of Sn is contained in Sn \g(f(Sn)). Moreover, A+ is clearly path connected
and contains a so A+ ⊆ A. It follows that B is contained in the lower hemisphere, and so the corresponding
subset of Rn is bounded.

We next claim that the set A′ = A \ {a} is path connected. We will prove this using the Mayer-Vietoris
sequence

H1(A+ ∪A′)→ H0(A+ ∩A′)→ H0(A+)⊕H0(A
′)→ H0(A+ ∪A′)→ 0.

Here A+ ∪ A′ is just A, and A is acyclic. Thus, the first and fourth groups above are 0 and Z. The space
A+ ∩ A′ is the same as A+ \ {a}, which is homeomorphic to (0, 1) × Sn−1 and so homotopy equivalent to
Sn−1. In particular, as we are assuming that n ≥ 2, we know that A+ ∩ A′ is connected. Thus, the second
group in our sequence is Z. It is also clear that A+ is contractible and so H0(A+) = Z. We therefore have
an exact sequence

0→ Z→ Z⊕H0(A
′)→ Z→ 0.

This is only consistent if H0(A
′) ≃ Z, which means that A′ is path connected.

We now see that U \ {a} is the disjoint union of path connected sets A′ and B, so these are the path
components. It is clear that g−1(B) is bounded and g−1(A′) is unbounded. □

Video (Proposition 21.15 and Corollary 21.16)

Proposition 21.15. Let f : Bn → Sn be continuous and injective. Then f(OBn) is open in Sn.

Proof. Put U = Sn \ f(Sn−1). As f(Sn−1) is compact, it is closed in Sn, so U is open. Theorem 21.1 tells
us that H∗(U) ≃ H∗(S

0), so U has two path components. Let V be the path component containing f(0),
and let W be the other one. The sets V and W are open in Sn by Lemma 21.14. Now put V ′ = f(OBn)
and W ′ = Sn \f(Bn). Using the injectivity of f we see that V ′ and W ′ are disjoint and U = V ′∪W ′. Given
x, y ∈ OBn we have a path t 7→ f((1− t)x+ ty) from f(x) to f(y) in the set f(OBn) = V ′; this shows that
V ′ is path connected. As f(0) ∈ V ′ we see that V ′ ⊆ V . Next, Theorem 21.7 tells us that W ′ is acyclic and
therefore also path connected. If there was a path in U joining some point in V ′ to some point in W ′, then
we could conclude that the whole space U = V ′ ∪W ′ was path connected. However, we know that U has
two path components, so no such path can exist.

Now consider a point x ∈ V . As V is the path component of f(0), we can find a path u : [0, 1]→ U with
u(0) = f(0) and u(1) = x. Here u(0) ∈ V ′ and no path in U can cross from V ′ to W ′ so the point u(1) = x
must also lie in V ′. This proves that V = V ′ = f(OBn). We have already remarked that V is open, and it
follows that f(OBn) is open, as claimed. □

Corollary 21.16. Let U be an open subset of Rn, and let f : U → Rn be a continuous injective map. Then
f(U) is also open.

Proof. As usual we can identify Rn with the complement of a point in Sn, which is an open subset of Sn.
It will therefore be enough to show that f(U) is open in Sn. Consider a point a ∈ U . As U is open, we can
choose ϵ > 0 such that OB(a, ϵ) is contained in U . We then have a continuous injective map ga : B

n → Sn

given by ga(x) = f(a + ϵx/2). The proposition tells us that the set Va = ga(OB
n) is open, and it is clear
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that f(a) ∈ Va = f(OB(a, ϵ/2)) ⊆ f(U). It follows that f(U) is the union of all these open sets Va, and thus
that f(U) is open. □

22. Covering maps

Consider a continuous map p : X → Y . For each point y ∈ Y , we have a subset p−1{y} ⊆ X, which we
call the fibre of p over y. We next define what it means for p to be a covering map. The key points are that

• All the fibres p−1{y} must be discrete subsets of X;
• The fibre p−1{y} must depend continuously on y, in an appropriate sense.

It is not easy to formulate the second condition directly, so the formal definition looks rather different from
this informal discussion.

Example 22.1. Consider the exponential map exp: C→ C \ {0}. The fibres are

exp−1{r eiθ} = {log(r) + iθ + 2nπi | n ∈ Z}

z = r eiθ

r

θ

θ

θ + 2π

θ + 4π

θ − 2π

θ − 4π

exp−1{z}

Each fibre is a discrete set, which suggests that the map should be a covering. We will check that this is
true once we have given the proper definition.

