Ambidexterity 4

Neil Strickland

May 26, 2023

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and
X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
\Rightarrow We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
\Rightarrow For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
$\Rightarrow \operatorname{In} M P_{0}:$ put $u_{i}=$ coeff of x^{p} in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right) \hat{I}_{n}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}.
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
\Rightarrow If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$.
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.
\Rightarrow Thus, for $X \in \mathcal{K}=$ thick $\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$
X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
$-\operatorname{In} M P_{0}$: put $u_{i}=$ coeff of $x^{P^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right) \hat{I}_{n}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=$ thick $\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}.
\Rightarrow Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{k}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$.
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.
- Thus, for $X \in \mathcal{K}=$ thick $\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic $Z(e . g . K$ is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
\Rightarrow For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
$\Rightarrow \operatorname{In} M P_{0}:$ put $u_{i}=$ coeff of $x^{P^{\prime}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an MP-module M we have $L M=\left(u_{n}^{-1} M\right) \hat{I}_{n}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
\Rightarrow Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n}-1}\right)$ for some i_{0}, \ldots, i_{n-1}
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$
\Rightarrow If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.
\Rightarrow Thus, for $X \in \mathcal{K}=$ thick $\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
\Rightarrow We write \mathcal{K} for the ∞-category of K-local spectra
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
- In MP: put $u_{i}=$ coeff of x^{p} in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right) \hat{I}_{n}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i o}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$
- If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$
- If $M \in \operatorname{Mod}$ MP then $L(F \wedge M) \in \operatorname{thick}\left\langle\operatorname{Mod}_{k}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.
- Thus, for $X \in \mathcal{K}=\operatorname{thick}\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$
where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso
\Rightarrow The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
- In MP P_{0} : put $u_{i}=$ coeff of x^{p} in $\lceil p]_{\operatorname{MPD}}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an MP-module M we have $L M=\left(u_{n}^{-1} M\right) \hat{i}_{n}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.
- Thus, for $X \in \mathcal{K}=\operatorname{thick}\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $P G(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
- In MPo: put $u_{i}=$ coeff of x^{p} in $[p]_{M p}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an MP-module M we have $L M=\left(u_{n}^{-1} M\right) \hat{i}_{n}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}.
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$
- If $M \in \operatorname{Mod} M P$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{k}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.
- Thus, for $X \in \mathcal{K}=$ thick $\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso. construct colimits in \mathcal{S} and apply L.
$\rightarrow \ln M P_{0}:$ put $u_{i}=$ coeff of $x^{p^{\prime}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
\rightarrow For an MP-module M we have $L M=\left(u_{n}^{-1} M\right) \hat{i}_{n}$. Thus E is K-local
\rightarrow Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
\rightarrow Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}
$>$ Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod} k$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(k)}$ so $p_{G}(M)=0$.
\rightarrow If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in \operatorname{thick}\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
\checkmark In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}\right.$
$\left.u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$.
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so
- Thus, for $X \in \mathcal{K}=$ thick $\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
\checkmark In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right) \hat{\iota}_{n}$.
- Deep Theorem
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i g}\right.$
$\left.u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}
\Rightarrow Put $p_{G}(X)=\operatorname{cof}\left(c!(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$
- If $M \in \operatorname{Mod}_{k}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$.
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so
- Thus, for $X \in \mathcal{K}=$ thick $\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
\checkmark In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right){\hat{I_{n}}}^{\wedge}$. Thus E is K-local.
- Deep Theorem
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i g}\right.$
$\left.u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}
\Rightarrow Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{k}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$.
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so
- Thus, for $X \in \mathcal{K}=$ thick $\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
\checkmark In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right){\hat{I_{n}}}^{\wedge}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
\Rightarrow Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
- In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right){\hat{I_{n}}}^{\wedge}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
- In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right){\hat{I_{n}}}^{\wedge}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}.
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{k}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
- In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right){\hat{I_{n}}}^{\wedge}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}.
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
- In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right){\hat{I_{n}}}^{\wedge}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}.
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$.
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{k}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.

K-local spectra

- Recall that Z is K-acyclic if $K_{*} Z=0$, and X is K-local if $[Z, X]=0$ for all K-acyclic Z (e.g. K is K-local)
- We write \mathcal{K} for the ∞-category of K-local spectra.
- There is a functorial cofibration $C X \rightarrow X \rightarrow L X$ where $C X$ is K-acyclic and $L X$ is K-local.
- For objects: $L X=0$ iff $K_{*}(X)=0$. For morphisms: $L f$ iso iff $K_{*}(f)$ iso.
- The subcategory $\mathcal{K} \subseteq \mathcal{S}$ is closed under limits. To get colimits in \mathcal{K}, construct colimits in \mathcal{S} and apply L.
- In $M P_{0}$: put $u_{i}=$ coeff of $x^{p^{i}}$ in $[p]_{M P}(x)$ and $I_{n}=\left(u_{0}, \ldots, u_{n-1}\right)$.
- For an $M P$-module M we have $L M=\left(u_{n}^{-1} M\right){\hat{I_{n}}}^{\wedge}$. Thus E is K-local.
- Deep Theorem: $\mathcal{K}=\operatorname{thick}\left\langle L M \mid M \in \operatorname{Mod}_{M P}\right\rangle$
- Deep Theorem: There is a finite spectrum F such that $M P_{*} F=M P_{*} /\left(u_{0}^{i_{0}}, \ldots, u_{n-1}^{i_{n-1}}\right)$ for some i_{0}, \ldots, i_{n-1}.
- Put $p_{G}(X)=\operatorname{cof}\left(c_{!}(X) \rightarrow c_{*}(X)\right)=\operatorname{cof}\left(L\left(X_{h G}\right) \rightarrow X^{h G}\right)$ so $p_{G}(K)=0$.
- If $M \in \operatorname{Mod}_{K}$ then $p_{G}(M) \in \operatorname{Mod}_{p_{G}(K)}$ so $p_{G}(M)=0$.
- If $M \in \operatorname{Mod}_{M P}$ then $L(F \wedge M) \in$ thick $\left\langle\operatorname{Mod}_{K}\right\rangle$ so $p_{G}(L(F \wedge M))=0$ so $F \wedge p_{G}(L M)=0$ so $p_{G}(L M)=0$.
- Thus, for $X \in \mathcal{K}=$ thick $\left\langle L \operatorname{Mod}_{M P}\right\rangle$ we have $p_{G}(X)=0$ i.e. $c_{!}(X)=c_{*}(X)$.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
\Rightarrow Given $q: G \rightarrow H$ we define $q!: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q!: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $(q!(u), v)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
\downarrow This is compatible with the isomorphisms $M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.
\Rightarrow The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{!}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$)
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$ where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
\Rightarrow This is compatible with the isomorphisms $M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$
- The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{1}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
\Rightarrow Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
D Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$
- This is compatible with the isomorphisms $M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$
- The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{1}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so ([a], $[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so
- This is compatible with the isomorphisms $M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.
- The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{!}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.

D Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so
\Rightarrow This is compatible with the isomorphisms $M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$

- The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{!}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.

- This is compatible with the isomorphisms

$M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.
\rightarrow The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{!}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
- The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{!}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
- This is compatible with the isomorphisms
$M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.
\Rightarrow The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{!}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Naive groupoid duality

- For a finite groupoid G put $M(G)=\mathbb{Q}\left\{\pi_{0}(G)\right\}$ and $M^{*}(G)=\operatorname{Hom}(M(G), \mathbb{Q})=\operatorname{Map}\left(\pi_{0}(G), \mathbb{Q}\right)$.
- Define an inner product on $M(G)$ by $([a],[b])_{G}=|G(a, b)|$ (so $([a],[b])=0$ unless $a \simeq b$).
- The induced inner product on $M^{*}(G)$ is $\langle f, g\rangle_{G}=\sum_{i=1}^{r}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} f\left(a_{i}\right) g\left(a_{i}\right)$, where a_{1}, \ldots, a_{r} contains one member of each isomorphism class.
- This is also $\langle f, g\rangle_{G}=\theta(f g)$, where $\theta(h)=\sum_{i}\left|G\left(a_{i}, a_{i}\right)\right|^{-1} h\left(a_{i}\right)$.
- Given $q: G \rightarrow H$ we define $q_{!}: M(G) \rightarrow M(H)$ by $q_{!}([a])=[q(a)]$, and $q^{*}: M^{*}(H) \rightarrow M^{*}(G)$ by $q^{*}(g)(a)=g(q(a))$.
- Define $q^{*}: M(H) \rightarrow M(G)$ and $q_{!}: M^{*}(G) \rightarrow M^{*}(H)$ to be adjoint, so $\left(q_{!}(u), v\right)_{H}=\left(u, q^{*}(v)\right)_{G}$ and $\left\langle q_{!}(f), g\right\rangle_{H}=\left\langle f, q^{*}(g)\right\rangle_{G}$.
- This is compatible with the isomorphisms
$M(G) \simeq M^{*}(G) \simeq \operatorname{Hom}(M(G), \mathbb{Q})$.
- The isomorphism $M(G) \rightarrow M^{*}(G)$ is the isomorphism $\nu: c_{!}\left(c^{*}(\mathbb{Q})\right) \rightarrow c_{*}\left(c^{*}(\mathbb{Q})\right)$ that we considered before.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q_{!}: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q!: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
\Rightarrow This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\langle q!(u), v\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
\Rightarrow If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- Put $\Lambda G=[\mathbb{Z}, G]$ so obj $(\Lambda G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g^{-1}$.
\Rightarrow Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\wedge G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q!: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
- For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
\Rightarrow A functor $q: G \rightarrow H$ gives $q!: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H):$
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$
(so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\langle q!(u), v\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
$>$ Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so $\operatorname{trace}(\alpha) \in L$.
- Put $\Lambda G=[\mathbb{Z}, G]$ so obj $(\Lambda G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g^{-1}$
- Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
\Rightarrow For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q!: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
\Rightarrow Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$
(so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
$>$ This has $\langle q!(u), v\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so $\operatorname{trace}(\alpha) \in L$.
$\Rightarrow \operatorname{Put} \wedge G=[\mathbb{Z}, G]$ so $\operatorname{obj}(\wedge G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g^{-1}$
- Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q!: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
- For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q!: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
\Rightarrow This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\left\langle q_{!}(u), v\right\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
\Rightarrow If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- Put $\wedge G=[\mathbb{Z}, G]$ so $\operatorname{obj}(\wedge G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g^{-}$
\Rightarrow Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q!: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
- For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q!: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so $\operatorname{trace}(\alpha) \in L$.
$\Rightarrow \operatorname{Put} \wedge G=[\mathbb{Z}, G]$ so $\operatorname{obj}(\wedge G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g{ }^{-}$
- Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q!: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
- For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q!: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\left\langle q_{!}(u), v\right\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
\rightarrow Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so $\operatorname{trace}(\alpha) \in L$.
- Put $\Lambda G=[\mathbb{Z}, G]$ so $\operatorname{obj}(\wedge G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g{ }^{-}$
- Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q!: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
\Rightarrow For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q!: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\left\langle q_{!}(u), v\right\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
\Rightarrow If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so $\operatorname{trace}(\alpha) \in L$.
- Put $\wedge G=[\mathbb{Z}, G]$ so obj $(\wedge G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g{ }^{-}$
\Rightarrow Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q_{!}: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
- For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q!: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\left\langle q_{!}(u), v\right\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so $\operatorname{trace}(\alpha) \in L$.
- Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q!: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
\Rightarrow For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q!: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\left\langle q_{!}(u), v\right\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- Put $\wedge G=[\mathbb{Z}, G]$ so $\operatorname{obj}(\wedge G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g^{-1}$.
\rightarrow For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by
\Rightarrow This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q_{!}: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\left\langle q_{!}(u), v\right\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- Put $\wedge G=[\mathbb{Z}, G]$ so $\operatorname{obj}(\Lambda G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g^{-1}$.
- Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q_{!}: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q_{!}: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\left\langle q_{!}(u), v\right\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- Put $\wedge G=[\mathbb{Z}, G]$ so $\operatorname{obj}(\Lambda G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g^{-1}$.
- Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q_{!}: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
- For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
\Rightarrow This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Classical characters

