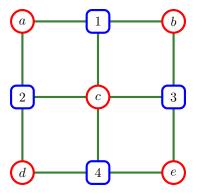

MAS334 COMBINATORICS — PROBLEM SHEET 4

Please hand in exercises 4.1 and 4.4 by the end of Week 9.

Exercise 4.1. Use the tabular method to find all full matchings for the following board:

Exercise 4.2. Use Remark 10.7 to find the number of full matchings for the following board B:


Can you explain the answer in a different way?

Exercise 4.3. Let B be an $n \times n$ board (with n > 0), and let \overline{B} be the complement. Theorem 10.3 and Remark 10.7 tell us that

$$c_n(B) = \sum_{k=0}^{k} (-1)^k (n-k)! c_k(\overline{B})$$
$$c_n(\overline{B}) = \sum_{k=0}^{k} (-1)^k (n-k)! c_k(B).$$

Check these equations directly in the case where B is the full board F_n .

Exercise 4.4. Consider the matching problem where $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, d, e\}$ and the incidence graph is as follows:

- (a) Find a very plausible subset $U \subseteq B$.
- (b) Find a barely plausible subset $V \subseteq B$ with $V \neq \emptyset$.
- (c) Does the matching problem have a solution?

Exercise 4.5. Consider a matching problem where $B = \{1, 2, ..., n\}$ and $|C_k| \ge k$ for all k. Prove that the problem is solvable.

Exercise 4.6. Consider a job allocation problem where |A| = |B| = n, and every subset $U \subseteq B$ is barely plausible. What can we conclude?