Definition 22.2. Let p : X → Y be a continuous map of spaces. Consider an open subset V ⊆ Y . We
say that V is trivially covered by p if there is a discrete space F and a map f : p−1(V ) → F such that the
combined map ⟨p, f⟩ : p−1(V )→ V ×F is a homeomorphism. We say that p is a covering map (or that X is
a covering space of Y ) if for each point y ∈ Y there is an open set V that contains y and is trivially covered.

Remark 22.3. Suppose we have open subsets V ′ ⊆ V ⊆ Y and that V is trivially covered, as witnessed by a
map f : p−1(V )→ F . We then note that p−1(V ′) ⊆ p−1(V ), se we can restrict f to get a map f ′ : p−1(V ′)→
F . It is not hard to check that the combined map ⟨p, f ′⟩ : p−1(V ′)→ V ′ × F is a homeomorphism, so V ′ is
also trivially covered.

Example 22.4. Take X = R×Z and Y = R, and let p : X → Y be the projection map, given by p(x, n) = x.
We claim that the whole space Y is trivially covered. Indeed, we can take F = Z and define f : X → F by
f(x, n) = n. Then the combined map ⟨p, f⟩ : X → Y × F is just the identity map R× Z→ R× Z, which is
certainly a homeomorphism. From this it is clear that p is a covering map.

Example 22.5. Take X and Y to be the unit circle in C, or in other words X = Y = {eiθ | θ ∈ R}. Define
p : X → Y by p(z) = z2, or equivalently p(eiθ) = e2iθ. Each fibre p−1{y} is a discrete set consisting of the
two square roots of y, which are negatives of each other. This suggests that p should be a covering, which
we can prove as follows. We first take V0 = Y \ {−1}, so each element y ∈ V0 can be expressed in a unique
way as y = eiθ with −π < θ < π. The two square roots of y are then x = eiθ/2 (which has Re(x) > 0) and
−x = −eiθ/2 = ei(θ/2+π) (which has Re(−x) < 0). We therefore have

p−1(V0) = {z ∈ X | z2 ̸= −1} = X \ {i,−i} = {z ∈ X | Re(z) ̸= 0},
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and we can define f0 : p
−1(V0)→ {1,−1} by

f0(z) =

{
1 if Re(z) > 0

−1 if Re(z) < 0.

We then find that the map ⟨p, f0⟩ : p−1(V0)→ V0×{1,−1} is a homeomorphism, showing that V0 is trivially
covered. A similar approach can be used to check that the set V1 = Y \ {1} is also trivially covered. Any
element y ∈ V1 can be expressed uniquely as y = eiθ with 0 < θ < 2π, and the two square roots are then
x = eiθ/2 (which has Im(x) > 0) and −x (which has Im(−x) < 0). We therefore have

p−1(V1) = {z ∈ X | z2 ̸= 1} = X \ {1,−1} = {z ∈ X | Im(z) ̸= 0},
and we can define f1 : p

−1(V1)→ {1,−1} by

f1(z) =

{
1 if Im(z) > 0

−1 if Im(z) < 0.

We then find that the map ⟨p, f1⟩ : p−1(V1)→ V1×{1,−1} is a homeomorphism, as required. As Y = V0∪V1,
this proves that p is a covering.

Recall that the real projective space RPn is defined to be the quotient space Sn/ ∼, where x ∼ y iff
y = ±x. We therefore have a quotient map π : Sn → RPn, for which π(x) = π(y) iff x = ±y. We give RPn
the quotient topology, which means that a subset V ⊆ RPn is open iff π−1(V ) is open in Sn.

Proposition 22.6. The map π : Sn → RPn is a covering map.

Proof. For each a ∈ Sn we put Ua = {x ∈ Sn | x.a > 0} and Va = π(Ua) ⊆ RPn. We then find that

π−1(Va) = {x | π(x) ∈ π(Ua)} = {x | x ∈ Ua or − x ∈ Ua} = {x | x.a ̸= 0}.
This first shows that π−1(Va) is an open subset of Sn and so (by the definition of the quotient topology)
that Va is an open subset of RPn. It also allows us to define a continuous map fa : π

−1(Va)→ {1,−1} by

fa(x) =

{
1 if x.a > 0

−1 if x.a < 0.