- For finite G, put $R(G)=\pi_{0}\left(\mathcal{V}_{G}\right)-\pi_{0}\left(\mathcal{V}_{G}\right)$ (the representation ring).
- A functor $q: G \rightarrow H$ gives $q_{!}: \mathcal{V}_{G} \rightleftarrows \mathcal{V}_{H}: q^{*}$ and then $q_{!}: R(G) \rightleftarrows R(H): q^{*}$.
- Define $\theta=c_{!}=c_{*}: R(G) \rightarrow R(1)=\mathbb{Z}$ (so for a group we have $\theta([U])=\operatorname{dim}_{\mathbb{C}}\left(U^{G}\right)$).
- This gives a perfect pairing $\langle u, v\rangle_{G}=\theta(u v)$ on $R(G)$.
- This has $\left\langle q_{!}(u), v\right\rangle_{H}=\left\langle u, q^{*}(v)\right\rangle_{G}$.
- Let L be the subfield of \mathbb{C} generated by all roots of unity.
- If $\alpha \in \operatorname{Aut}(V)$ with $\alpha^{m}=1$ then all eigenvalues lie in L so trace $(\alpha) \in L$.
- Put $\wedge G=[\mathbb{Z}, G]$ so $\operatorname{obj}(\Lambda G)=\{(a, u) \mid a \in \operatorname{obj}(G), u \in G(a, a)\}$ and $(a, u) \simeq\left(a^{\prime}, u^{\prime}\right)$ iff there exists $g \in G\left(a, a^{\prime}\right)$ with $u^{\prime}=g u g^{-1}$.
- Define $C(G)=L \otimes M^{*}(\Lambda(G))=\operatorname{Map}\left(\pi_{0}(\Lambda G), L\right)$, so we have $\theta: C(G) \rightarrow L$ and $q_{!}: C(G) \rightleftarrows C(H): q^{*}$ for $q: G \rightarrow H$.
- For a representation $V: G \rightarrow \mathcal{V}$ define $\chi(V) \in C(G)$ by $\chi(V)([a, u])=\operatorname{trace}\left(u_{*}: V_{a} \rightarrow V_{a}\right)$.
- This gives an isomorphism $\chi: L \otimes R(G) \rightarrow C(G)$, compatible with all structure.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \|^{\times}$and $g(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
$-P_{\text {ut }} \mathbb{\pi} / p^{\infty}=\lim \mathbb{\pi} / p^{k}=\mathbb{\pi}\left[\frac{1}{p}\right] / \mathbb{\pi}=\mathbb{T} / \mathbb{T}_{(p)}=\mathbb{T}_{p} / \mathbb{T}_{p}=U_{k} \sqrt[p_{k}^{k}]{1} \subset S^{1}$ (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
\Rightarrow Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\rightarrow}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $F^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=F^{0}\left\|_{x_{1}}, \ldots x_{\pi}\right\| /\left(g_{k}\left(x_{1}\right) \ldots \sigma_{k}\left(x_{n}\right)\right)$. there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
\Rightarrow Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
\Rightarrow Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0}[x]^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
\rightarrow Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k
\rightarrow Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\cup_{k} \sqrt[p^{k}]{1} \subset S^{1}$ (Exercise: $\left.\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right).\right)$
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim \left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
\Rightarrow Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
\Rightarrow Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k

(Exercise: $\left.\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right).\right)$
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim \left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
\Rightarrow Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
$\left(\right.$ Exercise: $\left.\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right).\right)$
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim \left\lceil\Theta^{*} / p^{k}, G\right\rceil, \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
\Rightarrow Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$.
(Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}
\Rightarrow Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\longrightarrow}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \Pi_{x_{1}}, \ldots, x_{n} \pi /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
\Rightarrow Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. $\left(\right.$ Exercise: $\left.\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right).\right)$
isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object
\Rightarrow Put $\wedge G=\left[\Theta^{*}, G\right]=\lim \left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
\Rightarrow Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.

- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=F^{0} \|_{x_{1}}, \ldots x_{n} \pi /\left(g_{k}\left(x_{1}\right) \ldots g_{k}\left(x_{n}\right)\right)$. there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
\Rightarrow Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{-{ }_{k}} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.

Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.

- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\longrightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right]$

$$
C(G)=L \otimes M^{*} \wedge G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)
$$

\rightarrow Recall $E^{0}(B(\Theta$ there is a canonical map ϕ_{k} from this to L.
\Rightarrow Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.

- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\wedge G=\left[\Theta^{*}, G\right]=\lim _{\longrightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$. there is a canonical map ϕ_{k} from this to L.
\rightarrow Thus any $u: \Theta^{*} / n^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}\left(B_{u}\right): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
\rightarrow Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and onerators a_{1} and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\Lambda G=\left[\Theta^{*}, G\right]=\lim _{\rightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.

Assembling these gives χ

- Theorem (Honkins Kuhn Ravenel): χ is an isomorphism.
\rightarrow Both sides have inner products, and operators $q!$ and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\Lambda G=\left[\Theta^{*}, G\right]=\lim _{\rightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.

\rightarrow Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism

\rightarrow Both sides have inner products, and operators q ! and q^{*} adjoint to each other and y preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\Lambda G=\left[\Theta^{*}, G\right]=\lim _{\rightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators $q!$ and q^{*} adjoint to each other, and χ preserves all this.

Generalised characters

- Fix a prime p and $n>0$ and let E be Morava E-theory.
- Then $\left[p^{k}\right]_{E}(x)=g_{k}(x) h_{k}(x)$, where $h_{k}(x) \in E^{0} \llbracket x \rrbracket^{\times}$and $g_{k}(x) \in E^{0}[x]$ is a monic polynomial of degree $p^{n k}$ and $E^{0}\left(B C_{p^{k}}\right)=E^{0}[x] / g_{k}(x)$.
- Construct L from $\mathbb{Q} \otimes E^{0}$ by adjoining a full set of roots of $g_{k}(x)$ for all k.
- Put $\mathbb{Z} / p^{\infty}=\lim _{\rightarrow k} \mathbb{Z} / p^{k}=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}=\mathbb{Q} / \mathbb{Z}_{(p)}=\mathbb{Q}_{p} / \mathbb{Z}_{p}=\bigcup_{k} \sqrt[p^{k}]{1} \subset S^{1}$. (Exercise: $\operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \mathbb{Z} / p^{\infty}\right) \simeq \mathbb{Z}_{p} \simeq \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, S^{1}\right)$.)
- Put $\Theta=\left\{\right.$ all roots of all $\left.g_{k}(x)\right\} \subset L$. This is a group under $+_{E}$, isomorphic to $\left(\mathbb{Z} / p^{\infty}\right)^{n}$, analogous to the formal group scheme \mathbb{G}.
- Put $\Theta^{*}=\operatorname{Hom}\left(\Theta, S^{1}\right) \simeq \mathbb{Z}_{p}^{n}$, regarded as a groupoid with one object.
- Put $\Lambda G=\left[\Theta^{*}, G\right]=\lim _{\rightarrow_{k}}\left[\Theta^{*} / p^{k}, G\right], \quad C(G)=L \otimes M^{*} \Lambda G=\operatorname{Map}\left(\pi_{0} \wedge G, L\right)$.
- Recall $E^{0}\left(B\left(\Theta^{*} / p^{k}\right)\right)=E^{0} \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(g_{k}\left(x_{1}\right), \ldots, g_{k}\left(x_{n}\right)\right)$; there is a canonical map ϕ_{k} from this to L.
- Thus any $u: \Theta^{*} / p^{k} \rightarrow G$ gives $\phi_{k} \circ E^{0}(B u): E^{0} B G \rightarrow L$. Assembling these gives $\chi: L \otimes_{E^{0}} E^{0}(B G) \rightarrow C(G)$.
- Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.
- Both sides have inner products, and operators q ! and q^{*} adjoint to each other, and χ preserves all this.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
\Rightarrow Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser
$E^{*}\left(Z_{h G}\right) \rightarrow E^{*}((Z \times F) h G) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$.
Deduce the general case from this.
- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\Pi_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
- Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ;$ morally $\operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{lnj}\left(A^{*}, \mathbb{G}\right)$.
\Rightarrow There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
\Rightarrow Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser
$E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right) h G\right)$.
Deduce the general case from this.
- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
$>$ Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ;$ morally $\operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{Inj}\left(A^{*}, \mathbb{G}\right)$.
- There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
\Rightarrow Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser $E^{*}\left(Z_{h G}\right) \rightarrow E^{*}((Z \times F) h G) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right) h G\right)$ Deduce the general case from this.
- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\Pi_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
\checkmark Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ;$ morally $\operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{lnj}\left(A^{*}, \mathbb{G}\right)$
\Rightarrow There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton)

