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K -local spectra

▶ Recall that Z is K -acyclic if K∗Z = 0, and
X is K -local if [Z ,X ] = 0 for all K -acyclic Z (e.g. K is K -local)

▶ We write K for the ∞-category of K -local spectra.
▶ There is a functorial cofibration CX → X → LX

where CX is K -acyclic and LX is K -local.
▶ For objects: LX = 0 iff K∗(X ) = 0. For morphisms: Lf iso iff K∗(f ) iso.
▶ The subcategory K ⊆ S is closed under limits. To get colimits in K,

construct colimits in S and apply L.

▶ In MP0: put ui = coeff of xpi in [p]MP(x) and In = (u0, . . . , un−1).
▶ For an MP-module M we have LM = (u−1

n M)∧In . Thus E is K -local.
▶ Deep Theorem: K = thick⟨LM | M ∈ ModMP⟩
▶ Deep Theorem: There is a finite spectrum F such that

MP∗F = MP∗/(u
i0
0 , . . . , u

in−1
n−1 ) for some i0, . . . , in−1.

▶ Put pG (X ) = cof(c!(X ) → c∗(X )) = cof(L(XhG ) → X hG ) so pG (K) = 0.
▶ If M ∈ ModK then pG (M) ∈ ModpG (K) so pG (M) = 0.
▶ If M ∈ ModMP then L(F ∧M) ∈ thick⟨ModK ⟩ so pG (L(F ∧M)) = 0 so

F ∧ pG (LM) = 0 so pG (LM) = 0.
▶ Thus, for X ∈ K = thick⟨LModMP⟩ we have pG (X ) = 0 i.e.

c!(X ) = c∗(X ).
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Naive groupoid duality

▶ For a finite groupoid G put M(G) = Q{π0(G)} and
M∗(G) = Hom(M(G),Q) = Map(π0(G),Q).

▶ Define an inner product on M(G) by ([a], [b])G = |G(a, b)|
(so ([a], [b]) = 0 unless a ≃ b).

▶ The induced inner product on M∗(G) is
⟨f , g⟩G =

∑r
i=1 |G(ai , ai )|−1f (ai )g(ai ),

where a1, . . . , ar contains one member of each isomorphism class.

▶ This is also ⟨f , g⟩G = θ(fg), where θ(h) =
∑

i |G(ai , ai )|−1h(ai ).

▶ Given q : G → H we define q! : M(G) → M(H) by q!([a]) = [q(a)], and
q∗ : M∗(H) → M∗(G) by q∗(g)(a) = g(q(a)).

▶ Define q∗ : M(H) → M(G) and q! : M
∗(G) → M∗(H) to be adjoint, so

(q!(u), v)H = (u, q∗(v))G and ⟨q!(f ), g⟩H = ⟨f , q∗(g)⟩G .
▶ This is compatible with the isomorphisms

M(G) ≃ M∗(G) ≃ Hom(M(G),Q).

▶ The isomorphism M(G) → M∗(G) is the isomorphism
ν : c!(c

∗(Q)) → c∗(c
∗(Q)) that we considered before.
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Classical characters

▶ For finite G , put R(G) = π0(VG )− π0(VG ) (the representation ring).

▶ A functor q : G → H gives q! : VG ⇄ VH : q∗ and then
q! : R(G) ⇄ R(H) : q∗.

▶ Define θ = c! = c∗ : R(G) → R(1) = Z
(so for a group we have θ([U]) = dimC(U

G )).

▶ This gives a perfect pairing ⟨u, v⟩G = θ(uv) on R(G).

▶ This has ⟨q!(u), v⟩H = ⟨u, q∗(v)⟩G .
▶ Let L be the subfield of C generated by all roots of unity.

▶ If α ∈ Aut(V ) with αm = 1 then all eigenvalues lie in L so trace(α) ∈ L.

▶ Put ΛG = [Z,G ] so obj(ΛG) = {(a, u) | a ∈ obj(G), u ∈ G(a, a)} and
(a, u) ≃ (a′, u′) iff there exists g ∈ G(a, a′) with u′ = gug−1.

▶ Define C(G) = L⊗M∗(Λ(G)) = Map(π0(ΛG), L), so we have
θ : C(G) → L and q! : C(G) ⇄ C(H) : q∗ for q : G → H.

▶ For a representation V : G → V define χ(V ) ∈ C(G) by
χ(V )([a, u]) = trace(u∗ : Va → Va).

