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Equivariant spectra

▶ For a finite groupoid G , put SG = [G ,S].
▶ Any V : G → L (i.e. V ∈ LG ) gives S

V , S−V ∈ SG .

▶ Define πG
n (X ) = lim

−→V∈LG

[SV , (S−n ∧ X )(V )]G .

▶ Say f : X → Y is a genuine equivalence if
πH
∗ (f ) is iso for all subgroupoids H ≤ G .

▶ Say f : X → Y is a Borel equivalence if
π∗(fa) : π∗(Xa) → π∗(Ya) is iso for all a ∈ obj(G)
(or equivalently, πH

∗ (f ) is iso for all discrete subgroupoids H ≤ G).

▶ Two ∞-categories: SG has Borel equivalences inverted,
GSG has genuine equivalences inverted.

▶ For X ∈ SG and a, b ∈ obj(G) we have G(a, b)+ → S(Xa,Xb) and
correspondingly Σ∞G(a, b)+ ∧ Xa → Xb and Σ∞G(a, b)+ → F (Xa,Xb).

▶ The map p : G(a, b) → 1 gives a transfer pt : S0 → Σ∞G(a, b)+ in hS.
▶ Combining these gives a map S0 → F (Xa,Xb) or νab : Xa → Xb, which is

essentially
∑

u∈G(a,b) u∗.

▶ These induce ν : c!(X ) → c∗(X ) in hS; iso if G is empty or contractible.

▶ Now suppose we have q : G → H. By applying the above to comma
categories, we get ν : q!(X ) → q∗(X ) in hSH , and this is iso if q is faithful
(Wirthmüller isomorphism).
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Periodic complex cobordism

▶ For a complex inner product space V put
MP ′(V ) = {(u,U) | u ∈ U ≤ V ⊕ V } ∪ {∞}

▶ Define an orthogonal ring spectrum MP by MP(V ) = ΩiVMP ′(V ⊕ iV ).

▶ Using π2+kMP ′(C) = π2+k(S
0 ∨ CP2 ∨ S4) → πkMP = MPk = MP−k we

get u−1 ∈ MP−2 and u ∈ MP2 with u−1u = 1; so MP2i+j = MPj .

▶ There are natural maps ΣVP(C⊕ V ) → MP ′(V ) which assemble to give
x : Σ∞CP∞ → MP i.e. x ∈ MP0(CP∞).

▶ Using cofibrations CPn−1 → CPn → S2n we get MP∗(CP∞) = MP∗[[x ]].

▶ Using Künneth we get MP∗(CP∞ × CP∞) = MP∗[[y , z]].

▶ We can identify CP∞ with (C[t] \ {0})/C×, which is a commutative
monoid under multiplication (and a group up to homotopy).

▶ We have mult∗(x) = FMP(y , z) =
∑

i,j≥0 aijy
iz j for some aij ∈ π0(MP).

▶ Commutative monoid structure implies FMP(x , 0) = x and
FMP(x , y) = FMP(y , x) and FMP(x ,FMP(y , z)) = FMP(FMP(x , y), z)
so FMP is a formal group law.

▶ Theorem (Quillen): π1(MP) = 0 and π0(MP) = Z[a1, a2, . . . ] with
a1 = a11, a2 = a12, a3 = a22 − a13, a4 = a15, a5 = a16 + a25 + a34, . . .

▶ Also: for any formal group law F over any ring R, there is a unique
ϕ : π0(MP) → R carrying FMP to F . So π0(MP) is the Lazard ring.
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Morava K and E

▶ Fix a prime p and n > 0.

▶ Put l(x) =
∑

k≥0 x
pnk /pk ∈ Q[[x ]], F (x , y) = l−1(l(x) + l(y)) ∈ FGL(Q).

▶ In fact F ∈ FGL(Z) so we can reduce mod p to get FK ∈ FGL(Fp).

▶ There is a unique ϕK : MP0 → Fp carrying FMP to FK .

▶ Write x +F y = F (x , y) and [n]F (x) = x + · · ·+ x (n terms).

▶ We find that [p]K (x) = [p]FK (x) = xpn i.e. FK has height n.
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Morava K and E of BCm

▶ Put U = C[t] \ {0} so CP∞ = U/C×

▶ Define ϕm : CP∞ → CP∞ by ϕm([f ]) = [f m], so
ϕ∗
m(x) = [m]FMP (x) = [m]MP(x) ∈ MP0(CP∞) (and same for E ,K).

