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X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
» We write KC for the co-category of K-local spectra.
» There is a functorial cofibration CX — X — LX

where CX is K-acyclic and LX is K-local.

> For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.

» The subcategory KL C S is closed under limits. To get colimits in /C,
construct colimits in S and apply L.

» In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).

> For an MP-module M we have LM = (u, 'M)}. Thus E is K-local.

» Deep Theorem: K = thick(LM | M € Modup)

» Deep Theorem: There is a finite spectrum F such that
MP.F = MP../(u®, ... ul""}) for some io, ..., in 1.

> Put ps(X) = cof(a(X) = c.(X)) = cof (L(Xks) = X"°) so pe(K) = 0.

> If M € Modgk then pc(M) € Mod,_ (k) so pc(M) = 0.

> If M € Modup then L(F A M) € thick(Modk) so pc(L(F A M)) =0 so
F A pc(LM) = 0 so ps(LM) = 0.

» Thus, for X € K = thick(L Moduyp) we have pg(X) =0 i.e.
C!(X) = C*(X).
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Given q: G — H we define gi: M(G) — M(H) by ¢i([a]) = [q(a)], and
q": M*(H) — M*(G) by q"(g)(a) = &g(q(a)).

Define ¢*: M(H) — M(G) and qi: M*(G) — M*(H) to be adjoint, so
(@(u); V) = (u,q"(v))6 and (a(f), g)n = (f, q"(&))c-

This is compatible with the isomorphisms

M(G) ~ M*(G) ~ Hom(M(G), Q).

The isomorphism M(G) — M*(G) is the isomorphism

v: a(c*(Q)) — ci(c*(Q)) that we considered before.
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» This gives an isomorphism x: L ® R(G) — C(G), compatible with all
structure.

v



Generalised characters



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
k



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0", G]=lim [©*/pX, G]
—k



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.

> PutZ/p™ = lim Z/p* = Z[})/Z=Q/Zy = Q/Zp = U, VICS"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.

> Put AG=[O", G]:Hﬂk[e*/pk, G], C(G)=L® M*AG=Map(mAG,L).

> Recall E%(B(©*/p")) = E%[x, ..., x]/(gk(x1), - - -, gx(xn));
there is a canonical map ¢« from this to L.



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).
> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
K
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)
» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.
> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k
> Recall E%(B(©"/p")) = E%Fx, ... xnl/(g(x0), - - g0
there is a canonical map ¢« from this to L.
> Thus any u: ©*/p* — G gives ¢ 0 E°(Bu): E°BG — L.
Assembling these gives x: L ®z0 E°(BG) — C(G).



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).
> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
K
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)
» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.
> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k
> Recall E%(B(©"/p")) = E%Fx, ... xnl/(g(x0), - - g0
there is a canonical map ¢« from this to L.
> Thus any u: ©*/p* — G gives ¢ 0 E°(Bu): E°BG — L.
Assembling these gives x: L ®z0 E°(BG) — C(G).

» Theorem (Hopkins, Kuhn, Ravenel): x is an isomorphism.



Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p]e(x) = gr(x)he(x), where hi(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).
> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
K
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)
» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.
> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k
> Recall E°(B(9"/p")) = E°[x1, ..., xal/(gk (1), - -, gk (xn));
there is a canonical map ¢« from this to L.
> Thus any u: ©*/p* — G gives ¢ 0 E°(Bu): E°BG — L.
Assembling these gives x: L ®z0 E°(BG) — C(G).
» Theorem (Hopkins, Kuhn, Ravenel): x is an isomorphism.

» Both sides have inner products, and operators i and g* adjoint to each
other, and x preserves all this.
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Proof of the generalised character theorem

Reduce to the case of a finite group G.

vy

Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q ( H H* Zlmage Q))
0: ©* =G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)
» Deduce by Mayer-Vietoris that x¢,z is iso if Z has abelian isotropy.

> Let F be the space of complete flags in C[G], so Z x F and Z x F? have
abelian isotropy, and we have an equaliser
E*(Zng) = E*((Z x F)ng) = E*((Z x F?)nc).
Deduce the general case from this.

> Corollary: Q ® E°(BG) = u5 *E%(BG) ~ (I],Q® Da)°. Here A runs
over abelian subgroups A < G, and Dj is a certain regular local ring, free
of finite rank as an EO—module.

> Recall spf(E°(BA)) = Hom(A*,G); morally spf(E°(Da)) = Inj(A*,G).

> There is a similar map u; 'E®(BG)/lx — (I, uy *Di,a) € for k > 0, which
is an F-isomorphism (Greenlees-Strickland; see also Stapleton).
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>

Suppose for simplicity that E*(BG) = 0 and E°(BG) is free over E°,

say with basis e1,..., €.

The pairing on E°(BG) is (f, g)c = O(fg) for some 6: E°(BG) — E°.
We can also define the trace 7: E°(BG) — E°,

so if fe; = 3, ajiej then 7(f) = 3, aii.

Choose representatives ui, ..., Uy of the isomorphism classes in AG, with
automorphism groups I'; = (AG)(u;, u;); then on L ®p0 E°(BG) ~ C(G)
we have 0(f) = >, |Ti| " f(u;) and 7(f) = X, f(ui).

If G is an abelian group then I'; ~ G for all i and so 7 = |G|#

on C(G) or on E°(BG).
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>

> We find that Ag(B?A) = Hom(\9©*, A) ~ A

For a space X, put AgX = lim [B(©*/p™)4, X],
——m

so NoBG = 7o(AG) for finite groupoids G.

Put C(X) = Map(Ao(X), L); we still have a ring map

x: L®go E°(X) — C(X), which is iso for X = BG.

Recall that the Eilenberg-MacLane space BYA = K(A, d) has

74(B?A) = A and m;(BYA) = 0 for i # d and [Z, BYA] = H(Z; A).

Note that ©/p* is similar to ©* = Z] or Z", and B(Z") is the torus

(1), with H.(B(Z")) = X\*(Z").

(a)

() (assuming |A| < o0).

> Claim: if X ~ Q>Z for some Z, then NAoX = Hom(\*(©%), 7.(X)).

Proof uses Z2((P x Q)1) ~X*(S°VPVQV(PAQ)),
iterated to split £2B(Z") = £%((S')}) as a wedge of spheres,
together with [B(Z")., X] = [Z®B(2")+, Z].

Theorem (Lurie): x: L ®g0 E°(X) — C(X) is iso

if X is a w-finite space/finite co-groupoid.
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Morava theory of Eilenberg-MacLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)

Also Hom(\9©*, A) = Tor(0,...,0, A)*

» Theorem (essentially Ravenel-Wilson):
spf(E®(BCyx)) = A/(ker(p*.1: G — G)) (=0 for d > n).

> Corollary: for A finite abelian: spf(E°(BYA)) = Tor(G, ..., G, A)*

> Corollary: spf(E°(B"Z)) = spf(E°(B"(Z/p>))) = Tor(G,...,G)*", and
this is a one-dimensional formal group of height one.

> Equivalently E°(B"(Z/p™)) = E°[y] with mult*(y) = yo + y1 + yoyi.

> Alternatively, K°(BYA) is a finite-dimensional Hopf algebra over F,, and
the category of such is equivalent to a category of Dieudonné modules.
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