Ambidexterity 4

Neil Strickland

May 26, 2023

K-local spectra

K-local spectra

» Recall that Z is K-acyclicif K.Z =0

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
» We write KC for the co-category of K-local spectra.

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and

X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
» We write KC for the co-category of K-local spectra.
» There is a functorial cofibration CX — X — LX

where CX is K-acyclic and LX is K-local.

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
» We write KC for the co-category of K-local spectra.

» There is a functorial cofibration CX — X — LX
where CX is K-acyclic and LX is K-local.

> For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.

K-local spectra

>

| 2
| 2

Recall that Z is K-acyclic if K.Z =0, and

X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)

We write KC for the co-category of K-local spectra.

There is a functorial cofibration CX — X — LX

where CX is K-acyclic and LX is K-local.

For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.
The subcategory I C S is closed under limits. To get colimits in K,
construct colimits in S and apply L.

K-local spectra

>

| 2
| 2

Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
We write KC for the co-category of K-local spectra.

There is a functorial cofibration CX — X — LX
where CX is K-acyclic and LX is K-local.

For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.
The subcategory I C S is closed under limits. To get colimits in K,
construct colimits in S and apply L.

In MPy: put uj = coeff of x in [plmp(x) and I, = (uo, .. ., Un—1).

K-local spectra

>

| 2
| 2

Recall that Z is K-acyclic if K.Z =0, and

X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)

We write KC for the co-category of K-local spectra.

There is a functorial cofibration CX — X — LX

where CX is K-acyclic and LX is K-local.

For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.
The subcategory I C S is closed under limits. To get colimits in K,
construct colimits in S and apply L.

In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).

For an MP-module M we have LM = (u, ' M)}.

K-local spectra

>

| 2
| 2

Recall that Z is K-acyclic if K.Z =0, and

X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)

We write KC for the co-category of K-local spectra.

There is a functorial cofibration CX — X — LX

where CX is K-acyclic and LX is K-local.

For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.
The subcategory I C S is closed under limits. To get colimits in K,
construct colimits in S and apply L.

In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).

For an MP-module M we have LM = (u, *M);. Thus E is K-local.

K-local spectra

>

| 2
| 2

Recall that Z is K-acyclic if K.Z =0, and

X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
We write KC for the co-category of K-local spectra.

There is a functorial cofibration CX — X — LX

where CX is K-acyclic and LX is K-local.

For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.
The subcategory I C S is closed under limits. To get colimits in K,
construct colimits in S and apply L.

In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).
For an MP-module M we have LM = (u, *M);. Thus E is K-local.
Deep Theorem: K = thick(LM | M € Modump)

K-local spectra

>

»
»

v

vvyyy

Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
We write KC for the co-category of K-local spectra.

There is a functorial cofibration CX — X — LX
where CX is K-acyclic and LX is K-local.

For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.
The subcategory I C S is closed under limits. To get colimits in K,
construct colimits in S and apply L.

In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).

For an MP-module M we have LM = (u, *M);. Thus E is K-local.
Deep Theorem: K = thick(LM | M € Modump)

Deep Theorem: There is a finite spectrum F such that

MP.F = MP../(u®, ... ul""}) for some io, ..., in 1.

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
» We write KC for the co-category of K-local spectra.
» There is a functorial cofibration CX — X — LX
where CX is K-acyclic and LX is K-local.
> For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.

» The subcategory KL C S is closed under limits. To get colimits in /C,
construct colimits in S and apply L.

» In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).

> For an MP-module M we have LM = (u, 'M)}. Thus E is K-local.

» Deep Theorem: K = thick(LM | M € Modup)

» Deep Theorem: There is a finite spectrum F such that
MP.F = MP../(u®, ... ul""}) for some io, ..., in 1.

> Put ps(X) = cof(a(X) = c.(X)) = cof (L(Xks) = X"°) so pe(K) = 0.

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
» We write KC for the co-category of K-local spectra.
» There is a functorial cofibration CX — X — LX
where CX is K-acyclic and LX is K-local.
> For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.

» The subcategory KL C S is closed under limits. To get colimits in /C,
construct colimits in S and apply L.

» In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).

> For an MP-module M we have LM = (u, 'M)}. Thus E is K-local.

» Deep Theorem: K = thick(LM | M € Modup)

» Deep Theorem: There is a finite spectrum F such that
MP.F = MP../(u®, ... ul""}) for some io, ..., in 1.

> Put ps(X) = cof(a(X) = c.(X)) = cof (L(Xks) = X"°) so pe(K) = 0.

> If M € Modgk then pc(M) € Mod,_ (k) so pc(M) = 0.

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and
X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
» We write KC for the co-category of K-local spectra.
» There is a functorial cofibration CX — X — LX
where CX is K-acyclic and LX is K-local.
> For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.

» The subcategory KL C S is closed under limits. To get colimits in /C,
construct colimits in S and apply L.

» In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).

> For an MP-module M we have LM = (u, 'M)}. Thus E is K-local.