▶ The map h(s, f )(t) = s + (1− s)(1 + st)f (t) gives a contraction of U.

▶ Put Cm = ⟨e2πi/m⟩ < C× and BCm = U/Cm.

▶ CP∞ has a tautological bundle T with T[f ] = Cf and ϕ∗
m(T ) ≃ T⊗m.

▶ Then BCm = E(T⊗m) \ (zero section) so
cofibre(BCm → CP∞) = Thom(T⊗m)

▶ Using the Thom isomorphism we get MP0(BCm) = MP0[[x ]]/[m]MP(x) and
MP1(BCm) = 0 (and same for E , K).

▶ If m = pkm1 with p ∤ m1 then [m]K (x) is a unit multiple of

[pk ]K (x) = xpnk so K 0(BCm) = Fp{x i | i < pnk}.
▶ Similarly E 0(BCm) = E 0{x i | i < pnk} (free of finite rank over E 0).

▶ For A finite abelian: E 0(BA) = E 0(BCm1)⊗E0 · · · ⊗E0 E 0(BCmr )
is again free of finite rank, and E 1BA = 0.

▶ Or: G := spf(E 0(CP∞)) is a formal group scheme over S := spf(E 0), and
spf(E 0(BA)) = Hom(A∗,G), where A∗ = Hom(A,S1).
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Morava K and E of BG

▶ Claim: if G is a finite groupoid and X : G → T is a finite G -CW complex
then E∗(c!(X )) is finitely generated over E∗.

▶ Can reduce to the case of a group, where c!(X ) = XhG = (EG × X )/G
and (G/H)hG = EG/H = BH.

▶ The CW structure gives skeld(X )/ skeld−1(X ) ≃ Σd ∨
i (G/Hi )+; so

enough to prove E∗(BH) is finitely generated for all isotropy groups H.

▶ So if all isotropy groups for X are abelian, then E∗(XhG ) is fg.

▶ Put m = |G | and F = {flags (W0 < W1 < · · · < Wm = C[G ])}.
Then X × F has abelian isotropy so E∗((X × F )hG ) is fg.

▶ Also (X ×F )hG is an iterated projective bundle over XhG so E∗((X ×F )hG )
is free over E∗(XhG ) with canonical finite basis; so E∗(XhG ) is also fg.

▶ Also: there is an equaliser E∗(XhG ) → E∗((X × F )hG ) ⇒ E∗((X × F 2)hG ).

▶ Similarly K i (BG) is a finite vector space over Fp with dual K−i (BG), and

K̃∗(BG) = ker(K∗(BG) → K∗) is a nilpotent ideal.

▶ (Story for E is more complicated; E∗BG is the wrong object.)

▶ There are nice calculations for Σm, GLm(F ) with p ∤ |F | < ∞, groups of
small nilpotence class; also the generalised character theory of
Hopkins-Kuhn-Ravenel, and a clear picture of the relation with
representation theory (Chern approximation).
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Tate vanishing

▶ Theorem (Greenlees-Sadofsky): for G a finite groupoid,
ν : c!(c

∗(K)) → c∗(c
∗(K)) is an equivalence.

▶ Equivalently: if G is a finite group, then K ∧ BG+ → F (BG+,K) is an
equivalence, or K∗(BG) = K−∗(BG).

▶ For the proof we work in the genuine equivariant category GSG .

▶ Two fixed point functors ϕG , λG : GSG → S (geometric, Lewis-May).

▶ ϕGΣ∞X = Σ∞XG and ϕG (S±V ) = S±VG

and
ϕG (X ∧ Y ) = ϕG (X ) ∧ ϕG (Y ).

▶ πG
∗ (X ) = π∗(λ

G (X )) and GS(c∗(X ),Y ) = S(X , λG (Y )) and if Y is free
then λG (Y ) ≃ Y hG ≃ YhG (cf MG ≃ MG for free Z[G ]-modules).

▶ Recall EG is contractible with free G -action, and ẼG = cof(EG+ → S0);

say X is free iff X ∈ loc⟨G+⟩ iff EG+ ∧ X ≃ X iff ẼG ∧ X = 0.

▶ As EG+ ∧ K is free, we have λG (EG+ ∧ K) = (EG+ ∧ K)hG = K ∧ BG+.

▶ There is a map ν̃ : EG+ ∧ K → F (EG+,K) such that λG (ν̃) = ν.

