Ambidexterity 4

Neil Strickland

May 26, 2023

- Recall that Z is K-acyclic if K*Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- The subcategory K ⊆ S is closed under limits. To get colimits in K, construct colimits in S and apply L.
- ln MP_0 : put u_i = coeff of $x^{p'}$ in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{l_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,...,u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_1(X) = c_*(X)$.

Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)

• We write \mathcal{K} for the ∞ -category of K-local spectra.

- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- The subcategory K ⊆ S is closed under limits. To get colimits in K, construct colimits in S and apply L.
- ln MP_0 : put u_i = coeff of $x^{p'}$ in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{l_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- ▶ Deep Theorem: There is a finite spectrum F such that $MP_*F = MP_*/(u_0^{i_0}, \ldots, u_{n-1}^{i_{n-1}})$ for some i_0, \ldots, i_{n-1} .
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

Recall that Z is K-acyclic if K*Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)

• We write \mathcal{K} for the ∞ -category of K-local spectra.

• There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is K-acyclic and LX is K-local.

- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq S$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in S and apply L.
- ln MP_0 : put u_i = coeff of $x^{p'}$ in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{l_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,..., u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)

• We write \mathcal{K} for the ∞ -category of K-local spectra.

▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.

- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq S$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in S and apply L.
- ln MP_0 : put u_i = coeff of $x^{p'}$ in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{l_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,..., u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)

• We write \mathcal{K} for the ∞ -category of K-local spectra.

There is a functorial cofibration CX → X → LX where CX is K-acyclic and LX is K-local.

- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- The subcategory K ⊆ S is closed under limits. To get colimits in K, construct colimits in S and apply L.
- ln MP_0 : put u_i = coeff of $x^{p'}$ in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{l_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,..., u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick(Mod_K)$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_1(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is K-acyclic and LX is K-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- The subcategory K ⊆ S is closed under limits. To get colimits in K, construct colimits in S and apply L.
- ln MP_0 : put u_i = coeff of $x^{p'}$ in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{l_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,...,u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP_0 : put u_i = coeff of $x^{p'}$ in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{l_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,..., u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP_0 : put u_i = coeff of $x^{p'}$ in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{l_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,...,u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick(Mod_K)$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_1(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP₀: put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,..., u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick(Mod_K)$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_1(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP_0 : put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,..., u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick(Mod_K)$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_1(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is K-acyclic and LX is K-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP₀: put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,..., u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick(Mod_K)$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is K-acyclic and LX is K-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP₀: put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- Deep Theorem: There is a finite spectrum F such that MP*F = MP*/(u₀ⁱ⁰,..., u_{n-1}ⁱⁿ⁻¹) for some i₀,..., i_{n-1}.
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_1(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP_0 : put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- ▶ Deep Theorem: There is a finite spectrum F such that $MP_*F = MP_*/(u_0^{i_0}, \ldots, u_{n-1}^{i_{n-1}})$ for some i_0, \ldots, i_{n-1} .

▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.

- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick(Mod_K)$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_1(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP_0 : put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- ▶ Deep Theorem: There is a finite spectrum F such that $MP_*F = MP_*/(u_0^{i_0}, \ldots, u_{n-1}^{i_{n-1}})$ for some i_0, \ldots, i_{n-1} .
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP_0 : put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- ▶ Deep Theorem: There is a finite spectrum F such that $MP_*F = MP_*/(u_0^{i_0}, \ldots, u_{n-1}^{i_{n-1}})$ for some i_0, \ldots, i_{n-1} .
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick \langle Mod_K \rangle$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_1(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP_0 : put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- ▶ Deep Theorem: There is a finite spectrum F such that $MP_*F = MP_*/(u_0^{i_0}, \ldots, u_{n-1}^{i_{n-1}})$ for some i_0, \ldots, i_{n-1} .
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in \text{Mod}_{MP}$ then $L(F \land M) \in \text{thick}(\text{Mod}_{K})$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

- Recall that Z is K-acyclic if K_{*}Z = 0, and X is K-local if [Z, X] = 0 for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞ -category of K-local spectra.
- ▶ There is a functorial cofibration $CX \rightarrow X \rightarrow LX$ where CX is *K*-acyclic and *LX* is *K*-local.
- For objects: LX = 0 iff $K_*(X) = 0$. For morphisms: Lf iso iff $K_*(f)$ iso.
- ▶ The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K} , construct colimits in \mathcal{S} and apply L.
- ln MP_0 : put u_i = coeff of x^{p^i} in $[p]_{MP}(x)$ and $I_n = (u_0, \ldots, u_{n-1})$.
- For an *MP*-module *M* we have $LM = (u_n^{-1}M)_{I_n}^{\wedge}$. Thus *E* is *K*-local.
- ▶ Deep Theorem: $\mathcal{K} = \text{thick} \langle LM \mid M \in \text{Mod}_{MP} \rangle$
- ▶ Deep Theorem: There is a finite spectrum F such that $MP_*F = MP_*/(u_0^{i_0}, \ldots, u_{n-1}^{i_{n-1}})$ for some i_0, \ldots, i_{n-1} .
- ▶ Put $p_G(X) = \operatorname{cof}(c_!(X) \to c_*(X)) = \operatorname{cof}(L(X_{hG}) \to X^{hG})$ so $p_G(K) = 0$.
- ▶ If $M \in Mod_K$ then $p_G(M) \in Mod_{p_G(K)}$ so $p_G(M) = 0$.
- ▶ If $M \in Mod_{MP}$ then $L(F \land M) \in thick(Mod_K)$ so $p_G(L(F \land M)) = 0$ so $F \land p_G(LM) = 0$ so $p_G(LM) = 0$.
- ▶ Thus, for $X \in \mathcal{K} = \text{thick} \langle L \operatorname{Mod}_{MP} \rangle$ we have $p_G(X) = 0$ i.e. $c_!(X) = c_*(X)$.

- For a finite groupoid G put $M(G) = \mathbb{Q}\{\pi_0(G)\}$ and $M^*(G) = \operatorname{Hom}(M(G), \mathbb{Q}) = \operatorname{Map}(\pi_0(G), \mathbb{Q}).$
- Define an inner product on M(G) by ([a], [b])_G = |G(a, b)| (so ([a], [b]) = 0 unless a ~ b).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i) g(a_i)$, where a_1, \ldots, a_r contains one member of each isomorphism class.
- This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^* : M(H) \to M(G)$ and $q_! : M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- This is compatible with the isomorphisms $M(G) \simeq M^*(G) \simeq \text{Hom}(M(G), \mathbb{Q}).$
- ▶ The isomorphism $M(G) \to M^*(G)$ is the isomorphism $\nu : c_1(c^*(\mathbb{Q})) \to c_*(c^*(\mathbb{Q}))$ that we considered before.

