Ambidexterity 3

Neil Strickland

May 26, 2023

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in S_{G}$.
\Rightarrow Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
\rightarrow Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)+\rightarrow S\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$.
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
- Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
These induce $\nu: c_{!}(X) \rightarrow c_{*}(X)$ in $h \mathcal{S}$; iso if G is empty or contractible.
- Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h S_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism).

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
\Rightarrow Any $V: G \rightarrow \mathcal{L}$ (i.e. $\left.V \in \mathcal{L}_{G}\right)$ gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{\prime H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted,
$\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
\Rightarrow For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$.
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
\Rightarrow Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
- These induce $\nu: c_{!}(X) \rightarrow \boldsymbol{c}(X)$ in $h S$; iso if G is empty or contractible.
- Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism).

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
\Rightarrow Define $\pi_{n}^{G}(X)=\lim _{V \in \mathcal{C}_{\sim}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$
- Say $f: X \rightarrow Y$ is a genuine equivalence if $\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$)
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted,
$\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)+$ in $h S$.
- Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
These induce $\nu: c_{!}(X) \rightarrow c_{*}(X)$ in $h S_{\text {; iso }}$ if G is empty or contractible.
- Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{:}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\underset{V}{ } \rightarrow \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
\rightarrow Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$)
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted,
$\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
\Rightarrow For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$.
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
\Rightarrow Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
These induce $\nu: c_{!}(X) \rightarrow c(X)$ in $h S$; iso if G is empty or contractible.
$>$ Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\checkmark \rightarrow \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all a $\in \operatorname{obj}(G)$

(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $\left.H \leq G\right)$

- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted,
$\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
\Rightarrow For $X \in S_{G}$ and $a, b \in o b j(G)$ we have $G(a, b)+\rightarrow S\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
- Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
- These induce $\nu: a_{!}(X) \rightarrow c_{*}(X)$ in $h \mathcal{S}$; iso if G is empty or contractible.
- Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q:(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\checkmark \rightarrow \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if $\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$)
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted,
$\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted
\rightarrow For $X \in \mathcal{S}_{G}$ and $a, b \in o b j(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$
\rightarrow The man $n: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
\rightarrow Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
\rightarrow These induce $\nu: G_{1}(X) \rightarrow C_{*}(X)$ in $h S$; iso if G is empty or contractible
\rightarrow Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $\left.V \in \mathcal{L}_{G}\right)$ gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\checkmark \rightarrow \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$ (or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted,
$\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
\rightarrow For $X \in S_{G}$ and $a, b \in \operatorname{obi}(G)$ we have $G(a, b)+\rightarrow S\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)+\wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$ \rightarrow The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)+$ in $h \mathcal{S}$.
\rightarrow Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
\rightarrow These induce $\nu: C_{!}(X) \rightarrow c_{*}(X)$ in $h \mathcal{S}$; iso if G is empty or contractible.
\rightarrow Now suppose we have $a: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q!(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$ (or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
\rightarrow Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{\| \in G(a b)} u_{*}$.
\rightarrow These induce $\nu: C_{!}(X) \rightarrow C_{*}(X)$ in $h S$; iso if G is empty or contractible.
\rightarrow Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $\left.V \in \mathcal{L}_{G}\right)$ gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$
 The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)+$ in $h \mathcal{S}$.
- Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
\rightarrow These induce $\nu: C_{!}(X) \rightarrow C_{*}(X)$ in $h S$; iso if G is empty or contractible.
\rightarrow Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$
\rightarrow Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
\rightarrow These induce $\nu: C_{!}(X) \rightarrow C_{*}(X)$ in $h S$; iso if G is empty or contractible.
\rightarrow Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$.
\rightarrow Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
\rightarrow These induce $\nu: C_{!}(X) \rightarrow C_{*}(X)$ in $h S$; iso if G is empty or contractible.
- Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$.
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
essentially $\sum_{u \in G(a, b)} u_{*}$.
These induce $\nu: c_{!}(X) \rightarrow c_{*}(X)$ in $h \mathcal{S}$; iso if G is empty or contractible.
\rightarrow Now suppose we have $a: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q!(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$.
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
- Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
\rightarrow These induce $\nu: C l_{!}(X) \rightarrow C_{*}(X)$ in $h S$; iso if G is empty or contractible.
\rightarrow Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism)

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
- Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if
$\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if
$\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$.
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
- Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
- These induce $\nu: c_{!}(X) \rightarrow c_{*}(X)$ in $h \mathcal{S}$; iso if G is empty or contractible.