It is easy to see that the combined map ⟨π, fa⟩ : π−1(Va) → Va × {1,−1} is a homeomorphism, so Va is
trivially covered. The sets Va cover all of RPn (because π(a) ∈ Va) so π is a covering map as claimed. □

Proposition 22.7. The map exp: C→ C \ {0} is a covering map, as is the map exp: iR→ S1 (where we
identify S1 with {z ∈ C : |z| = 1}).

Proof. This is closely related to the proof in Example 22.5. We put

V0 = C \ (−∞, 0] V1 = C \ [0,∞)

U0 = {x+ iy | x ∈ R,−π < y < π} U1 = {x+ iy | x ∈ R, 0 < y < 2π}
W0 = {x+ iy | y is not an odd multiple of π} W1 = {x+ iy | y is not an even multiple of π}.

If y ∈ V0 then there is a unique choice of r and θ with −π < θ < π and r > 0 and y = r eiθ. It follows that the
number x = log(r) + iθ lies in U0 and has exp(x) = y. This means that the restricted map exp: U0 → V0 is
bijective. Standard complex analysis shows that the inverse is also continuous, so we have a homeomorphism
exp: U0 → V0. Similarly, the restricted map exp: U1 → V1 is also a homeomorphism. From this we see that

exp−1(V0) = {x0 + 2nπi | x0 ∈ U0, n ∈ Z} =W0

exp−1(V1) = {x1 + 2nπi | x1 ∈ U1, n ∈ Z} =W1.

We can thus define continuous maps fi : Wi → Z (for i = 0, 1) by fi(xi + 2nπ) = n. Equivalently, f0(x+ iy)
is the closest integer to y/(2π); this is well-defined and continuous on W0 because points where y is an odd
multiple of π have been removed from W0. Similarly, f1(x + iy) is the closest integer to (y − π)/(2π). We
find that the maps ⟨exp, p0⟩ : W0 → V0 × Z and ⟨exp, p1⟩ : W1 → V1 × Z are homeomorphisms, so V0 and V1
are trivially covered. We also have C \ {0} = V0 ∪ V1, so exp: C→ C \ {0} is a covering map. The proof for
the restricted map exp: iR→ S1 is essentially the same.
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Interactive demo

□

Definition 22.8. Let p : X → Y be a covering map.

(a) Consider a point y ∈ Y . A lift of y means a point ỹ ∈ X with p(ỹ) = y.
(b) Consider a continuous path u : [0, 1] → Y . A lift of u means a continuous path ũ : [0, 1] → X such

that p ◦ ũ = u. This means in particular that ũ(t) is a lift of u(t) for all t.
(c) More generally, let T be any space and let u : T → Y be a continuous map. A lift of u is a continuous

map ũ : T → X with p ◦ ũ = u.
(d) For a map u : T → Y as in (c), we say that u is small if there is a trivially covered open set V ⊆ Y

such that u(T ) ⊆ V .

Lemma 22.9. Suppose we have a path-connected space T and a small continuous map u : T → Y . Suppose
we also have points t0 ∈ T and x0 ∈ X with u(t0) = p(x0). Then there is a unique lift ũ : K → X such that
ũ(t0) = x0.

Proof. By assumption, we can choose an open subset V ⊆ Y containing u(K), and a homeomorphism
⟨p, f⟩ : p−1(V ) → V × F as in Definition 22.2. If ũ : T → X is a lift of u, then we have p(ũ(t)) = u(t) ∈ V ,
so ũ(t) ∈ p−1(V ) for all t ∈ T , so we have a well-defined and continuous composite f ◦ ũ : T → F . As T is
path connected and F is discrete, this must be constant. Thus, if ũ(t0) = x0, then f(ũ(t)) = f(x0) for all t.
It follows that the only possibility is

ũ(t) = ⟨p, f⟩−1(u(t), f(x0)).

□

Proposition 22.10. Let p : X → Y be a covering map. Let u be a path from a to b in Y , and let ã ∈ X be
a lift of a. Then there is a unique lift ũ of u such that ũ(0) = ã.