» Deep Theorem: K = thick(LM | M € Modup)

» Deep Theorem: There is a finite spectrum F such that
MP.F = MP../(u®, ... ul""}) for some io, ..., in 1.

> Put ps(X) = cof(a(X) = c.(X)) = cof (L(Xks) = X"°) so pe(K) = 0.

> If M € Modgk then pc(M) € Mod,_ (k) so pc(M) = 0.

> If M € Modup then L(F A M) € thick(Modk) so pc(L(F A M)) =0 so
F A pe(LM) =0 so ps(LM) = 0.

K-local spectra

» Recall that Z is K-acyclic if K.Z =0, and

X is K-local if [Z,X] = 0 for all K-acyclic Z (e.g. K is K-local)
» We write KC for the co-category of K-local spectra.
» There is a functorial cofibration CX — X — LX

where CX is K-acyclic and LX is K-local.

> For objects: LX = 0 iff K.(X) = 0. For morphisms: Lf iso iff K.(f) iso.

» The subcategory KL C S is closed under limits. To get colimits in /C,
construct colimits in S and apply L.

» In MPy: put u; = coeff of x"f in [p]me(x) and I, = (uo, ..., Un—1).

> For an MP-module M we have LM = (u, 'M)}. Thus E is K-local.

» Deep Theorem: K = thick(LM | M € Modup)

» Deep Theorem: There is a finite spectrum F such that
MP.F = MP../(u®, ... ul""}) for some io, ..., in 1.

> Put ps(X) = cof(a(X) = c.(X)) = cof (L(Xks) = X"°) so pe(K) = 0.

> If M € Modgk then pc(M) € Mod,_ (k) so pc(M) = 0.

> If M € Modup then L(F A M) € thick(Modk) so pc(L(F A M)) =0 so
F A pc(LM) = 0 so ps(LM) = 0.

» Thus, for X € K = thick(L Moduyp) we have pg(X) =0 i.e.
C!(X) = C*(X).

Naive groupoid duality

Naive groupoid duality

» For a finite groupoid G put M(G) = Q{mo(G)} and
M*(G) = Hom(M(G), Q) = Map(mo(G), Q).

Naive groupoid duality

» For a finite groupoid G put M(G) = Q{mo(G)} and
M*(G) = Hom(M(G), Q) = Map(mo(G), Q).

> Define an inner product on M(G) by ([a],[b])c = |G(a, b)|
(so ([a], [b]) = O unless a ~ b).

Naive groupoid duality

» For a finite groupoid G put M(G) = Q{mo(G)} and
M*(G) = Hom(M(G), @) = Map(mo(G), Q).

> Define an inner product on M(G) by ([a],[b])c = |G(a, b)|
(so ([a], [b]) = O unless a ~ b).

» The induced inner product on M*(G) is

(f,g)e = X1, |G (ai, ai)| " f(ar)g(ar),
where ai, ..., a, contains one member of each isomorphism class.

Naive groupoid duality

>

>

For a finite groupoid G put M(G) = Q{mo(G)} and

M*(G) = Hom(M(G),Q) = Map(mo(G), Q).

Define an inner product on M(G) by ([a],[b])c = |G(a, b)|

(so ([a], [b]) = O unless a ~ b).

The induced inner product on M*(G) is

(f.g)e = iy 1G(ar, a)| " f(ar)g(a),

where ai, ..., a, contains one member of each isomorphism class.
This is also (f,g)c = 0(fg), where 0(h) = 3", |G(a:, a;)| " h(a;).

Naive groupoid duality

» For a finite groupoid G put M(G) = Q{mo(G)} and
M*(G) = Hom(M(G), Q) = Map(mo(G), Q).
> Define an inner product on M(G) by ([a],[b])c = |G(a, b)|
(so ([a], [b]) = O unless a ~ b).
» The induced inner product on M*(G) is
(f.g)c =11 |G(ai, a1)| 7 f(ai)g(a),
where ai, ..., a, contains one member of each isomorphism class.
> This is also (f,g)c = 0(fg), where O(h) = 3", |G(a;, a;)| " h(a;).
> Given q: G — H we define gi: M(G) — M(H) by ¢i([a]) = [g(a)]. and
q": M*(H) = M*(G) by q"(g)(a) = g(q(a)).

Naive groupoid duality

>

>

For a finite groupoid G put M(G) = Q{mo(G)} and

M*(G) = Hom(M(G), Q) = Map(mo(G), Q).

Define an inner product on M(G) by ([a],[b])c = |G(a, b)|

(so ([a], [b]) = O unless a ~ b).

The induced inner product on M*(G) is

(f.g)c =11 |G(ai, a1)| 7 f(ai)g(a),

where ai, ..., a, contains one member of each isomorphism class.

This is also (f,g)c = 0(fg), where 0(h) = 3", |G(a:, a;)| " h(a;).