Equivariant spectra

- For a finite groupoid G, put $\mathcal{S}_{G}=[G, \mathcal{S}]$.
- Any $V: G \rightarrow \mathcal{L}$ (i.e. $V \in \mathcal{L}_{G}$) gives $S^{V}, S^{-V} \in \mathcal{S}_{G}$.
\rightarrow Define $\pi_{n}^{G}(X)=\lim _{\longrightarrow V \in \mathcal{L}_{G}}\left[S^{V},\left(S^{-n} \wedge X\right)(V)\right]^{G}$.
- Say $f: X \rightarrow Y$ is a genuine equivalence if $\pi_{*}^{H}(f)$ is iso for all subgroupoids $H \leq G$.
- Say $f: X \rightarrow Y$ is a Borel equivalence if $\pi_{*}\left(f_{a}\right): \pi_{*}\left(X_{a}\right) \rightarrow \pi_{*}\left(Y_{a}\right)$ is iso for all $a \in \operatorname{obj}(G)$ (or equivalently, $\pi_{*}^{H}(f)$ is iso for all discrete subgroupoids $H \leq G$).
- Two ∞-categories: \mathcal{S}_{G} has Borel equivalences inverted, $\mathcal{G} \mathcal{S}_{G}$ has genuine equivalences inverted.
- For $X \in \mathcal{S}_{G}$ and $a, b \in \operatorname{obj}(G)$ we have $G(a, b)_{+} \rightarrow \mathcal{S}\left(X_{a}, X_{b}\right)$ and correspondingly $\Sigma^{\infty} G(a, b)_{+} \wedge X_{a} \rightarrow X_{b}$ and $\Sigma^{\infty} G(a, b)_{+} \rightarrow F\left(X_{a}, X_{b}\right)$.
- The map $p: G(a, b) \rightarrow 1$ gives a transfer $p^{t}: S^{0} \rightarrow \Sigma^{\infty} G(a, b)_{+}$in $h \mathcal{S}$.
- Combining these gives a map $S^{0} \rightarrow F\left(X_{a}, X_{b}\right)$ or $\nu_{a b}: X_{a} \rightarrow X_{b}$, which is essentially $\sum_{u \in G(a, b)} u_{*}$.
- These induce $\nu: c_{!}(X) \rightarrow c_{*}(X)$ in $h \mathcal{S}$; iso if G is empty or contractible.
- Now suppose we have $q: G \rightarrow H$. By applying the above to comma categories, we get $\nu: q_{!}(X) \rightarrow q_{*}(X)$ in $h \mathcal{S}_{H}$, and this is iso if q is faithful (Wirthmüller isomorphism).

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
\Rightarrow Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
\Rightarrow There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
\triangleright Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*}[y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy).
\Rightarrow We have mult* $(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
- Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with $a_{1}=a_{11}, a_{2}=a_{12}, a_{3}=a_{22}-a_{13}, a_{4}=a_{15}, a_{5}=a_{16}+a_{25}+a_{34}, \ldots$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum MP by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket \times \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy)
- We have mult ${ }^{*}(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
- Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with $a_{1}=a_{11}, a_{2}=a_{12}, a_{3}=a_{22}-a_{13}, a_{4}=a_{15}, a_{5}=a_{16}+a_{25}+a_{34}$,
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$. get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$
\triangleright Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy)
- We have mult* $(x)=F_{M P}(y, z)=\sum_{i j>0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
\Rightarrow Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with $a_{1}=a_{11}, a_{2}=a_{12}, a_{3}=a_{22}-a_{13}, a_{4}=a_{15}, a_{5}=a_{16}+a_{25}+a_{34}$,
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$
\triangleright There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give
\triangleright Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy)
\triangleright We have mult* $(x)=F_{M P}(y, z)=\sum_{i ;>0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
- Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
\downarrow Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy)
\triangleright We have mult ${ }^{*}(x)=F_{M P}(y, z)=\sum_{i, i>0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
\Rightarrow Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
\Rightarrow Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy)
- We have mult ${ }^{*}(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
- Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative
monoid under multiplication (and a group up to homotopy)
$>$ We have mult* $(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
- Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
\rightarrow We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{x}$, which is a commutative
monoid under multiplication (and a group up to homotopy)
\rightarrow We have mult* $(x)=F_{\text {MD }}(y, z)=\sum_{i, j>0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$
\rightarrow Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
\Rightarrow Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy).
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
\rightarrow Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with
\rightarrow Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult ${ }^{*}(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
\rightarrow Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
\rightarrow Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult* $(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$
so $F_{M P}$ is a formal group law.
\rightarrow Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with
\rightarrow Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult* $(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult* $(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
- Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with $a_{1}=a_{11}, a_{2}=a_{12}, a_{3}=a_{22}-a_{13}, a_{4}=a_{15}, a_{5}=a_{16}+a_{25}+a_{34}, \ldots$

