MAS2008 ASSIGNMENT 2:
INVESTIGATING A DYNAMICAL SYSTEM

1. ASSIGNMENT

In this assignment you will investigate the dynamics of a version of the Hénon-Heiles system which is the
following pair of second-order differential equations:
i =—x+a®—y?
4§ =—y — 2zy.

. 2 . 2 .
Here dots denote derivatives with respect to time, so & = ZT:}, = %. We can recast these equations as a

system of first-order equations in four variables (z,y,p, q) as follows:

T=p

y=q
p=—z+a*—y’
q¢=-y—2xy

You will need to submit a Jupyter notebook containing text cells with explanations and mathematical
arguments, as well as code cells with Python code to complete various tasks. Your notebook should be
self-contained, and and designed to be comprehensible to a second-year mathematics student who has not
read this briefing document. Further details of the submission format are in Section 2.

1.1. Theorems.

Definition 1.1. We define the potential energy V', the kinetic energy T and the total energy F as follows:
V:%x2+%y2+xy2—%x3
T=3i"+ 39 = 30" + 3¢°
E=V+T.

Carry out the following tasks. For some of them you will be able to find answers on the internet, but you
will need to rewrite them in your own words using the same notation and terminology as in this brief. For
some of them it is unlikely that you will find exactly the right thing on the internet (although you may find
something similar) so you will need to do your own work.

Task 1.2. Show that the total energy E is conserved, i.e. E=0.

Task 1.3. In terms of the complex variable z = z + iy, show that # = —2 4+ 2% and V = 1[z|> — {Re(2%)
and T = $|3[%.

Task 1.4. The point a; = (1,0) is stationary, i.e. we have a solution to the differential equation with x = 1
and y =0for all ¢t (sop=12=0and ¢ =9 = 0). In total there are four stationary points, which we will call
ag, a1, a2 and ag. Find these points.

Task 1.5. Show that

V—g=@+3)y—(@-1)/V3)(y+ (= -1)/V3).
and thus describe the set of points where V' = 1/6. For this you just need to do some algebraic manipulation.
You can either

(a) Do it by hand, and write the calculation in LaTeX in a text cell in your notebook.
(b) Work out how to get sympy to do it within Python.
(¢) Ask Wolfram Alpha or some similar online service to do it.

1

sympy.org
https://www.wolframalpha.com/

(d) Use a symbolic mathematics program such as Mathematica, Maple, Sage or Maxima. (Note that
Mathematica and Maple are not free but the university has site licenses so you can get them from
IT Services. The other two are free.)

In cases (c) or (d), your notebook should record exactly what you entered and what result you received.
If you want to use a symbolic mathematics program to check that A = B, you should generally ask it to
simplify A — B and check that you get zero.

Task 1.6. Show that at points of the form

3+ 52
(z,y) = m(\@’ s)

we have V' = 0. Again, this is just a matter of algebraic manipulation, which you can approach by any of
the methods in the previous task.

1.2. Contours. Consider the following picture, which shows the contours V' = ¢ for various values of c.

2.0

154

1.0+

0.5+

0.04 L]

—0.5

-1.0 4

-1.5

-2.0 T T T f T T T

The values of ¢ are chosen to give a set of curves that are fairly evenly spaced.

Different colours are used for the cases ¢ <0,0<¢<1/6,c=1/6 and ¢ > 1/6.

The four stationary points are also shown.

The initial grid has been made fine enough to ensure that the curves are nice and smooth.

The picture also shows a circle of radius 2, and the set_clip_path has been used to hide everything
outside of that circle.

Write a function draw_contours(R=2, n=500) which produces a plot as above, with a clipping radius of
R and an initial grid of size n x n for finding the contours. (It is not so obvious how to use set_clip_path()
correctly, but you can ask an AT assistant for examples, or just search the web.)

The picture is clearly unchanged if we rotate everything through a 1/3-turn. Do some mathematical
analysis to explain this. (You may choose to work with complex variables as in Task 1.3.)

1.3. Trajectories. Here are some sample solutions for the differential equation, with different initial con-
ditions:

https://www.wolfram.com/mathematica/
https://www.maplesoft.com/products/Maple/
https://www.sagemath.org/
https://maxima.sourceforge.io/
https://students.sheffield.ac.uk/it-services/software

N

The steps below will build up to generating pictures of this kind.

First, define a function escape (t,u), such that escape(t, [x,y,p,q]l) is positive when (x,y) lies inside
the circle of radius 2 centred at the origin, and negative when (x,y) lies outside that circle. (Note that ¢ is
unused but needs to be included anyway for the following steps to work correctly.) Then you should enter
escape.terminal=True.

Now define a function solve(u0). This should accept an argument u0=[x0,y0,p0,q0] giving initial
conditions for the differential equation, and it should call scipy.integrate.solve_ivp with u0 and some
other arguments to solve the differential equation from that starting point. By default you should solve
the equation for 0 < ¢t < 10 with 1000 time steps, but your function solve(u0) should have optional
arguments so that these defaults can be overridden. You should also pass the argument events=[escape]
to solve_ivp(). This will cause the solution process to stop if the solution reaches the circle of radius 2.
The solve() function should just return the result produced by solve_ivp().