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
\Rightarrow Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser

Deduce the general case from this.

- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
\rightarrow Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ;$ morally $\operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{lnj}\left(A^{*}, \mathbb{G}\right)$.
- There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton)

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
\rightarrow Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser

Deduce the general case from this.

- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
\Rightarrow Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ;$ morally $\operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{lnj}\left(A^{*}, \mathbb{G}\right)$.
- There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton)

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser
$E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$.
Deduce the general case from this.
- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
\Rightarrow Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ;$ morally $\operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{lnj}\left(A^{*}, \mathbb{G}\right)$.
- There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton)

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser
$E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$.
Deduce the general case from this.
- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\Pi_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
\Rightarrow Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ;$ morally $\operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{lnj}\left(A^{*}, \mathbb{G}\right)$.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser
$E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$.
Deduce the general case from this.
- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser
$E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$.
Deduce the general case from this.
- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
- Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ;$ morally $\operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{lnj}\left(A^{*}, \mathbb{G}\right)$.

Proof of the generalised character theorem

- Reduce to the case of a finite group G.
- Generalise: for a finite G-CW complex Z, we have

$$
\chi_{G, z}: L \otimes_{E^{0}} E^{*}\left(Z_{h G}\right) \rightarrow L \otimes_{\mathbb{Q}}\left(\prod_{\theta: \Theta^{*} \rightarrow G} H^{*}\left(Z^{\text {image }(\theta)} ; \mathbb{Q}\right)\right)^{G}
$$

- Prove by calculation that $\theta_{G, Z}$ is iso when $Z=G / A$ with $A \leq G$ abelian. (Here $Z_{h G}=B A$, and $Z^{\text {image }(\theta)}$ is Z (if image $(\theta) \leq A$) or \emptyset (otherwise).)
- Deduce by Mayer-Vietoris that $\chi_{G, Z}$ is iso if Z has abelian isotropy.
- Let F be the space of complete flags in $\mathbb{C}[G]$, so $Z \times F$ and $Z \times F^{2}$ have abelian isotropy, and we have an equaliser
$E^{*}\left(Z_{h G}\right) \rightarrow E^{*}\left((Z \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(Z \times F^{2}\right)_{h G}\right)$.
Deduce the general case from this.
- Corollary: $\mathbb{Q} \otimes E^{0}(B G)=u_{0}^{-1} E^{0}(B G) \simeq\left(\prod_{A} \mathbb{Q} \otimes D_{A}\right)^{G}$. Here A runs over abelian subgroups $A<G$, and D_{A} is a certain regular local ring, free of finite rank as an E^{0}-module.
- Recall $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right) ; \operatorname{morally} \operatorname{spf}\left(E^{0}\left(D_{A}\right)\right)=\operatorname{lnj}\left(A^{*}, \mathbb{G}\right)$.
- There is a similar map $u_{k}^{-1} E^{0}(B G) / I_{k} \rightarrow\left(\prod_{A} u_{k}^{-1} D_{k, A}\right)^{G}$ for $k>0$, which is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

The inner product and the trace

- Suppose for simplicity that $E^{1}(B G)=0$ and $E^{0}(B G)$ is free over E^{0}, say with basis e_{1}, \ldots, e_{r}.
\Rightarrow The pairing on $E^{0}(B G)$ is $\langle f, g\rangle_{G}=\theta(f g)$ for some $\theta: E^{0}(B G) \rightarrow E^{0}$.
\triangleright We can also define the trace $\tau: E^{0}(B G) \rightarrow E^{0}$, so if $f e_{i}=\sum_{j} a_{i j} e_{j}$ then $\tau(f)=\sum_{i} a_{i i}$.
\Rightarrow Choose representatives u_{1}, \ldots, u_{m} of the isomorphism classes in $\wedge G$, with automorphism groups $\Gamma_{i}=(\Lambda G)\left(u_{i}, u_{i}\right) ;$ then on $L \otimes_{E^{0}} E^{0}(B G) \simeq C(G)$ we have $\theta(f)=\sum_{i}\left|\Gamma_{i}\right|^{-1} f\left(u_{i}\right)$ and $\tau(f)=\sum_{i} f\left(u_{i}\right)$.
\Rightarrow If G is an abelian group then $\Gamma_{i} \simeq G$ for all i and so $\tau=|G| \theta$ on $C(G)$ or on $E^{0}(B G)$.

The inner product and the trace

- Suppose for simplicity that $E^{1}(B G)=0$ and $E^{0}(B G)$ is free over E^{0}, say with basis e_{1}, \ldots, e_{r}.
\Rightarrow The pairing on $E^{0}(B G)$ is $\langle f, g\rangle_{G}=\theta(f g)$ for some $\theta: E^{0}(B G) \rightarrow E^{0}$
- We can also define the trace $\tau: E^{0}(B G) \rightarrow E^{0}$, so if $f e_{i}=\sum_{j} a_{i j} e_{j}$ then $\tau(f)=\sum_{i} a_{i i}$.
- Choose representatives u_{1}, \ldots, u_{m} of the isomorphism classes in $\wedge G$, with automorphism groups $\Gamma_{i}=(\wedge G)\left(u_{i}, u_{i}\right) ;$ then on $L \otimes_{E^{0}} E^{0}(B G) \simeq C(G)$ we have $\theta(f)=\sum_{i}\left|\Gamma_{i}\right|^{-1} f\left(u_{i}\right)$ and $\tau(f)=\sum_{i} f\left(u_{i}\right)$.
- If G is an abelian group then $\Gamma_{i} \simeq G$ for all i and so $\tau=|G| \theta$ on $C(G)$ or on $E^{0}(B G)$.