- For a finite groupoid G put $M(G) = \mathbb{Q}\{\pi_0(G)\}$ and $M^*(G) = \operatorname{Hom}(M(G), \mathbb{Q}) = \operatorname{Map}(\pi_0(G), \mathbb{Q}).$
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i)g(a_i),$ where a_1, \ldots, a_r contains one member of each isomorphism class.
- This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^* : M(H) \to M(G)$ and $q_! : M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- This is compatible with the isomorphisms $M(G) \simeq M^*(G) \simeq \text{Hom}(M(G), \mathbb{Q}).$
- ▶ The isomorphism $M(G) \to M^*(G)$ is the isomorphism $\nu : c_1(c^*(\mathbb{Q})) \to c_*(c^*(\mathbb{Q}))$ that we considered before.

- For a finite groupoid G put M(G) = Q{π₀(G)} and M*(G) = Hom(M(G), Q) = Map(π₀(G), Q).
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i) g(a_i),$ where a_1, \ldots, a_r contains one member of each isomorphism class.
- This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^* : M(H) \to M(G)$ and $q_! : M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- This is compatible with the isomorphisms $M(G) \simeq M^*(G) \simeq \text{Hom}(M(G), \mathbb{Q}).$
- ▶ The isomorphism $M(G) \to M^*(G)$ is the isomorphism $\nu : c_1(c^*(\mathbb{Q})) \to c_*(c^*(\mathbb{Q}))$ that we considered before.

- For a finite groupoid G put M(G) = Q{π₀(G)} and M*(G) = Hom(M(G), Q) = Map(π₀(G), Q).
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i)g(a_i),$ where a_1, \ldots, a_r contains one member of each isomorphism class.
- This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^*: M(H) \to M(G)$ and $q_!: M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- This is compatible with the isomorphisms $M(G) \simeq M^*(G) \simeq \text{Hom}(M(G), \mathbb{Q}).$
- The isomorphism M(G) → M*(G) is the isomorphism ν: c_l(c*(Q)) → c_{*}(c*(Q)) that we considered before.

- For a finite groupoid G put M(G) = Q{π₀(G)} and M*(G) = Hom(M(G), Q) = Map(π₀(G), Q).
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i)g(a_i),$ where a_1, \ldots, a_r contains one member of each isomorphism class.
- ▶ This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^* : M(H) \to M(G)$ and $q_! : M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- ▶ This is compatible with the isomorphisms $M(G) \simeq M^*(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q}).$
- ▶ The isomorphism $M(G) \to M^*(G)$ is the isomorphism $\nu : c_1(c^*(\mathbb{Q})) \to c_*(c^*(\mathbb{Q}))$ that we considered before.

- For a finite groupoid G put M(G) = Q{π₀(G)} and M*(G) = Hom(M(G), Q) = Map(π₀(G), Q).
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i)g(a_i),$ where a_1, \dots, a_r contains one member of each isomorphism class.
- This is also $\langle f,g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i,a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^* : M(H) \to M(G)$ and $q_! : M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- This is compatible with the isomorphisms $M(G) \simeq M^*(G) \simeq \text{Hom}(M(G), \mathbb{Q}).$
- ▶ The isomorphism $M(G) \to M^*(G)$ is the isomorphism $\nu : c_1(c^*(\mathbb{Q})) \to c_*(c^*(\mathbb{Q}))$ that we considered before.

- For a finite groupoid G put M(G) = Q{π₀(G)} and M*(G) = Hom(M(G), Q) = Map(π₀(G), Q).
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i)g(a_i),$ where a_1, \ldots, a_r contains one member of each isomorphism class.
- This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^*: M(H) \to M(G)$ and $q_!: M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- This is compatible with the isomorphisms $M(G) \simeq M^*(G) \simeq \text{Hom}(M(G), \mathbb{Q}).$
- ▶ The isomorphism $M(G) \to M^*(G)$ is the isomorphism $\nu : c_1(c^*(\mathbb{Q})) \to c_*(c^*(\mathbb{Q}))$ that we considered before.

- For a finite groupoid G put M(G) = Q{π₀(G)} and M*(G) = Hom(M(G), Q) = Map(π₀(G), Q).
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i)g(a_i),$ where a_1, \dots, a_r contains one member of each isomorphism class.
- This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^*: M(H) \to M(G)$ and $q_!: M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- ► This is compatible with the isomorphisms M(G) ≃ M*(G) ≃ Hom(M(G), Q).
- ▶ The isomorphism $M(G) \to M^*(G)$ is the isomorphism $\nu : c_1(c^*(\mathbb{Q})) \to c_*(c^*(\mathbb{Q}))$ that we considered before.

- For a finite groupoid G put M(G) = Q{π₀(G)} and M*(G) = Hom(M(G), Q) = Map(π₀(G), Q).
- ▶ Define an inner product on *M*(*G*) by ([*a*], [*b*])_{*G*} = |*G*(*a*, *b*)| (so ([*a*], [*b*]) = 0 unless *a* ≃ *b*).
- ▶ The induced inner product on $M^*(G)$ is $\langle f, g \rangle_G = \sum_{i=1}^r |G(a_i, a_i)|^{-1} f(a_i)g(a_i),$ where a_1, \dots, a_r contains one member of each isomorphism class.
- This is also $\langle f, g \rangle_G = \theta(fg)$, where $\theta(h) = \sum_i |G(a_i, a_i)|^{-1} h(a_i)$.
- Given $q: G \to H$ we define $q_!: M(G) \to M(H)$ by $q_!([a]) = [q(a)]$, and $q^*: M^*(H) \to M^*(G)$ by $q^*(g)(a) = g(q(a))$.
- ▶ Define $q^*: M(H) \to M(G)$ and $q_!: M^*(G) \to M^*(H)$ to be adjoint, so $(q_!(u), v)_H = (u, q^*(v))_G$ and $\langle q_!(f), g \rangle_H = \langle f, q^*(g) \rangle_G$.
- ► This is compatible with the isomorphisms M(G) ≃ M^{*}(G) ≃ Hom(M(G), Q).
- ▶ The isomorphism $M(G) \rightarrow M^*(G)$ is the isomorphism $\nu : c_1(c^*(\mathbb{Q})) \rightarrow c_*(c^*(\mathbb{Q}))$ that we considered before.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_l = c_∗: R(G) → R(1) = Z (so for a group we have θ([U]) = dim_C(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_!(u), v \rangle_H = \langle u, q^*(v) \rangle_G$$

- Let *L* be the subfield of \mathbb{C} generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in *L* so trace(α) ∈ *L*.
- Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- ▶ Define $C(G) = L \otimes M^*(\Lambda(G)) = Map(\pi_0(\Lambda G), L)$, so we have $\theta: C(G) \to L$ and $q_!: C(G) \rightleftarrows C(H): q^*$ for $q: G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_l = c_∗: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_!(u), v \rangle_H = \langle u, q^*(v) \rangle_G$$
.