Now define a function show_trajectory(u0) which calls solve () and then plots the result together with
some other features. These features should certainly include the circles of radii one and two, and the three
straight lines that give the edges of the central triangle. You could also include some contours of V, as in
the pictures above. If you want to include contours then ideally you should not recalculate them for each
plot, but should work out how to calculate them once and save them so that they can be added to each new
plot without extra work. However, this is not so easy to arrange; it is a challenge for enthusiasts.

Now experiment with different initial conditions to generate some example plots.

e If you start with (x,y) in the central triangle then the initial potential energy V will be less than
1/6. If the initial values of p and ¢ are also small then the total energy F will be less than 1/6. As
E is constant and T' > 0 we see that V' can never reach 1/6 so the trajectory will be confined to the
middle triangle.

o If the energy is less than 1/6 but close to 1/6 then the trajectory will usually be quite chaotic and
will fill out most of the middle triangle.

e If the initial condition is (x,0,0,¢) with 2 and ¢ fairly small, then the trajectory will usually be a
complicated curve circulating around the origin. However, if you fix and adjust ¢ carefully then
you can make the solution join up with itself to give a nice simple closed curve.

e If the initial speed is higher, so that the total energy is greater than 1/6, then the trajectory will
typically escape from the central triangle and then run out to infinity, either out to the right (which
we call direction 1) or top left (direction 2) or bottom left (direction 3). Usually the escape will
happen quickly but if the energy is only a little higher than 1/6 and the initial conditions are adjusted
carefully then escape can be delayed.

1.4. Escape time. Write a function escape_time(u0) that returns the first time that the solution hits the
circle of radius two (if we start with initial condition u0 at ¢ = 0). Here you should let the solution run for
0 <t <100 with 10* time steps, and you should return np.inf if the trajectory has still not hit the circle
at t = 100. (If you have defined the solve () function correctly and understood properly how it works, then
the escape_time () function can be very short.)

Now fix a speed v, say v = 0.5, and consider initial conditions (x,y,p,q) = (—0.5, y, vcos(d), vsin(f))
with |y| < v/3/2 (so (z,v) lies on the left hand edge of the middle triangle and \/p? 4+ ¢2 = v). Try to find

3

initial conditions of this type that make the escape time as large as possible. One approach is just to loop
through possible values of y and 6. If you do this, you should first try it with a small number of values, say
4 different values for y and 4 different values for # making 16 trajectories in total. Once you are sure that
your code works correctly you can loop through a much larger number of values, and leave your computer to
work on it for an extended period. Every time you break the record for the escape time you should print the
values of y and 6 so that progress is not lost if the process crashes. You should put your code in a function
find_long_trajectory(v). The version of the notebook that you submit should contain the definition of
find_long_trajectory(v) and should contain plots of the longest trajectories that you found but it should
not actually call find_long_trajectory().

As an alternative to running a loop as above, you could work out how to use scipy.optimize.minimize ()
to achieve the same thing. That function has an argument called method; I have found that method=’Nelder-Mead’
gives the best results in this context. Note that maximizing the escape time is the same as minimizing the
negative of the escape time.

2. GUIDANCE

e Your notebook should be self-contained. It should be possible for someone to read through your
notebook and understand what you are doing and why, without needing to refer to this briefing
document.

e You may discuss the assignment with other students, but you must not copy code or text from them.
You must write your own notebook in your own words based on your own understanding. You must
also mention any collaboration in the acknowledgements section of your notebook, including the
names of people with whom you worked.

e You may search the internet for information, but you must mention all sources that you have used
in your acknowledgements, with specific URLs.

e You can use code that you find on the internet or that is given to you by an Al assistant, but you
must acknowledge it. You must also ensure that the code you submit complies precisely with the
notation and terminology used in this briefing document, and that the function names, arguments
and return values are exactly as specified. You will probably need to modify code obtained from
elsewhere to achieve this.

e The briefing asks you to define various functions. These functions should not print or plot anything
unless the briefing specifically says that they should.

e All acknowledgements must appear in a separate markdown cell at the top of your notebook, with
heading “Acknowledgements”.

e All nontrivial functions should have docstrings.

e For all code that implements a nonobvious algorithm, you should add detailed comments in the code
to prove that you understand how the algorithm works.

e When developing your notebook, you will probably move backwards and forwards, inserting things
and executing code in different places. However, before submission you should tidy up your code.
Remove anything that is not needed and check that the rest can be executed in order from the
top to the bottom without errors and that this generates all the required plots and prints all the
required messages. If you wish to execute any code that will cause an error, then you should write
a markdown cell explaining the situation, and then wrap the offending code in a try ... except
block like this:

try:
bad_function(666)
except Exception as e:
print (f"As explained above, we get an error as follows: {e}")

e 20% of the mark for this assignment will be for presentation. This will include organisation of the
notebook into sections, effective use of LaTeX, spelling and grammar, and similar things.

e Upload your notebook using Blackboard.

e Do not include your own name or registration number in your notebook. (Blackboard will ensure
that your work is tagged with your name at the point when that becomes necessary.)

	1. Assignment
	1.1. Theorems
	1.2. Contours
	1.3. Trajectories
	1.4. Escape time

	2. Guidance

