
The Mandelbrot set

▶ The Mandelbrot set is a famous example of a fractal subset of C with a
very intricate structure. It is the black part of the image below.

▶ We will explore how to make pictures of this set using Python.
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The Mandelbrot set

▶ For a number c ∈ C, put qc(z) = z2 + c.

▶ Then qc(0) = c

q2
c (0) = qc(c) = c2 + c

q3
c (c) = qc(c

2 + c) = c4 + 2c3 + c2 + c

and so on.

▶ Given a value c, we can look at the sequence of values qn
c (0) as n → ∞.

▶ One can show that there are only two possibilities:
(a) |qnc (0)| ≤ 2 for all n; or
(b) |qnc (0)| → ∞ as n → ∞.

▶ The Mandelbrot set M is the set of values c for which case (a) occurs, i.e.

M = {c ∈ C | |qn
c (0)| ≤ 2 for all n ≥ 0}.

▶ To calculate the fine structure of M in Python, we need a very large
number of calculations. To make this fast and efficient, we need to use
vectorized operations with numpy arrays.

▶ If c ̸∈ M then the numbers qn
c (0) become very big causing overflow errors

in Python. We need trickery to fix this without breaking vectorization.
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