Given q: G — H we define gi: M(G) — M(H) by ¢i([a]) = [q(a)], and
q": M*(H) — M*(G) by q"(g)(a) = &g(q(a)).

Define ¢*: M(H) — M(G) and qi: M*(G) — M*(H) to be adjoint, so
(@ (v), v)n = (v, q"(v)) and (a(f), g)n = (f,a"(g))c-

Naive groupoid duality

>

>

>

For a finite groupoid G put M(G) = Q{mo(G)} and

M*(G) = Hom(M(G), Q) = Map(mo(G), Q).

Define an inner product on M(G) by ([a],[b])c = |G(a, b)|

(so ([a], [b]) = O unless a ~ b).

The induced inner product on M*(G) is

(f.g)c =11 |G(ai, a1)| 7 f(ai)g(a),

where ai, ..., a, contains one member of each isomorphism class.

This is also (f,g)c = 0(fg), where 0(h) = 3", |G(a:, a;)| " h(a;).

Given q: G — H we define gi: M(G) — M(H) by ¢i([a]) = [q(a)], and
q": M*(H) = M*(G) by q7(g)(a) = g(a(a)).

Define ¢*: M(H) — M(G) and qi: M*(G) — M*(H) to be adjoint, so
(@ (u), v)n = (u,q7(v))6 and (a(f), &)n = (f,q"(g))c-

This is compatible with the isomorphisms

M(G) ~ M*(G) ~ Hom(M(G), Q).

Naive groupoid duality

>

>

>

For a finite groupoid G put M(G) = Q{mo(G)} and

M*(G) = Hom(M(G),Q) = Map(mo(G), Q).

Define an inner product on M(G) by ([a],[b])c = |G(a, b)|

(so ([a], [b]) = O unless a ~ b).

The induced inner product on M*(G) is

(f.g)c =11 |G(ai, a1)| 7 f(ai)g(a),

where ai, ..., a, contains one member of each isomorphism class.

This is also (f,g)c = 0(fg), where 0(h) = 3", |G(a:, a;)| " h(a;).

Given q: G — H we define gi: M(G) — M(H) by ¢i([a]) = [q(a)], and
q": M*(H) — M*(G) by q"(g)(a) = &g(q(a)).

Define ¢*: M(H) — M(G) and qi: M*(G) — M*(H) to be adjoint, so
(@(u); V) = (u,q"(v))6 and (a(f), g)n = (f, q"(&))c-

This is compatible with the isomorphisms

M(G) ~ M*(G) ~ Hom(M(G), Q).

The isomorphism M(G) — M*(G) is the isomorphism

v: a(c*(Q)) — ci(c*(Q)) that we considered before.

Classical characters

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).

» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).
» A functor g: G — H gives qi: Vg = Vu: ¢* and then

g: R(G) 2 R(H): q".
» Definef =c =c.: R(G) > R(1)=1Z

(so for a group we have A([U]) = dimc(U®)).

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).
» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".
» Definef =c =c.: R(G) > R(1)=1Z
(so for a group we have A([U]) = dimc(U®)).
> This gives a perfect pairing (u,v)s = 0(uv) on R(G).

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).
» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".
» Definef =c =c.: R(G) > R(1)=1Z
(so for a group we have A([U]) = dimc(U®)).
> This gives a perfect pairing (u,v)s = 0(uv) on R(G).
» This has (qi(u), v)n = (u,q"(v))e.

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).
» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".
» Definef =c =c.: R(G) > R(1)=1Z
(so for a group we have A([U]) = dimc(U®)).
> This gives a perfect pairing (u,v)s = 0(uv) on R(G).
This has (qi(u), v)n = (u,q"(v))s.
» Let L be the subfield of C generated by all roots of unity.

v

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).

» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".

» Definef =c =c.: R(G) > R(1)=1Z
(so for a group we have A([U]) = dimc(U®)).
> This gives a perfect pairing (u,v)s = 0(uv) on R(G).
» This has (qi(u), v)n = (u,q"(v))c.
» Let L be the subfield of C generated by all roots of unity.
> If o € Aut(V) with @™ =1 then all eigenvalues lie in L so trace(a) € L.

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).

» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".

» Definef =c =c.: R(G) > R(1)=1Z
(so for a group we have A([U]) = dimc(U®)).
> This gives a perfect pairing (u,v)s = 0(uv) on R(G).
» This has (qi(u), v)n = (u,q"(v))e.
» Let L be the subfield of C generated by all roots of unity.
> If o € Aut(V) with @™ =1 then all eigenvalues lie in L so trace(a) € L.
» Put AG = [Z, G] so obj(AG) = {(a,u) | a € obj(G), u € G(a,a)} and

(a,u) =~ (', u') iff there exists g € G(a,a’) with v’ = gug™".

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).

» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".

