
MAS2008 ASSIGNMENT: FINDING ROOTS

1. Introduction

This assignment will ask you to implement, test and compare two methods for finding roots of a function
f(x): the Newton-Raphson method and the secant method. To submit your work, you should upload a
single .ipynb file to Blackboard.

Section 2 below describes the Newton-Raphson method, and gives some details of how you should imple-
ment it. Section 3 gives some indications about the secant method, but with fewer details.

Section 4 specifies some test cases. You should run your code on each of these cases and comment on
what happens. Further details about the required commentary will be specified in Section 4.

As a reminder, you are free to use web search and/or AI assistants to help you write code. However, you
should include a record of such assistance in the file that you submit. Also, you should remember that these
methods may provide code that is simply incorrect or that is a correct solution to a different problem than
the one that you intended. You are responsible for understanding and testing your code and ensuring that
it complies with the specifications in this document.

Marks will be awarded as follows:

• 30% for code. For full credit code should be correct, efficient and clearly structured, with docstrings
for all nontrivial functions and comments explaining the main steps of the methods.

• 70% for explanation of the test cases. For full credit you will need to write a significant amount of
mathematical working to explain why the algorithms behave in the way that they do in particular
cases, and you will need to illustrate your explanations with clear diagrams produced by matplotlib.

On the course web page you will find a sample assignment (of fairly similar style to this one, but with
significantly different content). You should take that as a guide to the kind of thing you should be doing.

2. The Newton-Raphson method

The Newton-Raphson method is as follows. Given a function f(x) with derivative f ′(x) and an initial
point x0, we define xn recursively for n > 0 by xn+1 = xn − f(xn)/f

′(xn). Typically (but not always) the
sequence (xn) will converge to a value x∞ such that f(x∞) = 0 (so x∞ is a root of the function f(x)). When
implementing this on a computer, we typically choose a tolerance ϵ > 0, and we stop when the absolute
value of f(xn) is less than ϵ, returning xn as an approximate root of f(x).

Write a Python function newton(a, b, N, epsilon, f, df) which implements the above method. The
arguments should be as follows:

• You can assume that a and b will be real numbers with a < b. Your code should look for roots of
f(x) in the interval [a, b]. Your initial value for the Newton-Raphson process should be the middle
of that interval. If xn is ever outside that interval, then your code should raise a RuntimeError with
an appropriate error message, which should in particular include the value of n.

• You can assume that N will be a positive integer, and that epsilon will be a positive real number.
Your code should calculate xn until either the absolute value of f(xn) is less than epsilon, or
n = N . In the first case your code should return xn; in the second case your code should raise a
RuntimeError with an appropriate error message.

• The arguments f and df should be Python functions that calculate calculate f(x) and f ′(x) respec-
tively. For example, we should be able to find a root of p(x) = x2 − 1 with x ∈ [0, 3] as follows:

def p(x):

return x * x - 1

def dp(x):

return 2 * x

newton(0, 3, 100, 1e-8, p, dp)

1

• If no errors occur, your code should return the approximate root that you have found.
• Your code should have a docstring explaining the parameters and return value.
• As your code will be checked in a partially automated way, you should name everything exactly as
specified above: your function should be called newton, and the parameters should be called a, b, N,
epsilon, f and df.

3. The secant method

You should write a Python function secant(a, b, N, epsilon, f) which implements the secant method
to search for a root of f(x) in the interval [a, b]. I will not give details of the secant method here; part of
your job is to find one of the many internet sources that will explain it to you. The parameters should be
the same as for the Newton-Raphson method, except that the parameter df is not required. You should
start the secant method with x0 = a and x1 = b, and you should raise a RuntimeError with an appropriate
error message if xn lies outside [a, b] at any stage.

4. Test cases

Run your code for each of the following sets of parameters.

a b N ϵ f(x) f ′(x)
0 3 100 1e− 8 x2 − 1 2x
0 3 100 1e− 8 e−x − x −e−x − 1
0 3 100 1e− 8 x2 − 2x+ 1.1 2x− 2
0 6 100 1e− 8 x3 − 6x2 + 12x− 6 3x2 − 12x+ 12
2 18 100 1e− 8 sin(x) cos(x)
2 18 100 1e− 8 cos(x) cos(x)
0 8 100 1e− 8 x2 − 5x+ 13 2x− 5
0 4 100 1e− 8 |x− 3| − 2 2H(x− 3)− 1.

In the last line, the notation H(t) refers to the Heaviside function, given by

H(t) =


0 if t < 0
1
2 if t = 0

1 if t > 0.

You could code this as a Python function yourself, or search for information about an existing implementation.
For each line in the above table, you should run both the Newton-Raphson method and the secant method.

Some lines involve various kinds of errors or problems. In cases where your method successfully finds a root
in the specified interval, only brief comments are required, but you should compare the performance of the
two methods. In cases where there are problems, you should explain in detail what is happening, which
may require mathematical analysis and/or discussion of programming technicalities. For each test case
you should include a markdown cell in your .ipynb notebook, using LaTeX for mathematical expressions
and backquotes for Python code. Your explanations should be illustrated using diagrams generated using
matplotlib. At the most basic level, you could print out the values xn, or you could define a function like
this:

def show_newton_step(f, df, x0):

y0 = f(x0)

x1 = x0 - y0/df(x0)

y1 = f(x1)

xs = np.linspace(min(x0, x1), max(x0, x1), 100)

ys = f(xs)

plt.plot(xs, ys, ’r-’)

plt.plot([x0, x1], [y0, y1], ’bo’)

This defines x1 = x0 − f(x0)/f
′(x0) and displays the points (x0, f(x0)) and (x1, f(x1)) together with the

graph of f for x between x0 and x1. However, much better diagrams are possible; a search for pictures of
the Newton-Raphson method will find examples. You should think carefully about what would be the best

2

way to illustrate your explanations. Credit will also be given for well-structured code, which means that you
should write general functions like show_newton_step() that will work for any f rather then using ad hoc
code for each test case.

5. Guidance

• You may discuss the assignment with other students, but you must not copy code or text from them.
You must write your own notebook in your own words based on your own understanding. You must
also mention any collaboration in the acknowledgements section of your notebook, including the
names of people with whom you worked.

• You may search the internet for information, but you must mention all sources that you have used
in your acknowledgements, with specific URLs.

• You can use code that you find on the internet or that is given to you by an AI assistant, but you
must acknowledge it. You must also ensure that the code you submit complies precisely with the
notation and terminology used in this briefing document, and that the function names, arguments
and return values are exactly as specified. You will probably need to modify code obtained from
elsewhere to achieve this.

• All acknowledgements must appear in a separate markdown cell at the top of your notebook, with
heading “Acknowledgements”.

• All nontrivial functions should have docstrings.
• For all code that implements a nonobvious algorithm, you should add detailed comments in the code
to prove that you understand how the algorithm works.

• When developing your notebook, you will probably move backwards and forwards, inserting things
and executing code in different places. However, before submission you should tidy up your code.
Remove anything that is not needed and check that the rest can be executed in order from the top to
the bottom without errors and that this generates all the required plots and prints all the required
messages.

• Upload your notebook using Blackboard.
• Do not include your own name or registration number in your notebook. (Blackboard will ensure
that your work is tagged with your name at the point when that becomes necessary.)

3

	1. Introduction
	2. The Newton-Raphson method
	3. The secant method
	4. Test cases
	5. Guidance