The inner product and the trace

- Suppose for simplicity that $E^{1}(B G)=0$ and $E^{0}(B G)$ is free over E^{0}, say with basis e_{1}, \ldots, e_{r}.
- The pairing on $E^{0}(B G)$ is $\langle f, g\rangle_{G}=\theta(f g)$ for some $\theta: E^{0}(B G) \rightarrow E^{0}$.
- We can also define the trace $\tau: E^{0}(B G) \rightarrow E^{0}$, so if $f e_{i}=\sum_{j} a_{i j} e_{j}$ then $\tau(f)=\sum_{i} a_{i j}$.
\Rightarrow Choose representatives u_{1}, \ldots, u_{m} of the isomorphism classes in $\wedge G$, with automorphism groups $\Gamma_{i}=(\Lambda G)\left(u_{i}, u_{i}\right) ;$ then on $L \otimes_{E^{0}} E^{0}(B G) \simeq C(G)$ we have $\theta(f)=\sum_{i}\left|\Gamma_{i}\right|^{-1} f\left(u_{i}\right)$ and $\tau(f)=\sum_{i} f\left(u_{i}\right)$
- If G is an abelian group then $\Gamma_{i} \simeq G$ for all i and so $\tau=|G| \theta$ on $C(G)$ or on $E^{0}(B G)$.

The inner product and the trace

- Suppose for simplicity that $E^{1}(B G)=0$ and $E^{0}(B G)$ is free over E^{0}, say with basis e_{1}, \ldots, e_{r}.
- The pairing on $E^{0}(B G)$ is $\langle f, g\rangle_{G}=\theta(f g)$ for some $\theta: E^{0}(B G) \rightarrow E^{0}$.
- We can also define the trace $\tau: E^{0}(B G) \rightarrow E^{0}$, so if $f e_{i}=\sum_{j} a_{i j} e_{j}$ then $\tau(f)=\sum_{i} a_{i j}$.
- Choose representatives u_{1}, \ldots, u_{m} of the isomorphism classes in ΛG, with automorphism groups $\Gamma_{i}=(\Lambda G)\left(u_{i}, u_{i}\right)$; then on $L \otimes_{E^{0}} E^{0}(B G) \simeq C(G)$ we have $\theta(f)=\sum_{i}\left|\Gamma_{i}\right|^{-1} f\left(u_{i}\right)$ and $\tau(f)=\sum_{i} f\left(u_{i}\right)$.

The inner product and the trace

- Suppose for simplicity that $E^{1}(B G)=0$ and $E^{0}(B G)$ is free over E^{0}, say with basis e_{1}, \ldots, e_{r}.
- The pairing on $E^{0}(B G)$ is $\langle f, g\rangle_{G}=\theta(f g)$ for some $\theta: E^{0}(B G) \rightarrow E^{0}$.
- We can also define the trace $\tau: E^{0}(B G) \rightarrow E^{0}$, so if $f e_{i}=\sum_{j} a_{i j} e_{j}$ then $\tau(f)=\sum_{i} a_{i j}$.
- Choose representatives u_{1}, \ldots, u_{m} of the isomorphism classes in ΛG, with automorphism groups $\Gamma_{i}=(\Lambda G)\left(u_{i}, u_{i}\right)$; then on $L \otimes_{E^{0}} E^{0}(B G) \simeq C(G)$ we have $\theta(f)=\sum_{i}\left|\Gamma_{i}\right|^{-1} f\left(u_{i}\right)$ and $\tau(f)=\sum_{i} f\left(u_{i}\right)$.
- If G is an abelian group then $\Gamma_{i} \simeq G$ for all i and so $\tau=|G| \theta$ on $C(G)$ or on $E^{0}(B G)$.

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\lim _{\rightarrow m}\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$,
so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
\Rightarrow Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map
$\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$.
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
- Note that Θ^{*} / p^{k} is similar to $\Theta^{*}=\mathbb{Z}_{p}^{n}$ or \mathbb{Z}^{n}, and $B\left(\mathbb{Z}^{n}\right)$ is the torus $\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
\Rightarrow We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(p)}^{\binom{n}{d}}$ (assuming $\left.|A|<\infty\right)$.
- Claim: if $X \simeq \Omega^{2} Z$ for some Z, then $\Lambda_{0} X=\operatorname{Hom}\left(\lambda^{*}\left(\Theta^{*}\right), \pi_{*}(X)\right)$.
- Proof uses $\Sigma^{2}\left((P \times Q)_{+}\right) \simeq \Sigma^{2}\left(S^{0} \vee P \vee Q \vee(P \wedge Q)\right)$,
iterated to split $\Sigma^{2} B\left(\mathbb{Z}^{n}\right)+=\Sigma^{2}\left(\left(S^{1}\right)^{n}\right)$ as a wedge of spheres, together with $\left[B\left(\mathbb{Z}^{n}\right)_{+}, X\right]=\left[\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}, Z\right]$
- Theorem (Lurie): $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$ is iso
if X is a π-finite space/finite ∞-groupoid.

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\lim _{m}\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$, so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
- Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
- Note that Θ^{*} / p^{k} is similar to $\Theta^{*}=\mathbb{Z}_{p}^{n}$ or \mathbb{Z}^{n}, and $B\left(\mathbb{Z}^{n}\right)$ is the torus $\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
- We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(p)}^{(d)}$ (assuming $\left.|A|<\infty\right)$.
- Claim: if $X \simeq \Omega^{2} Z$ for some Z, then $\Lambda_{0} X=\operatorname{Hom}\left(\lambda^{*}\left(\Theta^{*}\right), \pi_{*}(X)\right)$
- Proof uses $\Sigma^{2}\left((P \times Q)_{+}\right) \simeq \Sigma^{2}\left(S^{0} \vee P \vee Q \vee(P \wedge Q)\right)$, iterated to split $\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}=\Sigma^{2}\left(\left(S^{1}\right)_{+}^{n}\right)$ as a wedge of spheres, together with $\left[B\left(\mathbb{Z}^{n}\right)+, X\right]=\left[\Sigma^{2} B\left(\mathbb{Z}^{n}\right)+, Z\right]$
- Theorem (Lurie): $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$ is iso if X is a π-finite space/finite ∞-groupoid.