Proof. Because p is a covering map, we can find a family of trivially covered open sets Vi ⊆ Y such that
Y =

⋃
i Vi. The preimages u−1(Vi) then form an open covering of [0, 1]. Because [0, 1] is a compact metric

space, this covering has a Lebesgue number ϵ > 0 (by Proposition 8.31). Choose n > 1/ϵ and divide
[0, 1] into subintervals Tk = [(k − 1)/n, k/n] for k = 0, . . . , n. By the Lebesgue number property, we can
choose an index ik such that Tk ⊆ u−1(Vik), so u(Tk) ⊆ Vik . This means that the restriction of u to Tk is
small, so Lemma 22.9 is applicable. We are given ã ∈ X with p(ã) = a = u(0). We put x0 = ã, and use
Lemma 22.9 to show that there is a unique map ũ1 : T1 → X with p(ũ1(t)) = u(t) and ũ1(0) = x0. We now
define x1 = ũ1(1/n), so p(x1) = u(1/n). Applying Lemma 22.9 again, we see that there is a unique map
ũ2 : T2 → X with p(ũ2(t)) = u(t) and ũ2(1/n) = x1. We put x2 = ũ2(2/n) ∈ X, so p(x2) = u(2/n). We
then repeat the process in the obvious way, to get a family of maps ũk : [(k − 1)/n, k/n] → X and points
xk ∈ X with ũk(k/n) = xk = ũk+1(k/n). It follows that the maps ũk can be patched together to give a
continuous map ũ : [0, 1] → X with p ◦ ũ = u and ũ(0) = x0 = ã. The same kind of induction shows that
this is unique. □

Remark 22.11. Note that Proposition 22.10 does not say anything about ũ(1). We know that p(ũ(t)) = u(t)
for all t, so in particular p(ũ(1)) = u(1) = b, so ũ(1) ∈ p−1{b}. However, if we have two different paths
u, v : a⇝ b in Y and we use the same starting point ã ∈ p−1{a} in both cases, then it can easily happen that
the endpoints ũ(1), ṽ(1) are different elements of p−1{b}. However, this cannot happen if there is a pinned
homotopy between u and v, as we will show later.

Corollary 22.12. Let p : X → Y be a covering map. Suppose we have a path-connected space T and a
continuous map u : T → Y . Suppose that m,n : T → X are continuous lifts of u, and that there is at least
one point t0 ∈ T with m(t0) = n(t0); then m = n.

Proof. Consider a point t ∈ T ; we must show that m(t) = n(t). As T is path connected, we can choose a
path v from t0 to t in T . Now m ◦ v and n ◦ v are both lifts of the path u ◦ v : [0, 1] → Y , and they satisfy
(m ◦ v)(0) = m(t0) = n(t0) = (n ◦ v)(0). Thus, the uniqueness clause in Proposition 22.10 tells us that
m ◦ v = n ◦ v. In particular, we have (m ◦ v)(1) = (n ◦ v)(1), or in other words m(t) = n(t) as required. □
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Proposition 22.13. Let T be a compact convex subset of RN , and suppose that t0 ∈ T . Let p : X → Y be
a covering map, and let u : T → Y be continuous. Suppose that x0 ∈ X with p(x0) = u(t0). Then there is a
unique continuous lift ũ : T → X with p ◦ ũ = u and ũ(t0) = x0.

Proof. Roughly speaking, the idea is as follows: to define ũ(t), we move a short distance from t towards t0
to reach a point t′, then ũ(t′) will already be defined and we define ũ(t) to be the unique lift of u(t) that is
close to ũ(t′). The rest of this proof should be seen as a more complete and rigorous version of this idea.

We first claim that there exists ϵ > 0 such that for all t ∈ T , the restricted map u : OB(t, ϵ) → Y
is small. (Here and elsewhere in this proof, notation for balls should be interpreted relative to T , so
OB(t, ϵ) = {t′ ∈ T | ∥t− t′∥ < ϵ}.) Indeed, for each t ∈ T we can choose a trivially covered open set Vt ⊆ Y
containing u(t). The set u−1(Vt) is then open in T and contains t. This means that the sets u−1(Vt) form
an open cover of the compact metric space T , so there is a Lebesgue number ϵ > 0. This has the required
property.

Next, for j > 0 we put Tj = {t ∈ T | ∥t − t0∥ ≤ jϵ/2}. We will prove by induction on j that there is a
unique continuous map ũj : Tj → X with ũj(t0) = x0 and p(ũj(t)) = u(t) for all t ∈ Tj . To start with, the
map u : T1 → Y is small by our choice of ϵ, so Lemma 22.9 gives ũ1. Suppose we have already constructed
ũj . For each a ∈ Tj , we note that the map u : OB(a, ϵ) → Y is small, so there is a unique continuous
va : OB(a, ϵ) → X lifting u with va(a) = ũj(a). Both ũj and va restrict to give lifts of u over the convex
set OB(a, ϵ) ∩ Tj , and they agree at the point a, and the restricted map u : OB(a, ϵ) ∩ Tj → Y is small; it
follows that va agrees with ũj on OB(a, ϵ) ∩ Tj .