» Definef =c =c.: R(G) > R(1)=1Z
(so for a group we have A([U]) = dimc(U®)).
> This gives a perfect pairing (u,v)s = 0(uv) on R(G).
» This has (qi(u), v)n = (u,q"(v))e.
» Let L be the subfield of C generated by all roots of unity.
> If o € Aut(V) with @™ =1 then all eigenvalues lie in L so trace(a) € L.
» Put AG = [Z, G] so obj(AG) = {(a,u) | a € obj(G), u € G(a,a)} and

(a,u) =~ (', u') iff there exists g € G(a,a’) with v’ = gug™".
Define C(G) = L ® M*(A(G)) = Map(mo(AG), L), so we have
0: C(G) - Land qi: C(G) = C(H): g* forq: G — H.

v

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).

» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".

» Definef =c =c.: R(G) > R(1)=1Z
(so for a group we have A([U]) = dimc(U®)).
> This gives a perfect pairing (u,v)s = 0(uv) on R(G).
» This has (qi(u), v)n = (u,q"(v))e.
» Let L be the subfield of C generated by all roots of unity.
> If o € Aut(V) with @™ =1 then all eigenvalues lie in L so trace(a) € L.
» Put AG = [Z, G] so obj(AG) = {(a,u) | a € obj(G), u € G(a,a)} and

(a,u) =~ (', u') iff there exists g € G(a,a’) with v’ = gug™".

Define C(G) = L ® M*(A(G)) = Map(mo(AG), L), so we have

0: C(G) - Land qi: C(G) = C(H): g* forq: G — H.

> For a representation V: G — V define x(V) € C(G) by
x(V)([a, u]) = trace(us: V; — V3).

v

Classical characters

» For finite G, put R(G) = mo(Vs) — mo(Vs) (the representation ring).

» A functor g: G — H gives qi: Vg = Vu: ¢* and then
g: R(G) 2 R(H): q".

» Definef =c =c.: R(G) > R(1)=1Z
(so for a group we have A([U]) = dimc(U®)).
> This gives a perfect pairing (u,v)s = 0(uv) on R(G).
» This has (qi(u), v)n = (u,q"(v))e.
» Let L be the subfield of C generated by all roots of unity.
> If o € Aut(V) with @™ =1 then all eigenvalues lie in L so trace(a) € L.
» Put AG = [Z, G] so obj(AG) = {(a,u) | a € obj(G), u € G(a,a)} and

(a,u) =~ (', u') iff there exists g € G(a,a’) with v’ = gug™".

Define C(G) = L ® M*(A(G)) = Map(mo(AG), L), so we have

0: C(G) - Land qi: C(G) = C(H): g* forq: G — H.

> For a representation V: G — V define x(V) € C(G) by
x(V)([a, u]) = trace(us: V; — V3).

» This gives an isomorphism x: L ® R(G) — C(G), compatible with all
structure.

v

Generalised characters

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
k

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0", G]=lim [©*/pX, G]
—k

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,«) = E°[x]/gu(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
. k
> Put Z/p> =lim Z/p" = Z[}1/Z = Q/Z¢) = Qo/Zp = U, V1C S"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.

> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).

> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.

> PutZ/p™ = lim Z/p* = Z[})/Z=Q/Zy = Q/Zp = U, VICS"
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)

» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.

> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.

> Put AG=[O", G]:Hﬂk[e*/pk, G], C(G)=L® M*AG=Map(mAG,L).

> Recall E%(B(©*/p")) = E%[x, ..., x]/(gk(x1), - - -, gx(xn));
there is a canonical map ¢« from this to L.

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).
> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
K
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)
» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.
> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k
> Recall E%(B(©"/p")) = E%Fx, ... xnl/(g(x0), - - g0
there is a canonical map ¢« from this to L.
> Thus any u: ©*/p* — G gives ¢ 0 E°(Bu): E°BG — L.
Assembling these gives x: L ®z0 E°(BG) — C(G).

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p“]e(x) = gr(x)hk(x), where h(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).
> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
K
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)
» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.
> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k
> Recall E%(B(©"/p")) = E%Fx, ... xnl/(g(x0), - - g0
there is a canonical map ¢« from this to L.
> Thus any u: ©*/p* — G gives ¢ 0 E°(Bu): E°BG — L.
Assembling these gives x: L ®z0 E°(BG) — C(G).

» Theorem (Hopkins, Kuhn, Ravenel): x is an isomorphism.

Generalised characters

» Fix a prime p and n > 0 and let E be Morava E-theory.
> Then [p]e(x) = gr(x)he(x), where hi(x) € E°[x]* and gi(x) € E°[x] is
a monic polynomial of degree p™ and E°(BC,x) = E°[x]/gk(x).
> Construct L from Q ® E° by adjoining a full set of roots of gi(x) for all k.
> Put Z/p™ = lim Z/p* = Z[X|/Z = Q/Z) = Qp/Z, = U, VIC S
K
(Exercise: Hom(Z/p>,7Z/p>) ~ Z, ~ Hom(Z/p>, S*).)
» Put © = {all roots of all gk(x)} C L. This is a group under +,
isomorphic to (Z/p*>)", analogous to the formal group scheme G.
> Put ©* = Hom(©, S*) ~ Z", regarded as a groupoid with one object.
> Put AG=[0%, G]=lim [©"/p*,G], C(G)=L® M*AG=Map(mAG,L).
—k
> Recall E°(B(9"/p")) = E°[x1, ..., xal/(gk (1), - -, gk (xn));
there is a canonical map ¢« from this to L.
> Thus any u: ©*/p* — G gives ¢ 0 E°(Bu): E°BG — L.
Assembling these gives x: L ®z0 E°(BG) — C(G).
» Theorem (Hopkins, Kuhn, Ravenel): x is an isomorphism.