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\longrightarrow_{m}^{\lim }\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$, so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
- Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$.
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
- Note that Θ^{*} / p^{k} is similar to $\Theta^{*}=\mathbb{Z}_{o}^{n}$ or \mathbb{Z}^{n}, and $B\left(\mathbb{Z}^{n}\right)$ is the torus $\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
- We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(p)}^{\binom{n}{d}}$ (assuming $|A|<\infty$)
- Claim: if $X \simeq \Omega^{2} Z$ for some Z, then $\Lambda_{0} X=\operatorname{Hom}\left(\lambda^{*}\left(\Theta^{*}\right), \pi_{*}(X)\right)$
\Rightarrow Proof uses $\Sigma^{2}\left((P \times Q)_{+}\right) \simeq \Sigma^{2}\left(S^{0} \vee P \vee Q \vee(P \wedge Q)\right)$, iterated to split $\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}=\Sigma^{2}\left(\left(S^{1}\right)_{+}^{n}\right)$ as a wedge of spheres, together with $\left[B\left(\mathbb{Z}^{n}\right)_{+}, X\right]=\left[\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}, Z\right]$
\Rightarrow Theorem (Lurie): $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$ is iso if X is a π-finite space/finite ∞-groupoid

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\lim _{\rightarrow m}\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$, so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
- Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$.
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
$\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(\rho)}^{\left(\frac{n}{()}\right)}$ (assuming $\left.|A|<\infty\right)$.
- Claim: if $X \simeq \Omega^{2} Z$ for some Z, then $\Lambda_{0} X=\operatorname{Hom}\left(\lambda^{*}\left(\Theta^{*}\right), \pi_{*}(X)\right)$. iterated to split $\Sigma^{2} B\left(\mathbb{Z}^{n}\right)+=\Sigma^{2}\left(\left(S^{1}\right)^{n}\right)$ as a wedge of spheres, together with $\left[B\left(\mathbb{Z}^{n}\right)_{+}, X\right]=\left[\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}, Z\right]$
- Theorem (Lurie): $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$ is iso if X is a π-finite space/finite ∞-groupoid.

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\lim _{\rightarrow m}\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$, so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
- Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$.
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
- Note that Θ^{*} / p^{k} is similar to $\Theta^{*}=\mathbb{Z}_{p}^{n}$ or \mathbb{Z}^{n}, and $B\left(\mathbb{Z}^{n}\right)$ is the torus $\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
\Rightarrow We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(p)}^{\left(\frac{d}{d}\right)}$ (assuming $\left.|A|<\infty\right)$.
- Claim: if $X \simeq \Omega^{2} Z$ for some Z, then $\Lambda_{0} X=\operatorname{Hom}\left(\lambda^{*}\left(\Theta^{*}\right), \pi_{*}(X)\right)$.
- Proof uses $\Sigma^{2}\left((P \times Q)_{+}\right) \simeq \Sigma^{2}\left(S^{0} \vee P \vee Q \vee(P \wedge Q)\right)$, iterated to split $\Sigma^{2} B\left(\mathbb{Z}^{n}\right)+=\Sigma^{2}\left(\left(S^{1}\right)^{n}\right)$ as a wedge of spheres, together with $\left[B\left(\mathbb{Z}^{n}\right)_{+}, X\right]=\left[\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}, Z\right]$.
- Theorem (Lurie): $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$ is iso if X is a π-finite space/finite ∞-groupoid.

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\lim _{m}\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$, so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
- Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$.
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
- Note that Θ^{*} / p^{k} is similar to $\Theta^{*}=\mathbb{Z}_{p}^{n}$ or \mathbb{Z}^{n}, and $B\left(\mathbb{Z}^{n}\right)$ is the torus $\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
- We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(p)}^{\left(\frac{n}{(d)}\right)}$ (assuming $\left.|A|<\infty\right)$.
- Proof uses Σ
iterated to split $\Sigma^{2} B\left(\mathbb{Z}^{n}\right)+=\Sigma^{2}\left(\left(S^{1}\right)^{n}\right)$ as a wedge of spheres, together with $\left[B\left(\mathbb{Z}^{n}\right)+, X\right]=\left[\Sigma^{2} B\left(\mathbb{Z}^{n}\right)+, Z\right]$.
- Theorem (Lurie): $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$ is iso
if X is a π-finite space/finite ∞-groupoid.

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\lim _{m}\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$, so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
- Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$.
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
- Note that Θ^{*} / p^{k} is similar to $\Theta^{*}=\mathbb{Z}_{p}^{n}$ or \mathbb{Z}^{n}, and $B\left(\mathbb{Z}^{n}\right)$ is the torus $\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
- We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(p)}^{\left(\frac{n}{(0)}\right)}$ (assuming $\left.|A|<\infty\right)$.
- Claim: if $X \simeq \Omega^{2} Z$ for some Z, then $\Lambda_{0} X=\operatorname{Hom}\left(\lambda^{*}\left(\Theta^{*}\right), \pi_{*}(X)\right)$.

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\lim _{m}\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$, so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
- Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$.
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
- Note that Θ^{*} / p^{k} is similar to $\Theta^{*}=\mathbb{Z}_{p}^{n}$ or \mathbb{Z}^{n}, and $B\left(\mathbb{Z}^{n}\right)$ is the torus $\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
- We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(p)}^{\left(\frac{n}{(0)}\right)}$ (assuming $\left.|A|<\infty\right)$.
- Claim: if $X \simeq \Omega^{2} Z$ for some Z, then $\Lambda_{0} X=\operatorname{Hom}\left(\lambda^{*}\left(\Theta^{*}\right), \pi_{*}(X)\right)$.
- Proof uses $\Sigma^{2}\left((P \times Q)_{+}\right) \simeq \Sigma^{2}\left(S^{0} \vee P \vee Q \vee(P \wedge Q)\right)$, iterated to split $\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}=\Sigma^{2}\left(\left(S^{1}\right)^{n}\right)$ as a wedge of spheres, together with $\left[B\left(\mathbb{Z}^{n}\right)_{+}, X\right]=\left[\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}, Z\right]$.
if X is a π-finite space/finite ∞-groupoid.