Now suppose that a, b ∈ Tj and that the set U = OB(a, ϵ) ∩ OB(b, ϵ) is nonempty. We then find that
the point c = (a+ b)/2 must lie in U and it also lies in Tj because Tj is convex. The maps va and vb both
agree with ũj at c, so they agree with each other. The restricted map u : U → Y is small, so we conclude
that va|U = vb|U . Because of this consistency property, we see that the maps va can be combined to give a
map v :

⋃
a∈Tj

OB(a, ϵ) → X. As the sets OB(a, ϵ) are all open, an open patching argument shows that v

is continuous. As each map va is a lift of u, we see that v is a lift of u. As va agrees with ũj on Tj , we see
that v agrees with ũj on Tj .

It is also easy to see that Tj+1 is contained in the domain of v, so we can define ũj+1 to be the restriction
of v to Tj+1. This is a continuous lift of u extending ũj and therefore satisfying ũj+1(t0) = x0 as required.

As T is assumed to be compact, it must be bounded. We therefore have Tj = T for sufficiently large j,
and this completes the proof. □

23. Transfers, coefficients and homology of projective spaces

Definition 23.1. Let n be a nonnegative integer. We say that a map p : X → Y is an n-sheeted covering if
it is a covering map, and |p−1{y}| = n for all y ∈ Y .

Example 23.2. For any n > 0 we have an n-sheeted covering p : C× → C× given by p(z) = zn. This
restricts to give an n-sheeted covering S1 → S1.

Example 23.3. For any space Y and any discrete set F with |F | = n, the projection Y × F → Y is an
n-sheeted covering.

Example 23.4. For any n > 0, the projection p : Sn → RPn is a 2-sheeted covering.

Lemma 23.5. Let p : X → Y be an n-sheeted covering, and let u : ∆k → Y be continuous. Then there are
precisely n different continuous maps ∆k → X lifting u.

Proof. By assumption, the set F = p−1{u(e0)} has size n, say F = {x1, . . . , xn}. Proposition 22.13 tells us
that for each i there us a unique lift ũi : ∆k → X with ũi(e0) = xi. If ũ : ∆k → X is an arbitrary lift of u,
then p(ũ(e0)) = u(e0) so ũ(e0) ∈ F so ũ(e0) = xi for some i, so ũ = ũi. □

Definition 23.6. Let p : X → Y be an n-sheeted covering. For any continuous map u : ∆k → Y , we define
τ(u) to be the sum of all the lifts of u, considered as an element of Ck(X). More generally, given an element
u = m1u1 + · · · + mrur ∈ Ck(Y ), we define τ(u) = m1τ(u1) + · · · + mrτ(ur) ∈ Ck(X). This defines a
homomorphism τ : Ck(Y )→ Ck(X), which is called the transfer.
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Example 23.7. Define p : C× → C× by p(z) = z3, so this is a 3-sheeted covering. Define u : ∆1 → C×

by u(1 − t, t) = 8 exp(2πit). Then u(e0) = 8 so p−1{u(e0)} = {2, 2e2πi/3, 2e4πi/3}. Define vj : ∆1 → C× by
vj(1−t, t) = 2 exp(2πi(t+j)/3) for j = 0, 1, 2. These are the three lifts of u, so τ(u) = v0+v1+v2 ∈ C1(C×).

Proposition 23.8. Let p : X → Y be an n-sheeted covering. Then the associated transfer map τ : C∗(Y )→
C∗(X) is a chain map, and satisfies p#(τ(u)) = nu for all u ∈ Ck(Y ).

Proof. Consider a continuous map u : ∆k → Y , and let v1, . . . , vn be the continuous lifts of u, so τ(u) =∑n
j=1 vj . This means that ∂(τ(u)) =

∑k
i=0

∑n
j=1(−1)i(vj ◦δi). Now note that p◦(vj ◦δi) = u◦δi, so vj ◦δi is

one of the lifts of u◦ δi. If vj ◦ δi = vj′ ◦ δi then vj and vj′ agree at δi(e0) so they must be the same so j = j′.
This proves that the list v1 ◦ δi, . . . , vn ◦ δi is the complete list of lifts of u ◦ δi, so τ(u ◦ δi) =

∑n
j=1(vj ◦ δi).