» Both sides have inner products, and operators i and g* adjoint to each
other, and x preserves all this.

Proof of the generalised character theorem

Proof of the generalised character theorem

» Reduce to the case of a finite group G.

Proof of the generalised character theorem

» Reduce to the case of a finite group G.

» Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q (H H* Zlmage @)>
0: ©* =G

Proof of the generalised character theorem

» Reduce to the case of a finite group G.

» Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q (H H* Zlmage @)>
0: ©* =G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)

Proof of the generalised character theorem

» Reduce to the case of a finite group G.

» Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q (H H* Zlmage Q))
0: ©* =G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)

» Deduce by Mayer-Vietoris that x¢,z is iso if Z has abelian isotropy.

Proof of the generalised character theorem

» Reduce to the case of a finite group G.

» Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q (H H* Zlmage Q))
0: ©* =G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)

» Deduce by Mayer-Vietoris that x¢,z is iso if Z has abelian isotropy.

> Let F be the space of complete flags in C[G], so Z x F and Z x F? have

abelian isotropy, and we have an equaliser
E*(Zng) = E*((Z x F)ng) = E*((Z x F?)nc).

Proof of the generalised character theorem

» Reduce to the case of a finite group G.

» Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q (H H* Zlmage Q))
0: ©* =G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)
» Deduce by Mayer-Vietoris that x¢,z is iso if Z has abelian isotropy.

> Let F be the space of complete flags in C[G], so Z x F and Z x F? have
abelian isotropy, and we have an equaliser

E*(Zng) = E*((Z x F)ng) = E*((Z x F?)nc).
Deduce the general case from this.

Proof of the generalised character theorem

Reduce to the case of a finite group G.

vy

Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q (H H* Zlmage Q))
0: ©* =G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)

» Deduce by Mayer-Vietoris that x¢,z is iso if Z has abelian isotropy.

> Let F be the space of complete flags in C[G], so Z x F and Z x F? have
abelian isotropy, and we have an equaliser
E*(Zng) = E*((Z x F)ng) = E*((Z x F?)nc).
Deduce the general case from this.

> Corollary: Q ® E°(BG) = u5 *E%(BG) ~ (I],Q® Da)°. Here A runs
over abelian subgroups A < G, and Dj is a certain regular local ring, free
of finite rank as an EO—module.

Proof of the generalised character theorem

Reduce to the case of a finite group G.

vy

Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q (H H* Zlmage Q))
0: ©* =G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)

» Deduce by Mayer-Vietoris that x¢,z is iso if Z has abelian isotropy.

> Let F be the space of complete flags in C[G], so Z x F and Z x F? have
abelian isotropy, and we have an equaliser
E*(Zng) = E*((Z x F)ng) = E*((Z x F?)nc).
Deduce the general case from this.

> Corollary: Q ® E°(BG) = u5 *E%(BG) ~ (I],Q® Da)°. Here A runs
over abelian subgroups A < G, and Dj is a certain regular local ring, free
of finite rank as an EO—module.

> Recall spf(E°(BA)) = Hom(A*,G); morally spf(E°(Da)) = Inj(A*,G).

Proof of the generalised character theorem

Reduce to the case of a finite group G.

vy

Generalise: for a finite G-CW complex Z, we have

G
XG,z: L ® g0 E* (ZhG — L®Q (H H* Zlmage Q))
0: ©* =G

> Prove by calculation that 6 7 is iso when Z = G/A with A < G abelian.
(Here Zyc = BA, and Z™(%) is 7 (if image(0) < A) or () (otherwise).)
» Deduce by Mayer-Vietoris that x¢,z is iso if Z has abelian isotropy.

> Let F be the space of complete flags in C[G], so Z x F and Z x F? have
abelian isotropy, and we have an equaliser
E*(Zng) = E*((Z x F)ng) = E*((Z x F?)nc).
Deduce the general case from this.

> Corollary: Q ® E°(BG) = u5 *E%(BG) ~ (I],Q® Da)°. Here A runs
over abelian subgroups A < G, and Dj is a certain regular local ring, free
of finite rank as an EO—module.

> Recall spf(E°(BA)) = Hom(A*,G); morally spf(E°(Da)) = Inj(A*,G).

> There is a similar map u; 'E®(BG)/lx — (I, uy *Di,a) € for k > 0, which
is an F-isomorphism (Greenlees-Strickland; see also Stapleton).