▶ EG+ ∧ (−) converts nonequivariant equivalences to equivariant ones, so

EG+ ∧ K ≃ EG+ ∧ F (EG+,K). Using this: cof(ν̃) ≃ ẼG ∧ F (EG+,K).

▶ Thus: enough to prove ẼG ∧ F (EG+,K) = 0 in GSG .
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▶ Thus: enough to prove ẼG ∧ F (EG+,K) = 0 in GSG .



Tate vanishing

▶ Theorem (Greenlees-Sadofsky): for G a finite groupoid,
ν : c!(c

∗(K)) → c∗(c
∗(K)) is an equivalence.

▶ Equivalently: if G is a finite group, then K ∧ BG+ → F (BG+,K) is an
equivalence, or K∗(BG) = K−∗(BG).

▶ For the proof we work in the genuine equivariant category GSG .

▶ Two fixed point functors ϕG , λG : GSG → S (geometric, Lewis-May).

▶ ϕGΣ∞X = Σ∞XG and ϕG (S±V ) = S±VG

and
ϕG (X ∧ Y ) = ϕG (X ) ∧ ϕG (Y ).

▶ πG
∗ (X ) = π∗(λ

G (X )) and GS(c∗(X ),Y ) = S(X , λG (Y )) and if Y is free
then λG (Y ) ≃ Y hG ≃ YhG (cf MG ≃ MG for free Z[G ]-modules).

▶ Recall EG is contractible with free G -action, and ẼG = cof(EG+ → S0);
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▶ Thus: enough to prove ẼG ∧ F (EG+,K) = 0 in GSG .



Tate vanishing

▶ Theorem (Greenlees-Sadofsky): for G a finite groupoid,
ν : c!(c

∗(K)) → c∗(c
∗(K)) is an equivalence.

▶ Equivalently: if G is a finite group, then K ∧ BG+ → F (BG+,K) is an
equivalence, or K∗(BG) = K−∗(BG).

▶ For the proof we work in the genuine equivariant category GSG .

▶ Two fixed point functors ϕG , λG : GSG → S (geometric, Lewis-May).

▶ ϕGΣ∞X = Σ∞XG and ϕG (S±V ) = S±VG

and
ϕG (X ∧ Y ) = ϕG (X ) ∧ ϕG (Y ).

▶ πG
∗ (X ) = π∗(λ

G (X )) and GS(c∗(X ),Y ) = S(X , λG (Y )) and if Y is free
then λG (Y ) ≃ Y hG ≃ YhG (cf MG ≃ MG for free Z[G ]-modules).

▶ Recall EG is contractible with free G -action, and ẼG = cof(EG+ → S0);
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Tate vanishing

For finite G , we need K tG = 0, where K tG = ẼG ∧ F (EG+,K) = 0.

▶ For H < G we have resGH(K
tG ) ≃ K tH ; assume K tH = 0 by induction.

▶ We also have G/H+ ∧ K tG = indGH(res
G
H(K

tG )) = indGH(0) = 0.

▶ Put V = C[G ]⊖ C so V G = 0 so S(∞V )G = ∅ so
S(∞V )+ ∈ loc⟨G/H+ | H < G⟩ so S(∞V )+ ∧ K tG = 0

▶ As S∞V = cof(S(∞V )+ → S0), we get
K tG ≃ S∞V ∧ K tG ≃ S∞V ∧ F (EG+,K).

▶ Now λG (SmV ∧ F (EG+,K)) = λGF (S−mV ∧ EG+,K) = F (BG−mV
+ ,K)

and π∗(this) = K∗(BG).(Thom class of −mV ).

▶ Taking m → ∞ we get πG
∗ (K

tG ) = e(V )−1K−∗(BG), but e(V ) lies in the

nilpotent ideal K̃ 0(BG) so inverting e(V ) gives 0.

▶ As πG
∗ (K

tG ) = 0 and resGH(K
tG ) = 0 for H < G we have K tG = 0.

▶ Conclusion: K 0(BG) ≃ K0(BG) ≃ Hom(K 0(BG),Fp), so there is a perfect
pairing K 0(BG)⊗ K 0(BG) → Fp (of the form a⊗ b 7→ θ(ab)).

▶ If n > 1 then K 0(BCpk ) = Fp[x ]/x
pnk and θ(f ) = coefficient of xpnk−1 in f .

▶ For any G , the map (K 0(BG)
δ!−→ K 0(BG)⊗ K 0(BG)

1⊗θ−−→ K 0(BG))
is the identity, and this characterises θ.
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