- Let *L* be the subfield of \mathbb{C} generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in *L* so trace(α) ∈ *L*.
- Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftharpoons C(H) \colon q^*$ for $q \colon G \to H$.
- ▶ For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- This gives an isomorphism χ: L ⊗ R(G) → C(G), compatible with all structure.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_l = c_∗: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_!(u), v \rangle_H = \langle u, q^*(v) \rangle_G$$

- Let *L* be the subfield of \mathbb{C} generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in *L* so trace(α) ∈ *L*.
- Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- ▶ Define $C(G) = L \otimes M^*(\Lambda(G)) = Map(\pi_0(\Lambda G), L)$, so we have $\theta: C(G) \to L$ and $q_!: C(G) \rightleftarrows C(H): q^*$ for $q: G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_l = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_!(u), v \rangle_H = \langle u, q^*(v) \rangle_G$$

- Let *L* be the subfield of \mathbb{C} generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in *L* so trace(α) ∈ *L*.
- Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- ▶ Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftarrows C(H) \colon q^*$ for $q \colon G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_l = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_!(u), v \rangle_H = \langle u, q^*(v) \rangle_G$$
.

- Let *L* be the subfield of \mathbb{C} generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in *L* so trace(α) ∈ *L*.
- Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- ▶ Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftarrows C(H) \colon q^*$ for $q \colon G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_l = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_!(u), v \rangle_H = \langle u, q^*(v) \rangle_G$$

- Let *L* be the subfield of \mathbb{C} generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in *L* so trace(α) ∈ *L*.
- Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- ▶ Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftarrows C(H) \colon q^*$ for $q \colon G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \to C(G)$, compatible with all structure.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_i = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_{!}(u), v \rangle_{H} = \langle u, q^{*}(v) \rangle_{G}$$
.

- ▶ Let *L* be the subfield of ℂ generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftharpoons C(H) \colon q^*$ for $q \colon G \to H$.
- ▶ For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_i = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_{!}(u), v \rangle_{H} = \langle u, q^{*}(v) \rangle_{G}$$
.

- Let *L* be the subfield of \mathbb{C} generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftharpoons C(H) \colon q^*$ for $q \colon G \to H$.
- ▶ For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \to C(G)$, compatible with all structure.

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_i = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_{!}(u), v \rangle_{H} = \langle u, q^{*}(v) \rangle_{G}$$
.

- Let L be the subfield of C generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- ▶ Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftharpoons C(H) \colon q^*$ for $q \colon G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \operatorname{trace}(u_* : V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \to C(G)$, compatible with all structure.
Classical characters

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_i = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_{!}(u), v \rangle_{H} = \langle u, q^{*}(v) \rangle_{G}$$
.

- Let L be the subfield of C generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- ▶ Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- Define $C(G) = L \otimes M^*(\Lambda(G)) = \text{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftharpoons C(H) \colon q^*$ for $q \colon G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \operatorname{trace}(u_* : V_a \to V_a).$
- ▶ This gives an isomorphism $\chi: L \otimes R(G) \to C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_i = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_{!}(u), v \rangle_{H} = \langle u, q^{*}(v) \rangle_{G}$$
.

- Let L be the subfield of C generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- ▶ Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftharpoons C(H) \colon q^*$ for $q \colon G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- This gives an isomorphism χ: L ⊗ R(G) → C(G), compatible with all structure.

Classical characters

- For finite G, put $R(G) = \pi_0(\mathcal{V}_G) \pi_0(\mathcal{V}_G)$ (the representation ring).
- ▶ A functor $q: G \to H$ gives $q_!: \mathcal{V}_G \rightleftharpoons \mathcal{V}_H: q^*$ and then $q_!: R(G) \rightleftharpoons R(H): q^*$.
- Define θ = c_i = c_{*}: R(G) → R(1) = ℤ (so for a group we have θ([U]) = dim_ℂ(U^G)).
- This gives a perfect pairing $\langle u, v \rangle_G = \theta(uv)$ on R(G).

• This has
$$\langle q_{!}(u), v \rangle_{H} = \langle u, q^{*}(v) \rangle_{G}$$
.

- Let L be the subfield of C generated by all roots of unity.
- ▶ If $\alpha \in Aut(V)$ with $\alpha^m = 1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- ▶ Put $\Lambda G = [\mathbb{Z}, G]$ so $obj(\Lambda G) = \{(a, u) \mid a \in obj(G), u \in G(a, a)\}$ and $(a, u) \simeq (a', u')$ iff there exists $g \in G(a, a')$ with $u' = gug^{-1}$.
- Define $C(G) = L \otimes M^*(\Lambda(G)) = \operatorname{Map}(\pi_0(\Lambda G), L)$, so we have $\theta \colon C(G) \to L$ and $q_! \colon C(G) \rightleftharpoons C(H) \colon q^*$ for $q \colon G \to H$.
- For a representation $V: G \to \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u]) = \text{trace}(u_*: V_a \to V_a).$
- This gives an isomorphism χ: L ⊗ R(G) → C(G), compatible with all structure.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- Then [p^k]_E(x) = g_k(x)h_k(x), where h_k(x) ∈ E⁰[[x]][×] and g_k(x) ∈ E⁰[x] is a monic polynomial of degree p^{nk} and E⁰(BC_{p^k}) = E⁰[x]/g_k(x).
- Construct *L* from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all *k*.
- ▶ Put $\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \neq \infty}} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} p^{k}\sqrt{1} \subset S^{1}.$ (Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)
- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- ▶ Put $\Theta^* = \text{Hom}(\Theta, S^1) \simeq \mathbb{Z}_p^n$, regarded as a groupoid with one object.
- ▶ Put $\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow_k} [\Theta^*/p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$
- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \dots, x_n]/(g_k(x_1), \dots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q_1 and q^* adjoint to each other, and χ preserves all this.

Fix a prime p and n > 0 and let E be Morava E-theory.