The inner product and the trace

The inner product and the trace

> Suppose for simplicity that E*(BG) = 0 and E°(BG) is free over E°,
say with basis e1,..., €.

The inner product and the trace

> Suppose for simplicity that E*(BG) = 0 and E°(BG) is free over E°,
say with basis e1,..., €.
> The pairing on E°(BG) is (f,g)c = 0(fg) for some §: E°(BG) — E°.
> We can also define the trace 7: E°(BG) — E°,
so if fe; = 3, ajiej then 7(f) = 3, aii.

The inner product and the trace

>

Suppose for simplicity that E*(BG) = 0 and E°(BG) is free over E°,

say with basis e1,..., €.

The pairing on E°(BG) is (f, g)c = O(fg) for some 6: E°(BG) — E°.
We can also define the trace 7: E°(BG) — E°,

so if fe; = 3, ajiej then 7(f) = 3, aii.

Choose representatives ui, ..., Uy of the isomorphism classes in AG, with
automorphism groups I'; = (AG)(u;, u;); then on L ®p0 E°(BG) ~ C(G)
we have 0(f) = >, |Ti| " f(u;) and 7(f) = X, f(ui).

The inner product and the trace

>

Suppose for simplicity that E*(BG) = 0 and E°(BG) is free over E°,

say with basis e1,..., €.

The pairing on E°(BG) is (f, g)c = O(fg) for some 6: E°(BG) — E°.
We can also define the trace 7: E°(BG) — E°,

so if fe; = 3, ajiej then 7(f) = 3, aii.

Choose representatives ui, ..., Uy of the isomorphism classes in AG, with
automorphism groups I'; = (AG)(u;, u;); then on L ®p0 E°(BG) ~ C(G)
we have 0(f) = >, |Ti| " f(u;) and 7(f) = X, f(ui).

If G is an abelian group then I'; ~ G for all i and so 7 = |G|#

on C(G) or on E°(BG).

Even more generalised characters

Even more generalised characters

» For a space X, put Ao X = lim [B(©"/p™)+, X],
——m
so NoBG = 7o(AG) for finite groupoids G.

Even more generalised characters

>

For a space X, put Ao X = lim [B(©"/p™)+, X],
——m
so NoBG = 7o(AG) for finite groupoids G.

Put C(X) = Map(Ao(X), L); we still have a ring map
x: L®go E°(X) — C(X), which is iso for X = BG.

Even more generalised characters

» For a space X, put Ao X = Il_n: [B(©*/p™)+, X],
so NoBG = mo(AG) for finite gnlzoupoids G.

> Put C(X) = Map(Ao(X), L); we still have a ring map
x: L®go E°(X) — C(X), which is iso for X = BG.

> Recall that the Eilenberg-MacLane space BA = K(A, d) has
74(B?A) = A and m;(BYA) = 0 for i # d and [Z, BYA] = H(Z; A).

Even more generalised characters

>

For a space X, put AgX = lim [B(©*/p™)4, X],

——m
so NoBG = 7o(AG) for finite groupoids G.
Put C(X) = Map(Ao(X), L); we still have a ring map
x: L®go E°(X) — C(X), which is iso for X = BG.
Recall that the Eilenberg-MacLane space BYA = K(A, d) has
74(B?A) = A and m;(BYA) = 0 for i # d and [Z, BYA] = H(Z; A).
Note that ©/p* is similar to ©* = Z] or Z", and B(Z") is the torus
(81", with H.(B(Z")) = *(Z").

Even more generalised characters

>

For a space X, put AgX = lim [B(©*/p™)4, X],

——m
so NoBG = 7o(AG) for finite groupoids G.
Put C(X) = Map(Ao(X), L); we still have a ring map
x: L®go E°(X) — C(X), which is iso for X = BG.
Recall that the Eilenberg-MacLane space BYA = K(A, d) has
74(B?A) = A and m;(BYA) = 0 for i # d and [Z, BYA] = H(Z; A).
Note that ©/p* is similar to ©* = Z] or Z", and B(Z") is the torus
(81", with H.(B(Z")) = *(Z").

We find that Ag(B?A) = Hom(\9©*, A) ~ A((:)) (assuming |A| < o0).

Even more generalised characters

>

For a space X, put AgX = lim [B(©*/p™)4, X],
——m

so NoBG = 7o(AG) for finite groupoids G.
Put C(X) = Map(Ao(X), L); we still have a ring map
x: L®go E°(X) — C(X), which is iso for X = BG.
Recall that the Eilenberg-MacLane space BYA = K(A, d) has
74(B?A) = A and m;(BYA) = 0 for i # d and [Z, BYA] = H(Z; A).
Note that ©/p* is similar to ©* = Z] or Z", and B(Z") is the torus
(1), with H.(B(Z")) = X*(Z").