From this we get

τ(∂(u)) =

k∑
i=0

(−1)iτ(u ◦ δi) =
k∑
i=0

n∑
j=1

(−1)i(vj ◦ δi) = ∂(τ(u)).

This proves that τ is a chain map. As p ◦ vj = u for all j we also have p#(τ(u)) = p#(
∑n
j=1 vj) =

∑n
j=1 u =

nu. □

Remark 23.9. It follows that we have an induced map τ∗ : H∗(Y )→ H∗(X), which satisfies p∗(τ∗(u)) = nu
for all u ∈ Hk(Y ).

We would like to use the transfer to obtain homological information about RPn. For this, it is convenient
to use a slightly different version of homology.

Definition 23.10. We define Ck(X;Z/2) to be the set of formal linear combinations m1u1 + · · · +mrur
where each ui is a continuous map ∆k → X, but now the coefficients mi lie in Z/2 rather than Z. We again

make this a chain complex by defining ∂(u) =
∑k
i=0(u ◦ δi). (We have left out the sign (−1)i because it

makes no difference mod 2.) We define H∗(X;Z/2) to be the homology of this chain complex.

Remark 23.11. If all the groupsHi(X) are free abelian groups, one can check thatHi(X;Z/2) = Hi(X)/2Hi(X)
for all i. If some groups Hi(X) are not free abelian, then the relationship between Hi(X) and Hi(X;Z/2)
is a little more complicated. In particular, this applies when X = RPn, because we have already seen that
H1(RPn) = Z/2 for n > 1, and this is not a free abelian group.

Remark 23.12. Any element u ∈ Ck(X;Z/2) can be expressed as a formal linear combination m1u1+ · · ·+
mrur with mi ∈ Z/2. If ui = uj for some i ̸= j then we can combine the corresponding terms. We can then
discard all terms with coefficient zero. As Z/2 = {0, 1}, and remaining terms must have coefficient 1. This
means that u can be expressed as u1 + · · ·+ us, where the elements ui are distinct maps from ∆k to X.

Remark 23.13. Essentially everything that we have done previously works in the same way with coefficients
Z/2. In particular, the groupsH∗(X;Z/2) are functorial and homotopy invariant, and we have Mayer-Vietoris
sequences and transfers. For n > 0 we have

Hk(S
n;Z/2) =

{
Z/2 if k = 0 or k = n

0 otherwise.

Lemma 23.14. Let p : Sn → RPn be the usual projection, which is a 2-sheeted covering. Then the sequence

C∗(RPn;Z/2)
τ−→ C∗(S

n;Z/2)
p#−−→ C∗(RPn;Z/2)

is a short exact sequence of chain complexes and chain maps. It therefore gives a long exact sequence of
homology groups

Hi(S
n;Z/2) p∗−→ Hi(RPn;Z/2)

∆−→ Hi−1(RPn;Z/2)
τ∗−→ Hi−1(S

n;Z/2) p∗−→ Hi−1(RPn;Z/2)

Proof. First suppose that u ∈ Ck(RPn;Z/2). As in Remark 23.12, we can write u = u1 + . . .+ ur for some
list of distinct maps ui : ∆k → RPn. Let u′i and u

′′
i be the two lifts of ui. Note that p#(

∑
i u

′
i) = u; this

proves that p# is surjective. Note also that τ(u) =
∑
i(u

′
i + u′′i ). If i ̸= j then

p ◦ u′i = p ◦ u′′i = ui ̸= uj = p ◦ u′j = p ◦ u′′j ,
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so neither u′i nor u′′i can be equal to u′j or u′′j . Also, u′i ̸= u′′i by construction. Thus, there can be no
cancellation in our expression for τ(u), so τ(u) ̸= 0 except in the case where our original expression for u
had no terms. This proves that τ is injective. We also have p#(τ(u)) = 2u, which is zero as we are working
modulo 2. This shows that img(τ) ≤ ker(p#). Conversely, suppose we have an element v ∈ ker(p#). As
in Remark 23.12, we can write v = v1 + . . . + vr for some distinct continuous maps vi : ∆k → Sn. Put
ui = p ◦ vi : ∆k → RPn, so that p#(v) = u1 + . . . + ur. We are assuming that v ∈ ker(p#), so the sum
u1 + . . .+ ur must cancel down to zero. After reordering the terms if necessary, we can assume that r = 2r′

for some r′ and u2i−1 = u2i for i = 1, . . . , r′. This means that v2i−1 and v2i must be the two different lifts
of u2i, so v = τ(u2 +u4 + . . .+u2r′). We conclude that img(τ) = ker(p#). This completes the proof that we
have a short exact sequence of chain complexes and chain maps, and the Snake Lemma gives the claimed
long exact sequence of homology groups. □

Theorem 23.15. For any n > 0 we have

Hk(RPn;Z/2) =

{
Z/2 if 0 ≤ k ≤ n
0 otherwise.