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult* $(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
- Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with $a_{1}=a_{11}, a_{2}=a_{12}, a_{3}=a_{22}-a_{13}, a_{4}=a_{15}, a_{5}=a_{16}+a_{25}+a_{34}, \ldots$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F.

Periodic complex cobordism

- For a complex inner product space V put $M P^{\prime}(V)=\{(u, U) \mid u \in U \leq V \oplus V\} \cup\{\infty\}$
- Define an orthogonal ring spectrum $M P$ by $M P(V)=\Omega^{i V} M P^{\prime}(V \oplus i V)$.
- Using $\pi_{2+k} M P^{\prime}(\mathbb{C})=\pi_{2+k}\left(S^{0} \vee \mathbb{C} P^{2} \vee S^{4}\right) \rightarrow \pi_{k} M P=M P_{k}=M P^{-k}$ we get $u^{-1} \in M P_{-2}$ and $u \in M P_{2}$ with $u^{-1} u=1$; so $M P_{2 i+j}=M P_{j}$.
- There are natural maps $\Sigma^{V} P(\mathbb{C} \oplus V) \rightarrow M P^{\prime}(V)$ which assemble to give $x: \Sigma^{\infty} \mathbb{C} P^{\infty} \rightarrow M P$ i.e. $x \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$.
- Using cofibrations $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n} \rightarrow S^{2 n}$ we get $M P^{*}\left(\mathbb{C} P^{\infty}\right)=M P^{*} \llbracket x \rrbracket$.
- Using Künneth we get $M P^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=M P^{*} \llbracket y, z \rrbracket$.
- We can identify $\mathbb{C} P^{\infty}$ with $(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}$, which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult* $(x)=F_{M P}(y, z)=\sum_{i, j \geq 0} a_{i j} y^{i} z^{j}$ for some $a_{i j} \in \pi_{0}(M P)$.
- Commutative monoid structure implies $F_{M P}(x, 0)=x$ and $F_{M P}(x, y)=F_{M P}(y, x)$ and $F_{M P}\left(x, F_{M P}(y, z)\right)=F_{M P}\left(F_{M P}(x, y), z\right)$ so $F_{M P}$ is a formal group law.
- Theorem (Quillen): $\pi_{1}(M P)=0$ and $\pi_{0}(M P)=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ with $a_{1}=a_{11}, a_{2}=a_{12}, a_{3}=a_{22}-a_{13}, a_{4}=a_{15}, a_{5}=a_{16}+a_{25}+a_{34}, \ldots$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_{0}(M P) \rightarrow R$ carrying $F_{M P}$ to F. So $\pi_{0}(M P)$ is the Lazard ring.

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{:>0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in F G L(\mathbb{Q})$.
\Rightarrow In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x(n$ terms $)$.
\Rightarrow We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|/\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(l)=\Pi_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(l)}$. Then put $I_{E}(x)=\sum_{1} u_{1} x^{|l|\| \|} / p^{|| |} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
\Rightarrow Put $I(x)=\sum_{k>0} x^{p^{n k}} / p^{k} \in \mathbb{Q}[x], \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
\Rightarrow Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
\Rightarrow For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{1} u_{1} x^{p^{\||l|}} / p^{|| |} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
\Rightarrow Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\Rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
\Rightarrow There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket \quad F(x, y)=I^{-1}(I(x)+I(y)) \in F G L(\mathbb{Q})$.
\Rightarrow In fact $F \in F G L(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in F G L\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
\Rightarrow We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|/\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{1} u_{I} x^{p|l| \mid} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.