Even more generalised characters

- For a space X, put $\Lambda_{0} X=\lim _{m}\left[B\left(\Theta^{*} / p^{m}\right)_{+}, X\right]$, so $\Lambda_{0} B G=\pi_{0}(\Lambda G)$ for finite groupoids G.
- Put $C(X)=\operatorname{Map}\left(\Lambda_{0}(X), L\right)$; we still have a ring map $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$, which is iso for $X=B G$.
- Recall that the Eilenberg-MacLane space $B^{d} A=K(A, d)$ has $\pi_{d}\left(B^{d} A\right)=A$ and $\pi_{i}\left(B^{d} A\right)=0$ for $i \neq d$ and $\left[Z, B^{d} A\right]=H^{d}(Z ; A)$.
- Note that Θ^{*} / p^{k} is similar to $\Theta^{*}=\mathbb{Z}_{p}^{n}$ or \mathbb{Z}^{n}, and $B\left(\mathbb{Z}^{n}\right)$ is the torus $\left(S^{1}\right)^{n}$, with $H_{*}\left(B\left(\mathbb{Z}^{n}\right)\right)=\lambda^{*}\left(\mathbb{Z}^{n}\right)$.
- We find that $\Lambda_{0}\left(B^{d} A\right)=\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right) \simeq A_{(p)}^{\left(\frac{n}{(0)}\right)}$ (assuming $\left.|A|<\infty\right)$.
- Claim: if $X \simeq \Omega^{2} Z$ for some Z, then $\Lambda_{0} X=\operatorname{Hom}\left(\lambda^{*}\left(\Theta^{*}\right), \pi_{*}(X)\right)$.
- Proof uses $\Sigma^{2}\left((P \times Q)_{+}\right) \simeq \Sigma^{2}\left(S^{0} \vee P \vee Q \vee(P \wedge Q)\right)$, iterated to split $\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}=\Sigma^{2}\left(\left(S^{1}\right)^{n}\right)$ as a wedge of spheres, together with $\left[B\left(\mathbb{Z}^{n}\right)_{+}, X\right]=\left[\Sigma^{2} B\left(\mathbb{Z}^{n}\right)_{+}, Z\right]$.
- Theorem (Lurie): $\chi: L \otimes_{E^{0}} E^{0}(X) \rightarrow C(X)$ is iso if X is a π-finite space/finite ∞-groupoid.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*} . A\right)=\operatorname{Tor}(\Theta \ldots . \Theta . A)^{\Sigma_{d}}$
- Theorem (essentially Ravenel-Wilson):
$\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$.
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$
$>$ Corollary: $\operatorname{spf}\left(E^{0}\left(B^{n+1} \mathbb{Z}\right)\right)=\operatorname{spf}\left(E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G})^{\Sigma_{n}}$, and this is a one-dimensional formal group of height one.
- Equivalently $E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)=E^{0} \llbracket y \rrbracket$ with $\operatorname{mult}^{*}(y)=y_{0}+y_{1}+y_{0} y_{1}$.
\Rightarrow Alternatively, $K^{0}\left(B^{d} A\right)$ is a finite-dimensional Hopf algebra over \mathbb{F}_{p}, and the category of such is equivalent to a category of Dieudonné modules.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right)=\operatorname{Tor}(\Theta, \ldots, \Theta, A)^{2_{d}}$
- Theorem (essentially Ravenel-Wilson):
$\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} \cdot 1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$
- Corollary: $\operatorname{spf}\left(E^{0}\left(B^{n+1} \mathbb{Z}\right)\right)=\operatorname{spf}\left(E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G})^{\Sigma_{n}}$, and this is a one-dimensional formal group of height one.
- Equivalently $E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)=E^{0} \llbracket y \rrbracket$ with mult $(y)=y_{0}+y_{1}+y_{0} y_{1}$
- Alternatively, $K^{0}\left(B^{d} A\right)$ is a finite-dimensional Hopf algebra over \mathbb{F}_{p}, and the category of such is equivalent to a category of Dieudonné modules.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right)=\operatorname{Tor}(\Theta, \ldots, \Theta, A)^{\Sigma_{d}}$
- Theorem (essentially Ravenel-Wilson):
$\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} \cdot 1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$
- Corollary: $\operatorname{spf}\left(E^{0}\left(B^{n+1} \mathbb{Z}\right)\right)=\operatorname{spf}\left(E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G})^{\Sigma_{n}}$, and this is a one-dimensional formal group of height one.
- Equivalently $E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)=E^{0} \llbracket y \rrbracket$ with mult ${ }^{*}(y)=y_{0}+y_{1}+y_{0} y_{1}$.
- Alternatively, $K^{0}\left(B^{d} A\right)$ is a finite-dimensional Hopf algebra over \mathbb{F}_{p}, and the category of such is equivalent to a category of Dieudonné modules.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right)=\operatorname{Tor}(\Theta, \ldots, \Theta, A)^{\Sigma_{d}}$
- Theorem (essentially Ravenel-Wilson): $\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$
- Corollary: $\operatorname{spf}\left(E^{0}\left(B^{n+1} \mathbb{Z}\right)\right)=\operatorname{spf}\left(E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G})^{\Sigma_{n}}$, and this is a one-dimensional formal group of height one.
- Equivalently $E^{0}\left(B^{n}\left(\mathbb{Z} / P^{\infty}\right)\right)=E^{0} \llbracket y \rrbracket$ with mult $(y)=y_{0}+y_{1}+y_{0} y_{1}$.
- Alternatively, $K^{0}\left(B^{d} A\right)$ is a finite-dimensional Hopf algebra over \mathbb{F}_{p}, and the category of such is equivalent to a category of Dieudonné modules.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right)=\operatorname{Tor}(\Theta, \ldots, \Theta, A)^{\Sigma_{d}}$
- Theorem (essentially Ravenel-Wilson): $\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$.
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$
- Corollary: $\operatorname{spf}\left(E^{0}\left(B^{n+1} \mathbb{Z}\right)\right)=\operatorname{spf}\left(E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G})^{\Sigma_{n}}$, and this is a one-dimensional formal group of height one.
- Equivalently $E^{0}\left(B^{n}\left(\mathbb{Z} / P^{\infty}\right)\right)=E^{0} \llbracket y \rrbracket$ with mult $(y)=y_{0}+y_{1}+y_{0} y_{1}$.
- Alternatively, $K^{0}\left(B^{d} A\right)$ is a finite-dimensional Hopf algebra over \mathbb{F}_{p}, and the category of such is equivalent to a category of Dieudonné modules.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right)=\operatorname{Tor}(\Theta, \ldots, \Theta, A)^{\Sigma_{d}}$
- Theorem (essentially Ravenel-Wilson): $\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$.
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$ this is a one-dimensional formal group of height one.
- Equivalently $E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)=E^{0} \llbracket y \rrbracket$ with mult ${ }^{*}(y)=y_{0}+y_{1}+y_{0} y_{1}$.
- Alternatively, $K^{0}\left(B^{d} A\right)$ is a finite-dimensional Hopf algebra over \mathbb{F}_{p}, and the category of such is equivalent to a category of Dieudonné modules.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right)=\operatorname{Tor}(\Theta, \ldots, \Theta, A)^{\Sigma_{d}}$
- Theorem (essentially Ravenel-Wilson): $\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$.
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$
- Corollary: $\operatorname{spf}\left(E^{0}\left(B^{n+1} \mathbb{Z}\right)\right)=\operatorname{spf}\left(E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G})^{\Sigma_{n}}$, and this is a one-dimensional formal group of height one.
- Alternatively, $K^{0}\left(B^{d} A\right)$ is a finite-dimensional Hopf algebra over \mathbb{F}_{p}, and the category of such is equivalent to a category of Dieudonné modules.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right)=\operatorname{Tor}(\Theta, \ldots, \Theta, A)^{\Sigma_{d}}$
- Theorem (essentially Ravenel-Wilson): $\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$.
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$
- Corollary: $\operatorname{spf}\left(E^{0}\left(B^{n+1} \mathbb{Z}\right)\right)=\operatorname{spf}\left(E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G})^{\Sigma_{n}}$, and this is a one-dimensional formal group of height one.
- Equivalently $E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)=E^{0} \llbracket y \rrbracket$ with mult ${ }^{*}(y)=y_{0}+y_{1}+y_{0} y_{1}$.

