The

SCHOOL OF MATHEMATICS AND STATISTICS

Combinatorics

Autumn Semester
2022-23
3 hours

Attempt all the questions. Give justification for all numerical answers. The allocation of marks is shown in brackets.

1 Consider the following diagram:

We are interested in paths through this grid from A to B (with each path consisting of steps of length one upwards or to the right, as usual).
(a) How many paths are there from A to B in the left hand diagram?
(3 marks)
(b) How many paths are there from A to B in the right hand diagram?
[Hint: Consider whether such paths pass through P or Q or both or neither.]
(7 marks)

2 Find the number of integer solutions for each of the following problems:
(a) $x_{1}+\cdots+x_{9}=15$ with $x_{1}, \ldots, x_{9} \geq 0$.
(b) $x_{1} \times \cdots \times x_{9}=15$ with $x_{1}, \ldots, x_{9} \geq 0$.
(c) $x_{1}+\cdots+x_{9}=5(\bmod 10)$ with $0 \leq x_{1}, \ldots, x_{9}<10$.
(d) $x_{1}^{2}+\cdots+x_{9}^{2}=3$ with $x_{1}, \ldots, x_{9} \in \mathbb{Z}$.
(a) State the positive form of the Inclusion/Exclusion Principle.
(b) Use the Inclusion/Exclusion Principle to find the number of permutations of
(7 marks)
(a) State the Pigeonhole Principle.
(b) Let X be a set of 11 numbers from $\{1,2, \ldots, 80\}$. Show that there exist two different subsets of X each having exactly 4 elements and such that the sum of their elements is the same.
(5 marks)
Let T_{n}^{k} denote the number of ways this can be done.
(a) What is T_{n}^{k} ? Give a direct argument for your answer.
(b) Show, from the description of the seating problem, that $T_{3 k-1}^{k}=1$ and that $T_{n}^{k}=T_{n-1}^{k}+T_{n-3}^{k-1}$ for $n \geq 3 k$.
(c) Check that your answer to part (i) is consistent with (ii).

Let $k \geq 1$ and $n \geq 3 k-1$. This question concerns seating k couples in a row of n
seats. The couples are $c_{i}=\left(c_{i}^{L}, c_{i}^{R}\right)$ for $1 \leq i \leq k$ and we want to seat them according to the following rules.

- For each i, c_{i}^{L} sits in the adjacent seat to the left of c_{i}^{R}.
- The couples are in order $c_{1}, c_{2}, \ldots, c_{k}$ from left to right.
- Different couples are not adjacent: there is a gap of at least one seat between one couple and another.

$$
\text { the numbers } 1,2, \ldots, 10 \text { such that at least one even number is fixed. }
$$

(a) Let $n \geq 3$. Find the rook polynomial of the full $n \times 3$ board.
(4 marks)
(b) Which of the following polynomials can be the rook polynomial of a board? Give reasons for your answers, including examples of appropriate boards.
(i) $1-7 x$.
(ii) $(1+x)\left(1+4 x+2 x^{2}\right)^{2}$.

$$
\begin{equation*}
\text { (iii) } 1+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n} \text {. } \tag{5marks}
\end{equation*}
$$

$$
\sum_{k=0}^{n}\binom{n}{k} d_{n-k}=n!
$$

(b) Show that, for $n \geq 3$,

$$
d_{n}=(n-1)\left(d_{n-2}+d_{n-1}\right)
$$

(6 marks)

8 Suppose that we have two tournaments, each of $2 n$ players, where the scores are T_{i} and U_{i}, for $1 \leq i \leq 2 n$. Show that there is a tournament of $4 n$ players with scores $T_{i}+n, U_{i}+n$, for $1 \leq i \leq 2 n$.
(5 marks)
(a) Explain what it means for two $n \times n$ Latin squares with $P=Q=N=$ $\{1,2, \ldots, n\}$ to be orthogonal.
(2 marks)
(b) Prove that there exist at most $n-1$ mutually orthogonal $n \times n$ Latin squares.
(8 marks)
(a) In a (v, b, r, k, λ)-block design, the number of varieties is v and the number of blocks is b. Explain the meaning of each of the other parameters. (3 marks)
(b) State two equations relating r to the other parameters of a design.
(2 marks)
(c) Consider all choices of 3 numbers from $\{1,2, \ldots, 6\}$. Show that these form the blocks of a design and determine the parameters.
(5 marks)
(d) Let $2 \leq i \leq n$. Show that there is a design with parameters

$$
\left(n,\binom{n}{i},\binom{n-1}{i-1}, i,\binom{n-2}{i-2}\right) .
$$

End of Question Paper