▶ This gives an isomorphism χ : L⊗ R(G) → C(G), compatible with all
structure.
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Generalised characters

▶ Fix a prime p and n > 0 and let E be Morava E -theory.

▶ Then [pk ]E (x) = gk(x)hk(x), where hk(x) ∈ E 0[[x ]]× and gk(x) ∈ E 0[x ] is
a monic polynomial of degree pnk and E 0(BCpk ) = E 0[x ]/gk(x).

▶ Construct L from Q⊗ E 0 by adjoining a full set of roots of gk(x) for all k.

▶ Put Z/p∞ = lim
−→k

Z/pk = Z[ 1
p
]/Z = Q/Z(p) = Qp/Zp =

⋃
k

pk
√
1 ⊂ S1.

(Exercise: Hom(Z/p∞,Z/p∞) ≃ Zp ≃ Hom(Z/p∞,S1).)

▶ Put Θ = {all roots of all gk(x)} ⊂ L. This is a group under +E ,
isomorphic to (Z/p∞)n, analogous to the formal group scheme G.

▶ Put Θ∗ = Hom(Θ, S1) ≃ Zn
p, regarded as a groupoid with one object.

▶ Put ΛG=[Θ∗,G ]=lim
−→k

[Θ∗/pk ,G ], C(G)=L⊗M∗ΛG=Map(π0ΛG , L).

▶ Recall E 0(B(Θ∗/pk)) = E 0[[x1, . . . , xn]]/(gk(x1), . . . , gk(xn));
there is a canonical map ϕk from this to L.

▶ Thus any u : Θ∗/pk → G gives ϕk ◦ E 0(Bu) : E 0BG → L.
Assembling these gives χ : L⊗E0 E 0(BG) → C(G).

▶ Theorem (Hopkins, Kuhn, Ravenel): χ is an isomorphism.

▶ Both sides have inner products, and operators q! and q∗ adjoint to each
other, and χ preserves all this.
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other, and χ preserves all this.
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(Exercise: Hom(Z/p∞,Z/p∞) ≃ Zp ≃ Hom(Z/p∞,S1).)

▶ Put Θ = {all roots of all gk(x)} ⊂ L. This is a group under +E ,
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Proof of the generalised character theorem

▶ Reduce to the case of a finite group G .

▶ Generalise: for a finite G -CW complex Z , we have

χG ,Z : L⊗E0 E∗(ZhG ) → L⊗Q

( ∏
θ : Θ∗→G

H∗(Z image(θ);Q)

)G

▶ Prove by calculation that θG ,Z is iso when Z = G/A with A ≤ G abelian.
(Here ZhG = BA, and Z image(θ) is Z (if image(θ) ≤ A) or ∅ (otherwise).)

▶ Deduce by Mayer-Vietoris that χG ,Z is iso if Z has abelian isotropy.

▶ Let F be the space of complete flags in C[G ], so Z × F and Z × F 2 have
abelian isotropy, and we have an equaliser
E∗(ZhG ) → E∗((Z × F )hG ) ⇒ E∗((Z × F 2)hG ).
Deduce the general case from this.

▶ Corollary: Q⊗ E 0(BG) = u−1
0 E 0(BG) ≃

(∏
A Q⊗ DA

)G
. Here A runs

over abelian subgroups A < G , and DA is a certain regular local ring, free
of finite rank as an E 0-module.

▶ Recall spf(E 0(BA)) = Hom(A∗,G); morally spf(E 0(DA)) = Inj(A∗,G).

▶ There is a similar map u−1
k E 0(BG)/Ik →

(∏
A u

−1
k Dk,A

)G
for k > 0, which

is an F -isomorphism (Greenlees-Strickland; see also Stapleton).
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The inner product and the trace

▶ Suppose for simplicity that E 1(BG) = 0 and E 0(BG) is free over E 0,
say with basis e1, . . . , er .

▶ The pairing on E 0(BG) is ⟨f , g⟩G = θ(fg) for some θ : E 0(BG) → E 0.

▶ We can also define the trace τ : E 0(BG) → E 0,
so if fei =

∑
j aijej then τ(f ) =

∑
i aii .

▶ Choose representatives u1, . . . , um of the isomorphism classes in ΛG , with
automorphism groups Γi = (ΛG)(ui , ui ); then on L⊗E0 E 0(BG) ≃ C(G)
we have θ(f ) =

∑
i |Γi |−1f (ui ) and τ(f ) =

∑
i f (ui ).

