MAS334

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS

Autumn Semester 2022–23

3 hours

Combinatorics

Attempt all the questions. Give justification for all numerical answers. The allocation of marks is shown in brackets.

1 Consider the following diagram:

We are interested in paths through this grid from A to B (with each path consisting of steps of length one upwards or to the right, as usual).

- (a) How many paths are there from A to B in the left hand diagram? (3 marks)
- (b) How many paths are there from A to B in the right hand diagram?
 [Hint: Consider whether such paths pass through P or Q or both or neither.]
 (7 marks)

2 Find the number of integer solutions for each of the following problems:

- (a) $x_1 + \dots + x_9 = 15$ with $x_1, \dots, x_9 \ge 0.$ (3 marks)
- (b) $x_1 \times \cdots \times x_9 = 15$ with $x_1, \ldots, x_9 \ge 0$. (3 marks)
- (c) $x_1 + \dots + x_9 = 5 \pmod{10}$ with $0 \le x_1, \dots, x_9 < 10$. (3 marks)
- (d) $x_1^2 + \dots + x_9^2 = 3$ with $x_1, \dots, x_9 \in \mathbb{Z}$. (3 marks)

MAS334

Turn Over

- **3** Let $k \ge 1$ and $n \ge 3k 1$. This question concerns seating k couples in a row of n seats. The couples are $c_i = (c_i^L, c_i^R)$ for $1 \le i \le k$ and we want to seat them according to the following rules.
 - For each *i*, c_i^L sits in the adjacent seat to the left of c_i^R .
 - The couples are in order c_1, c_2, \ldots, c_k from left to right.
 - Different couples are not adjacent: there is a gap of at least one seat between one couple and another.

Let T_n^k denote the number of ways this can be done.

- (a) What is T_n^k ? Give a direct argument for your answer. (4 marks)
- (b) Show, from the description of the seating problem, that $T_{3k-1}^k = 1$ and that $T_n^k = T_{n-1}^k + T_{n-3}^{k-1}$ for $n \ge 3k$. (5 marks)
- (c) Check that your answer to part (i) is consistent with (ii). (3 marks)

(a) State the Pigeonhole Principle. (2 marks)

- (b) Let X be a set of 11 numbers from $\{1, 2, ..., 80\}$. Show that there exist two different subsets of X each having exactly 4 elements and such that the sum of their elements is the same. (5 marks)
- (a) State the positive form of the Inclusion/Exclusion Principle. (3 marks)
 - (b) Use the Inclusion/Exclusion Principle to find the number of permutations of the numbers $1, 2, \ldots, 10$ such that at least one even number is fixed.

(7 marks)

- (a) Let $n \ge 3$. Find the rook polynomial of the full $n \times 3$ board. (4 marks)
 - (b) Which of the following polynomials can be the rook polynomial of a board? Give reasons for your answers, including examples of appropriate boards.

(i)
$$1 - 7x$$
.
(ii) $(1 + x)(1 + 4x + 2x^2)^2$.
(iii) $1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$. (5 marks)

MAS334

 $\mathbf{4}$

 $\mathbf{5}$

6

MAS334

- 7 Recall that a derangement of $\{1, 2, ..., n\}$ is a permutation leaving none of the numbers fixed. We write d_n for the number of derangements of $\{1, 2, ..., n\}$.
 - (a) Show that

$$\sum_{k=0}^{n} \binom{n}{k} d_{n-k} = n!.$$

(4 marks)

(b) Show that, for $n \ge 3$,

$$d_n = (n-1)(d_{n-2} + d_{n-1}).$$

(6 marks)

- 8 Suppose that we have two tournaments, each of 2n players, where the scores are T_i and U_i , for $1 \le i \le 2n$. Show that there is a tournament of 4n players with scores $T_i + n, U_i + n$, for $1 \le i \le 2n$. (5 marks)
 - (a) Explain what it means for two $n \times n$ Latin squares with $P = Q = N = \{1, 2, ..., n\}$ to be orthogonal. (2 marks)
 - (b) Prove that there exist at most n-1 mutually orthogonal $n \times n$ Latin squares. (8 marks)
- 10 (a) In a (v, b, r, k, λ) -block design, the number of varieties is v and the number of blocks is b. Explain the meaning of each of the other parameters. (3 marks)
 - (b) State two equations relating r to the other parameters of a design.

(2 marks)

- (c) Consider all choices of 3 numbers from {1, 2, ..., 6}. Show that these form the blocks of a design and determine the parameters.
 (5 marks)
- (d) Let $2 \le i \le n$. Show that there is a design with parameters

$$\left(n, \binom{n}{i}, \binom{n-1}{i-1}, i, \binom{n-2}{i-2}\right).$$

(5 marks)

End of Question Paper

MAS334

9