Moreover, the map τ∗ : Hn(RPn;Z/2)→ Hn(S
n;Z/2) is an isomorphism, as are the maps ∆: Hi(RPn;Z/2)→

Hi−1(RPn;Z/2) for 1 ≤ i ≤ n.

Proof. We proved in Proposition 20.9 that

Hi(RPn) =


Z if i = 0

Z/2 if i = 1

0 if i > n.

Essentially the same argument shows that

Hi(RPn;Z/2) =

{
Z/2 if i = 0, 1

0 if i > n.

Next, we have a long exact sequence

Hi(S
n;Z/2) p∗−→ Hi(RPn;Z/2)

∆−→ Hi−1(RPn;Z/2)
τ∗−→ Hi−1(S

n;Z/2)
For 2 ≤ i ≤ n − 1 we have Hi(S

n;Z/2) = Hi−1(S
n;Z/2) = 0, so the map ∆ is an isomorphism. It follows

by induction on i that Hi(RPn;Z/2) = Z/2 for 0 ≤ i ≤ n− 1. Finally, we have an exact sequence

Hn+1(RPn;Z/2)
∆−→ Hn(RPn;Z/2)

τ∗−→ Hn(S
n;Z/2) p∗−→ Hn(RPn;Z/2)

∆−→ Hn−1(RPn;Z/2)
τ∗−→ Hn−1(S

n;Z/2).
After filling in the known groups, this becomes

0 −→ Hn(RPn;Z/2)
τ∗−→ Z/2 p∗−→ Hn(RPn;Z/2)

∆−→ Z/2 −→ 0.

This shows that the first map τ∗ is injective, so Hn(RPn;Z/2) is isomorphic to a subgroup of Z/2, so it
is either trivial or of order two. If it was trivial then the sequence could not be exact, so we must have
Hn(RPn;Z/2) ≃ Z/2 as claimed. Given this, the only way the sequence can be exact is if τ∗ and ∆ are
isomorphisms, and p∗ = 0. □

24. Borsuk-Ulam and related results

Definition 24.1. A continuous map f : Sn → Sm is odd (or antipodal) if f(−x) = −f(x) for all x ∈ Sn.

Example 24.2. If n ≤ m then it is easy to produce examples of odd continuous maps f : Sn → Sm. Most
obviously, we can just define

f(x0, . . . , xn) = (x0, . . . , xn, 0, . . . , 0).

Remark 24.3. If f : Sn → Sm is odd, then we have a well-defined map f : RPn → RPm given by f([x]) =
[f(x)].

Proposition 24.4. Suppose that f : Sn → Sn is continuous and odd. Then the induced map f∗ : Hn(S
n;Z/2)→

Hn(S
n;Z/2) is the identity.
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Proof. As f is odd we have a well-defined map f : RPn → RPn given by f([x]) = [f(x)]. This satisfies
p ◦ f = f ◦ p : Sn → RPn, so the right-hand square below commutes:

Ci(RPn;Z/2) Ci(S
n;Z/2) Ci(RPn;Z/2)

Ci(RPn;Z/2) Ci(S
n;Z/2) Ci(RPn;Z/2)

τ

f#

p#

f# f#

τ p#

We claim that the left hand square commutes as well. To see this, define χ : Sn → Sn by χ(x) = −x, so
f ◦ χ = χ ◦ f and p ◦ χ = p. Consider a continuous map u : ∆k → RPn. Choose a lift v : ∆k → Sn. The
other lift is then χ ◦ v, so τ(u) = v + (χ ◦ v), so

f#(τ(u)) = (f ◦ v) + (f ◦ χ ◦ v) = (f ◦ v) + (χ ◦ f ◦ v).

Here f ◦ v and χ ◦ f ◦ v are the two lifts of the map p ◦ f ◦ v = f ◦ p ◦ v = f ◦ u, so we see that
(f ◦ v) + (χ ◦ f ◦ v) = τ(f#(u)). This shows that f# ◦ τ = τ ◦ f#, so the left hand square commutes as
claimed.

