MAS334 COMBINATORICS - PROBLEM SHEET 4

Please hand in exercises 4.1 and 4.4 by the end of Week 9.
Exercise 4.1. Use the tabular method to find all full matchings for the following board:

Exercise 4.2. Use Remark 10.7 to find the number of full matchings for the following board B :

Can you explain the answer in a different way?

Exercise 4.3. Let B be an $n \times n$ board (with $n>0$), and let \bar{B} be the complement. Theorem 10.3 and Remark 10.7 tell us that

$$
\begin{aligned}
& c_{n}(B)=\sum_{k=0}(-1)^{k}(n-k)!c_{k}(\bar{B}) \\
& c_{n}(\bar{B})=\sum_{k=0}(-1)^{k}(n-k)!c_{k}(B) .
\end{aligned}
$$

Check these equations directly in the case where B is the full board F_{n}.

Exercise 4.4. Consider the matching problem where $A=\{1,2,3,4\}$ and $B=\{a, b, c, d, e\}$ and the incidence graph is as follows:

(a) Find a very plausible subset $U \subseteq B$.
(b) Find a barely plausible subset $V \subseteq B$ with $V \neq \emptyset$.
(c) Does the matching problem have a solution?

Exercise 4.5. Consider a matching problem where $B=\{1,2, \ldots, n\}$ and $\left|C_{k}\right| \geq k$ for all k. Prove that the problem is solvable.

Exercise 4.6. Consider a job allocation problem where $|A|=|B|=n$, and every subset $U \subseteq B$ is barely plausible. What can we conclude?