- Then [p^k]_E(x) = g_k(x)h_k(x), where h_k(x) ∈ E⁰[[x]][×] and g_k(x) ∈ E⁰[x] is a monic polynomial of degree p^{nk} and E⁰(BC_{p^k}) = E⁰[x]/g_k(x).
- Construct *L* from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all *k*.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{i \to k} \mathbb{Z}/p^k = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_p/\mathbb{Z}_p = \bigcup_k \sqrt[p^k]{1} \subset S^1.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_p \simeq \text{Hom}(\mathbb{Z}/p^{\infty}, S^1).)$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- ▶ Put $\Theta^* = \text{Hom}(\Theta, S^1) \simeq \mathbb{Z}_p^n$, regarded as a groupoid with one object.

► Put
$$\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow_k} [\Theta^*/p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \ldots, x_n]/(g_k(x_1), \ldots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- **•** Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q₁ and q^{*} adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \neq \infty}} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{\overline{1}} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- ▶ Put $\Theta^* = \text{Hom}(\Theta, S^1) \simeq \mathbb{Z}_p^n$, regarded as a groupoid with one object.
- ▶ Put $\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow_k} [\Theta^*/p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$
- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \ldots, x_n]/(g_k(x_1), \ldots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- **•** Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q_1 and q^* adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.
- ▶ Put $\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \neq \infty}} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} p^{k}\sqrt{1} \subset S^{1}.$ (Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)
- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- ▶ Put $\Theta^* = \text{Hom}(\Theta, S^1) \simeq \mathbb{Z}_p^n$, regarded as a groupoid with one object.
- ▶ Put $\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow_k} [\Theta^*/p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$
- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \dots, x_n]/(g_k(x_1), \dots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q_1 and q^* adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \neq \infty}} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{\overline{1}} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- ▶ Put $\Theta^* = \operatorname{Hom}(\Theta, S^1) \simeq \mathbb{Z}_p^n$, regarded as a groupoid with one object.

▶ Put
$$\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow_k} [\Theta^*/p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \ldots, x_n]/(g_k(x_1), \ldots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- **•** Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q_1 and q^* adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \neq 0}} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- ▶ Put $\Theta^* = \text{Hom}(\Theta, S^1) \simeq \mathbb{Z}_p^n$, regarded as a groupoid with one object.

▶ Put
$$\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow_k} [\Theta^*/p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \ldots, x_n]/(g_k(x_1), \ldots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- **•** Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q₁ and q^{*} adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \neq \infty}} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \text{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- ▶ Put $\Theta^* = \operatorname{Hom}(\Theta, S^1) \simeq \mathbb{Z}_p^n$, regarded as a groupoid with one object.
- ▶ Put $\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow L} [\Theta^*/p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$
- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \dots, x_n]/(g_k(x_1), \dots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- **•** Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q₁ and q^{*} adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \neq 0}} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \text{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- Put Θ^{*} = Hom(Θ, S¹) ≃ Zⁿ_p, regarded as a groupoid with one object.
- ▶ Put $\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow} [\Theta^*/p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$
- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \dots, x_n]/(g_k(x_1), \dots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q_1 and q^* adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \ }} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- Put Θ^{*} = Hom(Θ, S¹) ≃ Zⁿ_p, regarded as a groupoid with one object.

► Put
$$\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow k} [\Theta^* / \rho^k, G], \quad C(G) = L \otimes M^* \wedge G = \operatorname{Map}(\pi_0 \wedge G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \ldots, x_n]/(g_k(x_1), \ldots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- **•** Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q₁ and q^{*} adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \ }} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- Put Θ^{*} = Hom(Θ, S¹) ≃ Zⁿ_p, regarded as a groupoid with one object.

► Put
$$\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow L} [\Theta^* / p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \dots, x_n]/(g_k(x_1), \dots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- **•** Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q_1 and q^* adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \ }} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- Put Θ^{*} = Hom(Θ, S¹) ≃ Zⁿ_p, regarded as a groupoid with one object.

► Put
$$\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow k} [\Theta^* / p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[[x_1, ..., x_n]]/(g_k(x_1), ..., g_k(x_n));$ there is a canonical map ϕ_k from this to L.
- ► Thus any $u: \Theta^*/p^k \to G$ gives $\phi_k \circ E^0(Bu): E^0BG \to L$. Assembling these gives $\chi: L \otimes_{E^0} E^0(BG) \to C(G)$.
- **•** Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q₁ and q^{*} adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \ }} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- Put Θ^{*} = Hom(Θ, S¹) ≃ Zⁿ_p, regarded as a groupoid with one object.

► Put
$$\Lambda G = [\Theta^*, G] = \lim_{\longrightarrow k} [\Theta^* / p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, ..., x_n]/(g_k(x_1), ..., g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- Thus any u: Θ^{*}/p^k → G gives φ_k ∘ E⁰(Bu): E⁰BG → L. Assembling these gives χ: L ⊗_{E⁰} E⁰(BG) → C(G).

Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Both sides have inner products, and operators q₁ and q^{*} adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \ }} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- Put Θ^{*} = Hom(Θ, S¹) ≃ Zⁿ_p, regarded as a groupoid with one object.

$$Put \Lambda G = [\Theta^*, G] = \lim_{\longrightarrow k} [\Theta^* / p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, \ldots, x_n]/(g_k(x_1), \ldots, g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- Thus any u: Θ^{*}/p^k → G gives φ_k ∘ E⁰(Bu): E⁰BG → L. Assembling these gives χ: L ⊗_{E⁰} E⁰(BG) → C(G).
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

Both sides have inner products, and operators q₁ and q^{*} adjoint to each other, and χ preserves all this.

- Fix a prime p and n > 0 and let E be Morava E-theory.
- ▶ Then $[p^k]_E(x) = g_k(x)h_k(x)$, where $h_k(x) \in E^0[\![x]\!]^{\times}$ and $g_k(x) \in E^0[x]$ is a monic polynomial of degree p^{nk} and $E^0(BC_{p^k}) = E^0[x]/g_k(x)$.
- Construct L from $\mathbb{Q} \otimes E^0$ by adjoining a full set of roots of $g_k(x)$ for all k.