(a)

> We find that Ag(BYA) = Hom(\9©*, A) ~ Ay (assuming |A| < oo).
> Claim: if X ~ Q>Z for some Z, then NAoX = Hom(*(©%), 7.(X)).

Even more generalised characters

>

For a space X, put AgX = lim [B(©*/p™)4, X],
——m

so NoBG = 7o(AG) for finite groupoids G.
Put C(X) = Map(Ao(X), L); we still have a ring map
x: L®go E°(X) — C(X), which is iso for X = BG.
Recall that the Eilenberg-MacLane space BYA = K(A, d) has
74(B?A) = A and m;(BYA) = 0 for i # d and [Z, BYA] = H(Z; A).
Note that ©/p* is similar to ©* = Z] or Z", and B(Z") is the torus
(1), with H.(B(Z")) = X*(Z").

(a)

> We find that Ag(BYA) = Hom(\9©*, A) ~ Ay (assuming |A| < oo).
> Claim: if X ~ Q>Z for some Z, then NAoX = Hom(*(©%), 7.(X)).

Proof uses Z2((P x Q)1) ~X*(S°VPVQV(PAQ)),
iterated to split £2B(Z") = £%((S')}) as a wedge of spheres,
together with [B(Z")., X] = [Z®B(2")+, Z].

Even more generalised characters

>

> We find that Ag(B?A) = Hom(\9©*, A) ~ A

For a space X, put AgX = lim [B(©*/p™)4, X],
——m

so NoBG = 7o(AG) for finite groupoids G.

Put C(X) = Map(Ao(X), L); we still have a ring map

x: L®go E°(X) — C(X), which is iso for X = BG.

Recall that the Eilenberg-MacLane space BYA = K(A, d) has

74(B?A) = A and m;(BYA) = 0 for i # d and [Z, BYA] = H(Z; A).

Note that ©/p* is similar to ©* = Z] or Z", and B(Z") is the torus

(1), with H.(B(Z")) = X*(Z").

(a)

() (assuming |A| < o0).

> Claim: if X ~ Q>Z for some Z, then NAoX = Hom(*(©%), 7.(X)).

Proof uses Z2((P x Q)1) ~X*(S°VPVQV(PAQ)),
iterated to split £2B(Z") = £%((S')}) as a wedge of spheres,
together with [B(Z")., X] = [Z®B(2")+, Z].

Theorem (Lurie): x: L ®g0 E°(X) — C(X) is iso

if X is a w-finite space/finite co-groupoid.

Morava theory of Eilenberg-MacLane spaces

Morava theory of Eilenberg-MaclLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)

Morava theory of Eilenberg-MaclLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)
> Also Hom(A9©*, A) = Tor(0,...,0, A)*

Morava theory of Eilenberg-MacLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)
> Also Hom(A9©*, A) = Tor(0,...,0, A)*

» Theorem (essentially Ravenel-Wilson):
spf(E®(B/Cyx)) = A (ker(p*.1: G — G))

Morava theory of Eilenberg-MacLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)
> Also Hom(A9©*, A) = Tor(0,...,0, A)*

» Theorem (essentially Ravenel-Wilson):
spf(E®(BCyx)) = A/(ker(p*.1: G — G)) (=0 for d > n).

Morava theory of Eilenberg-MacLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)
> Also Hom(A9©*, A) = Tor(0,...,0, A)*

» Theorem (essentially Ravenel-Wilson):
spf(E®(BCyx)) = A/(ker(p*.1: G — G)) (=0 for d > n).

> Corollary: for A finite abelian: spf(E°(BYA)) = Tor(G, ..., G, A)*

Morava theory of Eilenberg-MacLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)

Also Hom(\9©*, A) = Tor(0,...,0, A)*

» Theorem (essentially Ravenel-Wilson):
spf(E®(BCyx)) = A/(ker(p*.1: G — G)) (=0 for d > n).

> Corollary: for A finite abelian: spf(E°(BYA)) = Tor(G, ..., G, A)*

> Corollary: spf(E°(B"Z)) = spf(E°(B"(Z/p>))) = Tor(G,...,G)*", and
this is a one-dimensional formal group of height one.

v

Morava theory of Eilenberg-MacLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)

Also Hom(\9©*, A) = Tor(0,...,0, A)*

» Theorem (essentially Ravenel-Wilson):
spf(E®(BCyx)) = A/(ker(p*.1: G — G)) (=0 for d > n).

> Corollary: for A finite abelian: spf(E°(BYA)) = Tor(G, ..., G, A)*

> Corollary: spf(E°(B"Z)) = spf(E°(B"(Z/p>))) = Tor(G,...,G)*", and
this is a one-dimensional formal group of height one.

> Equivalently E°(B"(Z/p™)) = E°[y] with mult*(y) = yo + y1 + yoyi.

v

Morava theory of Eilenberg-MacLane spaces

> Recall spf(E°BA) = Hom(A*,G) = Tor(A,G)

Also Hom(\9©*, A) = Tor(0,...,0, A)*

» Theorem (essentially Ravenel-Wilson):
spf(E®(BCyx)) = A/(ker(p*.1: G — G)) (=0 for d > n).