Morava theory of Eilenberg-MacLane spaces

- Recall $\operatorname{spf}\left(E^{0} B A\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$
- Also $\operatorname{Hom}\left(\lambda^{d} \Theta^{*}, A\right)=\operatorname{Tor}(\Theta, \ldots, \Theta, A)^{\Sigma_{d}}$
- Theorem (essentially Ravenel-Wilson): $\operatorname{spf}\left(E^{0}\left(B^{d} C_{p^{k}}\right)\right)=\lambda^{d}\left(\operatorname{ker}\left(p^{k} .1: \mathbb{G} \rightarrow \mathbb{G}\right)\right)(=0$ for $d>n)$.
- Corollary: for A finite abelian: $\operatorname{spf}\left(E^{0}\left(B^{d} A\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G}, A)^{\Sigma_{d}}$
- Corollary: $\operatorname{spf}\left(E^{0}\left(B^{n+1} \mathbb{Z}\right)\right)=\operatorname{spf}\left(E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)\right)=\operatorname{Tor}(\mathbb{G}, \ldots, \mathbb{G})^{\Sigma_{n}}$, and this is a one-dimensional formal group of height one.
- Equivalently $E^{0}\left(B^{n}\left(\mathbb{Z} / p^{\infty}\right)\right)=E^{0} \llbracket y \rrbracket$ with mult ${ }^{*}(y)=y_{0}+y_{1}+y_{0} y_{1}$.
- Alternatively, $K^{0}\left(B^{d} A\right)$ is a finite-dimensional Hopf algebra over \mathbb{F}_{p}, and the category of such is equivalent to a category of Dieudonné modules.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
\rightarrow Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
\Rightarrow Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that
$c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$
or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso
or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect
or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
\Rightarrow As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k.
\Rightarrow One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$ Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
\rightarrow Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
\Rightarrow Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect
\Rightarrow As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
\Rightarrow Key case: $c: B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{s m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
\rightarrow Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
\Rightarrow As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
\Rightarrow One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids/ π-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: $c: B^{m} C_{p} \rightarrow 1$ is ambidextrous.
\Rightarrow Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect
- As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous,
such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $\left.X=X_{\leq m}\right)$. But $X_{<m} \rightarrow 1$ is
ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with
m-truncated fibres is ambidextrous.
Further reduction (similar to $m=1$): enough to show that
$C_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$
or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso
or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect
or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$
and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy
$\tau=p^{k} \theta$ for some k.
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
\Rightarrow Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
\checkmark As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
\checkmark As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $C_{!}\left(C^{*}(K)\right) \rightarrow c_{*}\left(C^{*}(K)\right)$ is iso for $C: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso
or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
$>$ As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous.
\rightarrow Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso
or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
\checkmark As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
Further reduction (similar to $m=1)$: enough to show that
$c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$
or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso
or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect
or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect. As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
\rightarrow One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$
or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect
\rightarrow As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
\rightarrow One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso
or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
\rightarrow As with the case $m=1$, the pairing is given by a man $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect
\rightarrow As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
\rightarrow One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k
\rightarrow One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
- As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k.
\rightarrow One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

General ambidexterity

- Theorem (Hopkins-Lurie): any $q: X \rightarrow Y$ of finite ∞-groupoids $/ \pi$-finite spaces is ambidextrous, i.e. $q_{!} \simeq q_{*}$ as functors $\mathcal{K}(X) \rightarrow \mathcal{K}(Y)$.
- There exists m such that all fibres $(q \downarrow b)$ have $\pi_{k}=0$ for all $k>m$. Greenlees-Sadofsky gives $m \leq 1$; do $m>1$ by induction.
- Key case: c: $B^{m} C_{p} \rightarrow 1$ is ambidextrous.
- Assuming this, any q with fibres $B^{m} C_{p}$ is ambidextrous. Thus any $B^{m} A \rightarrow 1$ is ambidextrous. Thus any q with fibre $B^{m} A$ is ambidextrous, such as the Postnikov truncation $X \rightarrow X_{<m}$ (if $X=X_{\leq m}$). But $X_{<m} \rightarrow 1$ is ambidextrous by induction, so $X \rightarrow 1$ is ambidextrous. Thus any q with m-truncated fibres is ambidextrous.
- Further reduction (similar to $m=1$): enough to show that $c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is iso for $c: B^{m} C_{p} \rightarrow 1$ or that $K_{*}\left(B^{m} C_{p}\right) \rightarrow K^{*}\left(B^{m} C_{p}\right)$ is iso or that the corresponding pairing on $K^{*}\left(B^{m} C_{p}\right)$ is perfect or that the corresponding pairing on $E^{*}\left(B^{m} C_{p}\right)$ is perfect.
- As with the case $m=1$, the pairing is given by a map $\theta: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$ and we also have a trace map $\tau: E^{0}\left(B^{m} C_{p}\right) \rightarrow E^{0}$, and these satisfy $\tau=p^{k} \theta$ for some k.
- One can calculate enough structure of $E^{0}\left(B^{m} C_{p}\right)$ to deduce from this that θ gives a perfect pairing.