This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\checkmark There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}

- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
$>$ In fact $F \in F G L(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in F G L\left(\mathbb{F}_{p}\right)$.
\rightarrow There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}
\rightarrow Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x(n$ terms $)$
\rightarrow We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
\rightarrow Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we nut $|I|=r$ and $\|l\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p^{|l| \mid}} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
\rightarrow Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow This is a universal deformation of F_{K} : if $F^{\prime} \in F G L\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrving $F_{M D}$ to F_{E}
\rightarrow Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes M P_{0}\left(M P_{0} X\right)$.
\rightarrow There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
\Rightarrow There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms)
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
\Rightarrow Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(l)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p|l|} / p^{|| |} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$
- This is a universal deformation of F_{K} : if $F^{\prime} \in \mathrm{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\Rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.

D Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$
\Rightarrow For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(l)}$. Then put $I_{E}(x)=\sum_{1} u_{l} x^{p^{\|I\|} /} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right)\|x\|$ and $F_{E}(x, y)=I_{E}^{-1}\left(l_{E}(x)+I_{E}(y)\right)$
\Rightarrow Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$

- This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\Rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
\Rightarrow There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$
whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
\Rightarrow We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|/\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{l}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p|l| \mid} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$
\Rightarrow This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\Rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$
whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- This is a universal deformation of F_{K} : if $F^{\prime} \in \mathrm{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \mathrm{mod}$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\checkmark There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$ - There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \operatorname{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \operatorname{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- This is a universal deformation of F_{K} : if $F^{\prime} \in \mathrm{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \mathrm{mod}$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\checkmark There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$ - There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put
\rightarrow Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex)
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
\rightarrow Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes M P_{0}\left(M P_{0} X\right)$

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{l} u_{l} x^{p^{\| \prime I}} / p^{|I|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$
\rightarrow Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
\rightarrow This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
\rightarrow Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(N P_{0} X\right)$

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \operatorname{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p\|I\|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
$\begin{aligned} \rightarrow & \text { Using the Functional Equation Lemma: } F_{E} \in F G L\left(E_{0}\right) \text {. } \\ & \text { This is a universal deformation of } F_{K} \text { : if } F^{\prime} \in F G L\left(R^{\prime}\right) \text { and } F^{\prime}: \\ & \text { a nilpotent ideal, then } F^{\prime} \text { comes from } F_{E} \text { (details are complex). }\end{aligned}$
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}
\rightarrow Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes M P_{0}\left(M P_{0} X\right)$

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p /\| \|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\rightarrow There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
\rightarrow Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \operatorname{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \operatorname{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p\|I\|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
\rightarrow Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(N P_{0} X\right)$

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \operatorname{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \operatorname{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p\|I\|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.

Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$ \rightarrow There is also a ring snectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \mathrm{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p\|l\|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.