> Corollary: for A finite abelian: spf(E°(BYA)) = Tor(G, ..., G, A)*

> Corollary: spf(E°(B"Z)) = spf(E°(B"(Z/p>))) = Tor(G,...,G)*", and
this is a one-dimensional formal group of height one.

> Equivalently E°(B"(Z/p™)) = E°[y] with mult*(y) = yo + y1 + yoyi.

> Alternatively, K°(BYA) is a finite-dimensional Hopf algebra over F,, and
the category of such is equivalent to a category of Dieudonné modules.

v

General ambidexterity

General ambidexterity

» Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

General ambidexterity

» Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

» There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

General ambidexterity

» Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

» There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

» Key case: c: B"C, — 1 is ambidextrous.

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.
Assuming this, any g with fibres B™C, is ambidextrous.

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any
B™A — 1 is ambidextrous.

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any
B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p, (if X = X<p).

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p (if X = X<p).But Xcm — 1is
ambidextrous by induction, so X — 1 is ambidextrous.

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p (if X = X<p).But Xcm — 1is
ambidextrous by induction, so X — 1 is ambidextrous. Thus any g with
m-truncated fibres is ambidextrous.

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p (if X = X<p).But Xcm — 1is
ambidextrous by induction, so X — 1 is ambidextrous. Thus any g with
m-truncated fibres is ambidextrous.

Further reduction (similar to m = 1): enough to show that
a(c*(K)) = c.(c*(K)) isiso for c: B"C, — 1

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p (if X = X<p).But Xcm — 1is
ambidextrous by induction, so X — 1 is ambidextrous. Thus any g with
m-truncated fibres is ambidextrous.

Further reduction (similar to m = 1): enough to show that
a(c*(K)) = c.(c*(K)) isiso for c: B"C, — 1
or that K.(B"C,) — K*(B™G(,) is iso

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p (if X = X<p).But Xcm — 1is
ambidextrous by induction, so X — 1 is ambidextrous. Thus any g with
m-truncated fibres is ambidextrous.

Further reduction (similar to m = 1): enough to show that

a(c*(K)) = c.(c*(K)) isiso for c: B"C, — 1

or that K.(B"C,) — K*(B™G(,) is iso

or that the corresponding pairing on K*(B™C,) is perfect

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p (if X = X<p).But Xcm — 1is
ambidextrous by induction, so X — 1 is ambidextrous. Thus any g with
m-truncated fibres is ambidextrous.

Further reduction (similar to m = 1): enough to show that

a(c*(K)) = c.(c*(K)) isiso for c: B"C, — 1

or that K.(B"C,) — K*(B™G(,) is iso

or that the corresponding pairing on K*(B™C,) is perfect

or that the corresponding pairing on E*(B™C,) is perfect.

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p (if X = X<p).But Xcm — 1is
ambidextrous by induction, so X — 1 is ambidextrous. Thus any g with
m-truncated fibres is ambidextrous.

Further reduction (similar to m = 1): enough to show that

a(c*(K)) = c.(c*(K)) isiso for c: B"C, — 1

or that K.(B"C,) — K*(B™G(,) is iso

or that the corresponding pairing on K*(B™C,) is perfect

or that the corresponding pairing on E*(B™C,) is perfect.

As with the case m = 1, the pairing is given by a map 9: E°(B™C,) — E°
and we also have a trace map 7: E®(B™C,) — E°, and these satisfy

7 = p*0 for some k.

General ambidexterity

>

Theorem (Hopkins-Lurie): any g: X — Y of finite co-groupoids/m-finite
spaces is ambidextrous, i.e. g ~ g, as functors K(X) — K(Y).

There exists m such that all fibres (g | b) have m = 0 for all k > m.
Greenlees-Sadofsky gives m < 1; do m > 1 by induction.

Key case: ¢: B™"C, — 1 is ambidextrous.

Assuming this, any g with fibres B™C, is ambidextrous. Thus any

B™A — 1 is ambidextrous. Thus any g with fibre B™A is ambidextrous,
such as the Postnikov truncation X — X<p (if X = X<p).But Xcm — 1is
ambidextrous by induction, so X — 1 is ambidextrous. Thus any g with
m-truncated fibres is ambidextrous.

Further reduction (similar to m = 1): enough to show that

a(c*(K)) = c.(c*(K)) isiso for c: B"C, — 1

or that K.(B"C,) — K*(B™G(,) is iso

or that the corresponding pairing on K*(B™C,) is perfect

or that the corresponding pairing on E*(B™C,) is perfect.

As with the case m = 1, the pairing is given by a map 9: E°(B™C,) — E°
and we also have a trace map 7: E®(B™C,) — E°, and these satisfy

7 = p*0 for some k.

One can calculate enough structure of E°(B™C,) to deduce from this that
0 gives a perfect pairing.