▶ Put
$$\mathbb{Z}/p^{\infty} = \lim_{\substack{\longrightarrow \\ p \ }} \mathbb{Z}/p^{k} = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}_{(p)} = \mathbb{Q}_{p}/\mathbb{Z}_{p} = \bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}.$$

(Exercise: Hom $(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty}) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}(\mathbb{Z}/p^{\infty}, S^{1}).$)

- Put Θ = {all roots of all g_k(x)} ⊂ L. This is a group under +_E, isomorphic to (ℤ/p[∞])ⁿ, analogous to the formal group scheme G.
- Put Θ^{*} = Hom(Θ, S¹) ≃ Zⁿ_p, regarded as a groupoid with one object.

$$Put \Lambda G = [\Theta^*, G] = \lim_{\longrightarrow k} [\Theta^* / p^k, G], \quad C(G) = L \otimes M^* \Lambda G = \operatorname{Map}(\pi_0 \Lambda G, L).$$

- ► Recall $E^0(B(\Theta^*/p^k)) = E^0[x_1, ..., x_n]/(g_k(x_1), ..., g_k(x_n));$ there is a canonical map ϕ_k from this to *L*.
- Thus any u: Θ^{*}/p^k → G gives φ_k ∘ E⁰(Bu): E⁰BG → L. Assembling these gives χ: L ⊗_{E⁰} E⁰(BG) → C(G).
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q₁ and q^{*} adjoint to each other, and χ preserves all this.

- Reduce to the case of a finite group G.
- ▶ Generalise: for a finite *G*-CW complex *Z*, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathrm{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)
- **•** Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_A Q ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.
- ▶ Recall spf($E^0(BA)$) = Hom(A^* , \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^* , \mathbb{G}).
- ▶ There is a similar map $u_k^{-1}E^0(BG)/I_k \rightarrow (\prod_A u_k^{-1}D_{k,A})^G$ for k > 0, which is an *F*-isomorphism (Greenlees-Strickland; see also Stapleton).

Reduce to the case of a finite group G.

▶ Generalise: for a finite *G*-CW complex *Z*, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathsf{image}(\theta)}; \mathbb{Q}) \right)^G$$

Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)

• Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.

- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_AQ ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.

▶ Recall spf($E^0(BA)$) = Hom(A^* , \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^* , \mathbb{G}).

- Reduce to the case of a finite group G.
- ▶ Generalise: for a finite *G*-CW complex *Z*, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathsf{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)
- **•** Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_AQ ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.
- ▶ Recall spf($E^0(BA)$) = Hom(A^*, \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^*, \mathbb{G}).
- ▶ There is a similar map $u_k^{-1}E^0(BG)/I_k \rightarrow (\prod_A u_k^{-1}D_{k,A})^G$ for k > 0, which is an *F*-isomorphism (Greenlees-Strickland; see also Stapleton).

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathsf{image}(\theta)}; \mathbb{Q}) \right)^G$$

Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)

• Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.

- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_A Q ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.

▶ Recall spf($E^0(BA)$) = Hom(A^* , \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^* , \mathbb{G}).

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathrm{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser
 E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}).
 Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_AQ ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.
- ▶ Recall spf($E^0(BA)$) = Hom(A^*, \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^*, \mathbb{G}).
- ▶ There is a similar map $u_k^{-1}E^0(BG)/I_k \rightarrow (\prod_A u_k^{-1}D_{k,A})^G$ for k > 0, which is an *F*-isomorphism (Greenlees-Strickland; see also Stapleton).

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathsf{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_A Q ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.
- ▶ Recall spf($E^0(BA)$) = Hom(A^*, \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^*, \mathbb{G}).
- ▶ There is a similar map $u_k^{-1}E^0(BG)/I_k \rightarrow (\prod_A u_k^{-1}D_{k,A})^G$ for k > 0, which is an *F*-isomorphism (Greenlees-Strickland; see also Stapleton).

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathsf{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_A Q ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.
- ▶ Recall spf($E^0(BA)$) = Hom(A^*, \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^*, \mathbb{G}).
- ▶ There is a similar map $u_k^{-1}E^0(BG)/I_k \rightarrow (\prod_A u_k^{-1}D_{k,A})^G$ for k > 0, which is an *F*-isomorphism (Greenlees-Strickland; see also Stapleton).

- Reduce to the case of a finite group G.
- ▶ Generalise: for a finite *G*-CW complex *Z*, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathsf{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_A Q ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.

▶ Recall spf($E^0(BA)$) = Hom(A^*, \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^*, \mathbb{G}).

- Reduce to the case of a finite group G.
- ▶ Generalise: for a finite *G*-CW complex *Z*, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathsf{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{image(\theta)}$ is Z (if $image(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_A Q ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.

▶ Recall spf($E^0(BA)$) = Hom(A^*, \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^*, \mathbb{G}).

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$\chi_{G,Z} \colon L \otimes_{E^0} E^*(Z_{hG}) \to L \otimes_{\mathbb{Q}} \left(\prod_{\theta \colon \Theta^* \to G} H^*(Z^{\mathsf{image}(\theta)}; \mathbb{Q}) \right)^G$$

- Prove by calculation that $\theta_{G,Z}$ is iso when Z = G/A with $A \leq G$ abelian. (Here $Z_{hG} = BA$, and $Z^{\text{image}(\theta)}$ is Z (if $\text{image}(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G,Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in C[G], so Z × F and Z × F² have abelian isotropy, and we have an equaliser E^{*}(Z_{hG}) → E^{*}((Z × F)_{hG}) ⇒ E^{*}((Z × F²)_{hG}). Deduce the general case from this.
- Corollary: Q ⊗ E⁰(BG) = u₀⁻¹E⁰(BG) ≃ (∏_A Q ⊗ D_A)^G. Here A runs over abelian subgroups A < G, and D_A is a certain regular local ring, free of finite rank as an E⁰-module.

▶ Recall spf($E^0(BA)$) = Hom(A^*, \mathbb{G}); morally spf($E^0(D_A)$) = Inj(A^*, \mathbb{G}).

- Suppose for simplicity that E¹(BG) = 0 and E⁰(BG) is free over E⁰, say with basis e₁,..., e_r.
- ▶ The pairing on $E^0(BG)$ is $\langle f, g \rangle_G = \theta(fg)$ for some $\theta \colon E^0(BG) \to E^0$.
- We can also define the trace τ : E⁰(BG) → E⁰, so if fe_i = ∑_i a_{ij}e_j then τ(f) = ∑_i a_{ii}.
- Choose representatives u_1, \ldots, u_m of the isomorphism classes in ΛG , with automorphism groups $\Gamma_i = (\Lambda G)(u_i, u_i)$; then on $L \otimes_{E^0} E^0(BG) \simeq C(G)$ we have $\theta(f) = \sum_i |\Gamma_i|^{-1} f(u_i)$ and $\tau(f) = \sum_i f(u_i)$.
- If G is an abelian group then Γ_i ≃ G for all i and so τ = |G|θ on C(G) or on E⁰(BG).