As the diagram commutes, we see that the maps f∗ and f∗ are compatible with the maps in the exact
sequence obtained in Lemma 23.14. In particular, we have commutative squares

Hi(RPn;Z/2) Hi−1(RPn;Z/2)

Hi(RPn;Z/2) Hi−1(RPn;Z/2)

∆

f∗ f∗

∆

for 1 ≤ i ≤ n. It is clear that f∗ gives the identity on H0(RPn;Z/2), and we have seen that all of the maps
∆ are isomorphisms, so it follows inductively that f∗ gives the identity on Hi(RPn;Z/2) for 1 ≤ i ≤ n. We
also have a commutative square

Hn(RPn;Z/2) Hn(S
n;Z/2)

Hn(RPn;Z/2) Hn(S
n;Z/2).

τ∗

f∗ f∗

τ∗

We have seen that τ∗ is an isomorphism and f∗ is the identity so f∗ is also the identity, as claimed. □

Theorem 24.5 (Borsuk-Ulam). If n > m, then there are no odd continuous maps from Sn to Sm.

Proof. Suppose that f : Sn → Sm is odd and continuous. Define i : Sm → Sn by

i(x0, . . . , xm) = (x0, . . . , xm, 0, . . . , 0).

It is clear that i is odd, so the composite f ◦i : Sm → Sm is odd, so the induced map (f ◦i)∗ : Hm(Sm;Z/2)→
Hm(Sm;Z/2) must be the identity by Proposition 24.4. In particular, (f ◦ i)∗ is nonzero.

On the other hand, we can define h : [0, 1]× Sm → Sn by

h(t, x) = cos(πt/2)i(x) + sin(πt/2)em+1.

(Using the fact that i(x) and em+1 are orthogonal, we see that this does indeed lie in Sn.) This gives a
homotopy between i and a constant map, which implies that f ◦ i is also homotopic to a constant map, so
(f ◦ i)∗ = 0. This contradiction shows that no such map f can exist. □

Corollary 24.6. Let g : Sn → Rm be a continuous map, with 0 < m ≤ n. Then there is a point x ∈ Sn
with g(x) = g(−x).

Proof. Suppose (for a contradiction) that no such point exists, so g(x) − g(−x) is always nonzero. We
can then define f : Sn → Sn−1 by f(x) = (g(x) − g(−x))/∥g(x) − g(−x)∥. It is easy to check that this is
continuous and antipodal, which contradicts Theorem 24.5, as required. □
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Example 24.7. There are two opposite points on the Earth’s surface that have the same temperature and
also the same atmospheric pressure, as we see by considering the map f : S2 → R2 given by

f(a) = ( temperature at a, pressure at a).

Theorem 24.8 (Sandwich Slicing Theorem). Let A1, A2 and A3 be three reasonable subsets of R3. Then
there is a plane P ⊂ R3 such that for each set Ai, half of the volume lies on one side of P , and half of the
volume lies on the other side.

Example 24.9. We could have a sandwich, with the top slice of bread filling the set A1, and cheese filling
the set A2, and the bottom slice of bread filling A3. The theorem then says that we can make a single
straight cut with a knife to share all three components equally.

Example 24.10. Suppose that the sets Ai are solid balls, with centres ai in general position. Then there
is a unique possible choice for P , namely the plane passing through a1, a2 and a3.

We will not be very rigorous about what “reasonable” means, but we will make some comments here and
in the body of the proof. To start with, each set Ai should be bounded (which implies that the volume is
finite) and the volume should also not be zero.

Proof of Theorem 24.8. For any unit vector u = (u0, u1, u2, u3) ∈ S3 and v = (v1, v2, v3) ∈ R3 we put
m(u, v) = u0 + u1v1 + u2v2 + u3v3 ∈ R, so m(−u, v) = −m(u, v). We then put

P (u) = {v ∈ R3 | m(u, v) = 0}
H(u) = {v ∈ R3 | m(u, v) > 0},

so P (u) is a plane and H(u) is the half-space on one side of that plane. Note that the plane P (−u) is the
same as P (u), and H(−u) is the half-space on the opposite side to H(u).

We now define g : S3 → R3 by
g(u)i = vol(Ai ∩H(u)).

It is not too hard to check that this is continuous. By Corollary 24.6, there exists u ∈ S3 with g(−u) = g(u),
which means that vol(Ai ∩H(u)) = vol(Ai ∩H(−u)) for i = 1, 2, 3. In other words, the plane P (u) bisects
each of the sets Ai. □
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