▶ If G is an abelian group then Γi ≃ G for all i and so τ = |G |θ
on C(G) or on E 0(BG).
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Even more generalised characters

▶ For a space X , put Λ0X = lim
−→m

[B(Θ∗/pm)+,X ],

so Λ0BG = π0(ΛG) for finite groupoids G .

▶ Put C(X ) = Map(Λ0(X ), L); we still have a ring map
χ : L⊗E0 E 0(X ) → C(X ), which is iso for X = BG .

▶ Recall that the Eilenberg-MacLane space BdA = K(A, d) has
πd(B

dA) = A and πi (B
dA) = 0 for i ̸= d and [Z ,BdA] = Hd(Z ;A).

▶ Note that Θ∗/pk is similar to Θ∗ = Zn
p or Zn, and B(Zn) is the torus

(S1)n, with H∗(B(Zn)) = λ∗(Zn).

▶ We find that Λ0(B
dA) = Hom(λdΘ∗,A) ≃ A

(nd)
(p) (assuming |A| < ∞).

▶ Claim: if X ≃ Ω2Z for some Z , then Λ0X = Hom(λ∗(Θ∗), π∗(X )).

▶ Proof uses Σ2((P × Q)+) ≃ Σ2(S0 ∨ P ∨ Q ∨ (P ∧ Q)),
iterated to split Σ2B(Zn)+ = Σ2((S1)n+) as a wedge of spheres,
together with [B(Zn)+,X ] = [Σ2B(Zn)+,Z ].

▶ Theorem (Lurie): χ : L⊗E0 E 0(X ) → C(X ) is iso
if X is a π-finite space/finite ∞-groupoid.
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Morava theory of Eilenberg-MacLane spaces

▶ Recall spf(E 0BA) = Hom(A∗,G) = Tor(A,G)

▶ Also Hom(λdΘ∗,A) = Tor(Θ, . . . ,Θ,A)Σd

▶ Theorem (essentially Ravenel-Wilson):
spf(E 0(BdCpk )) = λd(ker(pk .1: G → G)) (= 0 for d > n).

▶ Corollary: for A finite abelian: spf(E 0(BdA)) = Tor(G, . . . ,G,A)Σd

▶ Corollary: spf(E 0(Bn+1Z)) = spf(E 0(Bn(Z/p∞))) = Tor(G, . . . ,G)Σn , and
this is a one-dimensional formal group of height one.

▶ Equivalently E 0(Bn(Z/p∞)) = E 0[[y ]] with mult∗(y) = y0 + y1 + y0y1.

▶ Alternatively, K 0(BdA) is a finite-dimensional Hopf algebra over Fp, and
the category of such is equivalent to a category of Dieudonné modules.
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General ambidexterity

▶ Theorem (Hopkins-Lurie): any q : X → Y of finite ∞-groupoids/π-finite
spaces is ambidextrous, i.e. q! ≃ q∗ as functors K(X ) → K(Y ).

▶ There exists m such that all fibres (q ↓ b) have πk = 0 for all k > m.
Greenlees-Sadofsky gives m ≤ 1; do m > 1 by induction.

▶ Key case: c : BmCp → 1 is ambidextrous.

▶ Assuming this, any q with fibres BmCp is ambidextrous. Thus any
BmA → 1 is ambidextrous. Thus any q with fibre BmA is ambidextrous,
such as the Postnikov truncation X → X<m (if X = X≤m).But X<m → 1 is
ambidextrous by induction, so X → 1 is ambidextrous. Thus any q with
m-truncated fibres is ambidextrous.

▶ Further reduction (similar to m = 1): enough to show that
c!(c

∗(K)) → c∗(c
∗(K)) is iso for c : BmCp → 1

or that K∗(B
mCp) → K∗(BmCp) is iso

or that the corresponding pairing on K∗(BmCp) is perfect
or that the corresponding pairing on E∗(BmCp) is perfect.

▶ As with the case m = 1, the pairing is given by a map θ : E 0(BmCp) → E 0

and we also have a trace map τ : E 0(BmCp) → E 0, and these satisfy
τ = pkθ for some k.

▶ One can calculate enough structure of E 0(BmCp) to deduce from this that
θ gives a perfect pairing.
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