- Suppose for simplicity that E¹(BG) = 0 and E⁰(BG) is free over E⁰, say with basis e₁,..., e_r.
- ▶ The pairing on $E^0(BG)$ is $(f,g)_G = \theta(fg)$ for some $\theta: E^0(BG) \to E^0$.
- We can also define the trace τ : E⁰(BG) → E⁰, so if fe_i = ∑_i a_{ij}e_j then τ(f) = ∑_i a_{ii}.
- Choose representatives u_1, \ldots, u_m of the isomorphism classes in ΛG , with automorphism groups $\Gamma_i = (\Lambda G)(u_i, u_i)$; then on $L \otimes_{E^0} E^0(BG) \simeq C(G)$ we have $\theta(f) = \sum_i |\Gamma_i|^{-1} f(u_i)$ and $\tau(f) = \sum_i f(u_i)$.
- If G is an abelian group then Γ_i ≃ G for all i and so τ = |G|θ on C(G) or on E⁰(BG).

- Suppose for simplicity that E¹(BG) = 0 and E⁰(BG) is free over E⁰, say with basis e₁,..., e_r.
- ▶ The pairing on $E^0(BG)$ is $(f,g)_G = \theta(fg)$ for some $\theta \colon E^0(BG) \to E^0$.
- We can also define the trace τ : E⁰(BG) → E⁰, so if fe_i = ∑_i a_{ij}e_j then τ(f) = ∑_i a_{ii}.
- Choose representatives u_1, \ldots, u_m of the isomorphism classes in ΛG , with automorphism groups $\Gamma_i = (\Lambda G)(u_i, u_i)$; then on $L \otimes_{E^0} E^0(BG) \simeq C(G)$ we have $\theta(f) = \sum_i |\Gamma_i|^{-1} f(u_i)$ and $\tau(f) = \sum_i f(u_i)$.
- If G is an abelian group then Γ_i ≃ G for all i and so τ = |G|θ on C(G) or on E⁰(BG).

- Suppose for simplicity that E¹(BG) = 0 and E⁰(BG) is free over E⁰, say with basis e₁,..., e_r.
- ▶ The pairing on $E^0(BG)$ is $(f,g)_G = \theta(fg)$ for some $\theta \colon E^0(BG) \to E^0$.
- ▶ We can also define the trace $\tau : E^0(BG) \to E^0$, so if $fe_i = \sum_j a_{ij}e_j$ then $\tau(f) = \sum_i a_{ii}$.
- Choose representatives u₁,..., u_m of the isomorphism classes in ΛG, with automorphism groups Γ_i = (ΛG)(u_i, u_i); then on L ⊗_{E⁰} E⁰(BG) ≃ C(G) we have θ(f) = ∑_i |Γ_i|⁻¹f(u_i) and τ(f) = ∑_i f(u_i).
- lf G is an abelian group then $\Gamma_i \simeq G$ for all *i* and so $\tau = |G|\theta$ on C(G) or on $E^0(BG)$.

- Suppose for simplicity that E¹(BG) = 0 and E⁰(BG) is free over E⁰, say with basis e₁,..., e_r.
- ▶ The pairing on $E^0(BG)$ is $(f,g)_G = \theta(fg)$ for some $\theta \colon E^0(BG) \to E^0$.
- We can also define the trace $\tau : E^0(BG) \to E^0$, so if $fe_i = \sum_j a_{ij}e_j$ then $\tau(f) = \sum_i a_{ii}$.
- Choose representatives u_1, \ldots, u_m of the isomorphism classes in ΛG , with automorphism groups $\Gamma_i = (\Lambda G)(u_i, u_i)$; then on $L \otimes_{E^0} E^0(BG) \simeq C(G)$ we have $\theta(f) = \sum_i |\Gamma_i|^{-1} f(u_i)$ and $\tau(f) = \sum_i f(u_i)$.
- If G is an abelian group then Γ_i ≃ G for all i and so τ = |G|θ on C(G) or on E⁰(BG).

- For a space X, put $\Lambda_0 X = \lim_{m \to \infty} [B(\Theta^*/p^m)_+, X]$, so $\Lambda_0 BG = \pi_0(\Lambda G)$ for finite groupoids G.
- ▶ Put $C(X) = Map(\Lambda_0(X), L)$; we still have a ring map χ : $L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ▶ We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A_{(p)}^{\binom{d}{d}}$ (assuming $|A| < \infty$).
- Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(Zⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(Zⁿ)₊, X] = [Σ²B(Zⁿ)₊, Z].
- Theorem (Lurie): χ: L ⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.

- For a space X, put Λ₀X = lim_m [B(Θ^{*}/p^m)₊, X], so Λ₀BG = π₀(ΛG) for finite groupoids G.
- ▶ Put $C(X) = Map(\Lambda_0(X), L)$; we still have a ring map $\chi: L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ▶ We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A_{(p)}^{\binom{d}{d}}$ (assuming $|A| < \infty$).
- Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(Zⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(Zⁿ)₊, X] = [Σ²B(Zⁿ)₊, Z].
- Theorem (Lurie): χ: L ⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.

For a space X, put
$$\Lambda_0 X = \lim_{\longrightarrow m} [B(\Theta^*/p^m)_+, X]$$

so $\Lambda_0 BG = \pi_0(\Lambda G)$ for finite groupoids G.

- Put $C(X) = \text{Map}(\Lambda_0(X), L)$; we still have a ring map $\chi: L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ▶ We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A_{(p)}^{\binom{d}{d}}$ (assuming $|A| < \infty$).
- Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(Zⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(Zⁿ)₊, X] = [Σ²B(Zⁿ)₊, Z].
- Theorem (Lurie): χ: L ⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.

- For a space X, put Λ₀X = lim_m [B(Θ^{*}/p^m)₊, X], so Λ₀BG = π₀(ΛG) for finite groupoids G.
- Put $C(X) = Map(\Lambda_0(X), L)$; we still have a ring map $\chi: L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ▶ We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A_{(p)}^{\binom{d}{d}}$ (assuming $|A| < \infty$).
- Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(Zⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(Zⁿ)₊, X] = [Σ²B(Zⁿ)₊, Z].
- Theorem (Lurie): χ: L ⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.
- For a space X, put Λ₀X = lim_m [B(Θ^{*}/p^m)₊, X], so Λ₀BG = π₀(ΛG) for finite groupoids G.
- Put $C(X) = \text{Map}(\Lambda_0(X), L)$; we still have a ring map $\chi: L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ▶ We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A_{(p)}^{\binom{d}{d}}$ (assuming $|A| < \infty$).
- ► Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(Zⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(Zⁿ)₊, X] = [Σ²B(Zⁿ)₊, Z].
- Theorem (Lurie): χ: L ⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.

- For a space X, put Λ₀X = lim_m [B(Θ^{*}/p^m)₊, X], so Λ₀BG = π₀(ΛG) for finite groupoids G.
- Put $C(X) = Map(\Lambda_0(X), L)$; we still have a ring map $\chi: L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ► We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A_{(p)}^{\binom{d}{d}}$ (assuming $|A| < \infty$).
- ► Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(Zⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(Zⁿ)₊, X] = [Σ²B(Zⁿ)₊, Z].
- Theorem (Lurie): χ: L ⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.

- For a space X, put Λ₀X = lim_m [B(Θ^{*}/p^m)₊, X], so Λ₀BG = π₀(ΛG) for finite groupoids G.
- Put $C(X) = \text{Map}(\Lambda_0(X), L)$; we still have a ring map $\chi: L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ► We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A_{(p)}^{\binom{d}{d}}$ (assuming $|A| < \infty$).
- Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(Zⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(Zⁿ)₊, X] = [Σ²B(Zⁿ)₊, Z].
- Theorem (Lurie): χ: L⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.

- For a space X, put Λ₀X = lim_m [B(Θ^{*}/p^m)₊, X], so Λ₀BG = π₀(ΛG) for finite groupoids G.
- Put $C(X) = \text{Map}(\Lambda_0(X), L)$; we still have a ring map $\chi: L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ► We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A_{(p)}^{\binom{d}{d}}$ (assuming $|A| < \infty$).
- Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(ℤⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(ℤⁿ)₊, X] = [Σ²B(ℤⁿ)₊, Z].
- Theorem (Lurie): χ: L⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.

- For a space X, put Λ₀X = lim_m [B(Θ^{*}/p^m)₊, X], so Λ₀BG = π₀(ΛG) for finite groupoids G.
- Put $C(X) = \text{Map}(\Lambda_0(X), L)$; we still have a ring map $\chi: L \otimes_{E^0} E^0(X) \to C(X)$, which is iso for X = BG.
- ▶ Recall that the Eilenberg-MacLane space $B^d A = K(A, d)$ has $\pi_d(B^d A) = A$ and $\pi_i(B^d A) = 0$ for $i \neq d$ and $[Z, B^d A] = H^d(Z; A)$.
- Note that Θ^{*}/p^k is similar to Θ^{*} = Zⁿ_p or Zⁿ, and B(Zⁿ) is the torus (S¹)ⁿ, with H_{*}(B(Zⁿ)) = λ^{*}(Zⁿ).
- ► We find that $\Lambda_0(B^d A) = \operatorname{Hom}(\lambda^d \Theta^*, A) \simeq A^{\binom{d}{d}}_{(p)}$ (assuming $|A| < \infty$).
- Claim: if $X \simeq \Omega^2 Z$ for some Z, then $\Lambda_0 X = \text{Hom}(\lambda^*(\Theta^*), \pi_*(X))$.
- Proof uses Σ²((P × Q)₊) ≃ Σ²(S⁰ ∨ P ∨ Q ∨ (P ∧ Q)), iterated to split Σ²B(ℤⁿ)₊ = Σ²((S¹)ⁿ₊) as a wedge of spheres, together with [B(ℤⁿ)₊, X] = [Σ²B(ℤⁿ)₊, Z].
- Theorem (Lurie): χ: L ⊗_{E⁰} E⁰(X) → C(X) is iso if X is a π-finite space/finite ∞-groupoid.

- Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$
- Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$
- ► Theorem (essentially Ravenel-Wilson): $spf(E^0(B^dC_{p^k})) = \lambda^d(ker(p^k.1: \mathbb{G} \to \mathbb{G})) \ (= 0 \text{ for } d > n).$
- Corollary: for A finite abelian: $spf(E^0(B^dA)) = Tor(\mathbb{G}, \dots, \mathbb{G}, A)^{\Sigma_d}$
- Corollary: spf(E⁰(Bⁿ⁺¹Z)) = spf(E⁰(Bⁿ(Z/p[∞]))) = Tor(G,...,G)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with mult^{*} $(y) = y_0 + y_1 + y_0y_1$.
- ► Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over 𝔽_p, and the category of such is equivalent to a category of *Dieudonné modules*.

• Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$

• Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$

► Theorem (essentially Ravenel-Wilson): $spf(E^0(B^dC_{p^k})) = \lambda^d(ker(p^k.1: \mathbb{G} \to \mathbb{G})) (= 0 \text{ for } d > n).$

• Corollary: for A finite abelian: $spf(E^0(B^dA)) = Tor(\mathbb{G}, \dots, \mathbb{G}, A)^{\Sigma_d}$

- Corollary: spf(E⁰(Bⁿ⁺¹Z)) = spf(E⁰(Bⁿ(Z/p[∞]))) = Tor(G,...,G)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with mult^{*} $(y) = y_0 + y_1 + y_0y_1$.
- ► Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over 𝔽_p, and the category of such is equivalent to a category of *Dieudonné modules*.

- Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$
- Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$
- ► Theorem (essentially Ravenel-Wilson): $spf(E^0(B^dC_{p^k})) = \lambda^d(ker(p^k.1: \mathbb{G} \to \mathbb{G})) \ (= 0 \text{ for } d > n).$
- Corollary: for A finite abelian: $spf(E^0(B^dA)) = Tor(\mathbb{G}, \dots, \mathbb{G}, A)^{\Sigma_d}$
- Corollary: spf(E⁰(Bⁿ⁺¹Z)) = spf(E⁰(Bⁿ(Z/p[∞]))) = Tor(G,...,G)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with mult^{*} $(y) = y_0 + y_1 + y_0y_1$.
- ► Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over 𝔽_p, and the category of such is equivalent to a category of *Dieudonné modules*.

- Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$
- Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$
- Theorem (essentially Ravenel-Wilson): spf(E⁰(B^dC_{p^k})) = λ^d(ker(p^k.1: G → G)) (= 0 for d > n).
- Corollary: for A finite abelian: $spf(E^0(B^dA)) = Tor(\mathbb{G}, \dots, \mathbb{G}, A)^{\Sigma_d}$
- Corollary: spf(E⁰(Bⁿ⁺¹Z)) = spf(E⁰(Bⁿ(Z/p[∞]))) = Tor(G,...,G)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with mult^{*} $(y) = y_0 + y_1 + y_0y_1$.
- ► Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over 𝔽_p, and the category of such is equivalent to a category of *Dieudonné modules*.

- Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$
- Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$
- ► Theorem (essentially Ravenel-Wilson): $spf(E^0(B^dC_{p^k})) = \lambda^d(ker(p^k.1: \mathbb{G} \to \mathbb{G})) \ (= 0 \text{ for } d > n).$
- Corollary: for A finite abelian: $spf(E^0(B^dA)) = Tor(\mathbb{G}, \dots, \mathbb{G}, A)^{\Sigma_d}$
- Corollary: spf(E⁰(Bⁿ⁺¹Z)) = spf(E⁰(Bⁿ(Z/p[∞]))) = Tor(G,...,G)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with $\operatorname{mult}^*(y) = y_0 + y_1 + y_0 y_1$.
- ► Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over 𝔽_p, and the category of such is equivalent to a category of *Dieudonné modules*.

- Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$
- Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$
- ► Theorem (essentially Ravenel-Wilson): $spf(E^0(B^dC_{p^k})) = \lambda^d(ker(p^k.1: \mathbb{G} \to \mathbb{G})) \ (= 0 \text{ for } d > n).$
- Corollary: for A finite abelian: spf(E⁰(B^dA)) = Tor(G,...,G,A)^{Σ_d}
- Corollary: spf(E⁰(Bⁿ⁺¹Z)) = spf(E⁰(Bⁿ(Z/p[∞]))) = Tor(G,...,G)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with mult^{*} $(y) = y_0 + y_1 + y_0y_1$.
- ► Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over 𝔽_p, and the category of such is equivalent to a category of *Dieudonné modules*.

- Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$
- Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$
- ► Theorem (essentially Ravenel-Wilson): $spf(E^0(B^dC_{p^k})) = \lambda^d(ker(p^k.1: \mathbb{G} \to \mathbb{G})) \ (= 0 \text{ for } d > n).$
- Corollary: for A finite abelian: $spf(E^0(B^dA)) = Tor(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_d}$
- Corollary: spf(E⁰(Bⁿ⁺¹ℤ)) = spf(E⁰(Bⁿ(ℤ/p[∞]))) = Tor(𝔅,...,𝔅)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with $\operatorname{mult}^*(y) = y_0 + y_1 + y_0y_1$.
- ► Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over F_p, and the category of such is equivalent to a category of *Dieudonné modules*.

- Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$
- Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$
- ► Theorem (essentially Ravenel-Wilson): $spf(E^0(B^dC_{p^k})) = \lambda^d(ker(p^k.1: \mathbb{G} \to \mathbb{G})) \ (= 0 \text{ for } d > n).$
- Corollary: for A finite abelian: $spf(E^0(B^dA)) = Tor(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_d}$
- Corollary: spf(E⁰(Bⁿ⁺¹ℤ)) = spf(E⁰(Bⁿ(ℤ/p[∞]))) = Tor(𝔅,...,𝔅)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with mult^{*} $(y) = y_0 + y_1 + y_0y_1$.
- Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over F_p, and the category of such is equivalent to a category of *Dieudonné modules*.

- Recall $spf(E^0BA) = Hom(A^*, \mathbb{G}) = Tor(A, \mathbb{G})$
- Also $\operatorname{Hom}(\lambda^d \Theta^*, A) = \operatorname{Tor}(\Theta, \dots, \Theta, A)^{\Sigma_d}$
- ► Theorem (essentially Ravenel-Wilson): $spf(E^0(B^dC_{p^k})) = \lambda^d(ker(p^k.1: \mathbb{G} \to \mathbb{G})) \ (= 0 \text{ for } d > n).$
- Corollary: for A finite abelian: $spf(E^0(B^dA)) = Tor(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_d}$
- Corollary: spf(E⁰(Bⁿ⁺¹ℤ)) = spf(E⁰(Bⁿ(ℤ/p[∞]))) = Tor(𝔅,...,𝔅)^{Σ_n}, and this is a one-dimensional formal group of height one.
- Equivalently $E^0(B^n(\mathbb{Z}/p^\infty)) = E^0\llbracket y \rrbracket$ with mult^{*} $(y) = y_0 + y_1 + y_0y_1$.
- ► Alternatively, K⁰(B^dA) is a finite-dimensional Hopf algebra over F_p, and the category of such is equivalent to a category of *Dieudonné modules*.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{\leq m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_1(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{\leq m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_\rho)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{\leq m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_\rho)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{\leq m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- ▶ Assuming this, any *q* with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \rightarrow 1$ is ambidextrous. Thus any *q* with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any *q* with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- ▶ Assuming this, any *q* with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \rightarrow 1$ is ambidextrous. Thus any *q* with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any *q* with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{\leq m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_\rho)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$). But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.

Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.

- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.

Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.

- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.

▶ Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.

- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect

or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.

- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_1(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_\rho)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that c₁(c^{*}(K)) → c_{*}(c^{*}(K)) is iso for c: B^mC_p → 1 or that K_{*}(B^mC_p) → K^{*}(B^mC_p) is iso or that the corresponding pairing on K^{*}(B^mC_p) is perfect or that the corresponding pairing on E^{*}(B^mC_p) is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_1(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.

- Theorem (Hopkins-Lurie): any q: X → Y of finite ∞-groupoids/π-finite spaces is ambidextrous, i.e. q₁ ≃ q_{*} as functors K(X) → K(Y).
- ▶ There exists *m* such that all fibres $(q \downarrow b)$ have $\pi_k = 0$ for all k > m. Greenlees-Sadofsky gives $m \le 1$; do m > 1 by induction.
- Key case: $c: B^m C_p \to 1$ is ambidextrous.
- Assuming this, any q with fibres $B^m C_p$ is ambidextrous. Thus any $B^m A \to 1$ is ambidextrous. Thus any q with fibre $B^m A$ is ambidextrous, such as the Postnikov truncation $X \to X_{\leq m}$ (if $X = X_{\leq m}$).But $X_{< m} \to 1$ is ambidextrous by induction, so $X \to 1$ is ambidextrous. Thus any q with *m*-truncated fibres is ambidextrous.
- Further reduction (similar to m = 1): enough to show that $c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is iso for $c: B^m C_p \rightarrow 1$ or that $K_*(B^m C_p) \rightarrow K^*(B^m C_p)$ is iso or that the corresponding pairing on $K^*(B^m C_p)$ is perfect or that the corresponding pairing on $E^*(B^m C_p)$ is perfect.
- As with the case m = 1, the pairing is given by a map θ: E⁰(B^mC_p) → E⁰ and we also have a trace map τ: E⁰(B^mC_p) → E⁰, and these satisfy τ = p^kθ for some k.
- One can calculate enough structure of $E^0(B^m C_p)$ to deduce from this that θ gives a perfect pairing.