Morava K and E

- Fix a prime p and $n>0$.
- Put $I(x)=\sum_{k \geq 0} x^{p^{n k}} / p^{k} \in \mathbb{Q} \llbracket x \rrbracket, \quad F(x, y)=I^{-1}(I(x)+I(y)) \in \operatorname{FGL}(\mathbb{Q})$.
- In fact $F \in \mathrm{FGL}(\mathbb{Z})$ so we can reduce $\bmod p$ to get $F_{K} \in \operatorname{FGL}\left(\mathbb{F}_{p}\right)$.
- There is a unique $\phi_{K}: M P_{0} \rightarrow \mathbb{F}_{p}$ carrying $F_{M P}$ to F_{K}.
- Write $x+_{F} y=F(x, y)$ and $[n]_{F}(x)=x+\cdots+x$ (n terms).
- We find that $[p]_{K}(x)=[p]_{F_{K}}(x)=x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ with $u_{0}=p, u_{n}=1$.
- For $I=\left(i_{1}, \ldots, i_{r}\right)$ in $\{1, \ldots, n\}^{r}$ we put $|I|=r$ and $\|I\|=i_{1}+\cdots+i_{r}$ and $\pi_{t}(I)=\prod_{s<t} p^{i_{s}}$ and $u_{I}=\prod_{t=1}^{r} u_{i_{t}}^{\pi_{t}(I)}$. Then put $I_{E}(x)=\sum_{I} u_{I} x^{p\|l\|} / p^{|/|} \in\left(\mathbb{Q} \otimes E_{0}\right) \llbracket x \rrbracket$ and $F_{E}(x, y)=I_{E}^{-1}\left(I_{E}(x)+I_{E}(y)\right)$.
- Using the Functional Equation Lemma: $F_{E} \in \operatorname{FGL}\left(E_{0}\right)$.
- This is a universal deformation of F_{K} : if $F^{\prime} \in \operatorname{FGL}\left(R^{\prime}\right)$ and $F^{\prime}=F_{K} \bmod$ a nilpotent ideal, then F^{\prime} comes from F_{E} (details are complex).
- There is a unique $\phi_{E}: M P_{0} \rightarrow E_{0}$ carrying $F_{M P}$ to F_{E}.
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_{0} X=\pi_{0}(E \wedge X)=E_{0} \otimes_{M P_{0}}\left(M P_{0} X\right)$.
- There is also a ring spectrum K with $K^{0} X=\left(E^{0} X\right) /\left(u_{0}, \ldots, u_{n-1}\right)$ whenever the sequence is regular (and same for $K_{0} X$).

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.

P Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
$\Rightarrow \mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.

- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
\Rightarrow Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0($ and same for $E, K)$.
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{K}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C f}$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T \otimes m$
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0($ and same for $E, K)$.
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{k}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{8 m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{k}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so

$$
\left.\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right) \text { (and same for } E, K\right) .
$$

- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.

Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$

- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{k}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for $\left.E, K\right)$.
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{K}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
> Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{\kappa}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
is again free of finite rank, and $E^{1} B A=0$.

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{\kappa}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and

Morava K and E of $B C_{m}$

- Put $U=\mathbb{C}[t] \backslash\{0\}$ so $\mathbb{C} P^{\infty}=U / \mathbb{C}^{\times}$
- Define $\phi_{m}: \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ by $\phi_{m}([f])=\left[f^{m}\right]$, so $\phi_{m}^{*}(x)=[m]_{F_{M P}}(x)=[m]_{M P}(x) \in M P^{0}\left(\mathbb{C} P^{\infty}\right)$ (and same for E, K).
- The map $h(s, f)(t)=s+(1-s)(1+s t) f(t)$ gives a contraction of U.
- Put $C_{m}=\left\langle e^{2 \pi i / m}\right\rangle<\mathbb{C}^{\times}$and $B C_{m}=U / C_{m}$.
- $\mathbb{C} P^{\infty}$ has a tautological bundle T with $T_{[f]}=\mathbb{C} f$ and $\phi_{m}^{*}(T) \simeq T^{\otimes m}$.
- Then $B C_{m}=E\left(T^{\otimes m}\right) \backslash$ (zero section) so cofibre $\left(B C_{m} \rightarrow \mathbb{C} P^{\infty}\right)=\operatorname{Thom}\left(T^{\otimes m}\right)$
- Using the Thom isomorphism we get $M P^{0}\left(B C_{m}\right)=M P^{0} \llbracket x \rrbracket /[m]_{M P}(x)$ and $M P^{1}\left(B C_{m}\right)=0$ (and same for E, K).
- If $m=p^{k} m_{1}$ with $p \nmid m_{1}$ then $[m]_{\kappa}(x)$ is a unit multiple of $\left[p^{k}\right]_{\kappa}(x)=x^{p^{n k}}$ so $K^{0}\left(B C_{m}\right)=\mathbb{F}_{p}\left\{x^{i} \mid i<p^{n k}\right\}$.
- Similarly $E^{0}\left(B C_{m}\right)=E^{0}\left\{x^{i} \mid i<p^{n k}\right\}$ (free of finite rank over E^{0}).
- For A finite abelian: $E^{0}(B A)=E^{0}\left(B C_{m_{1}}\right) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}\left(B C_{m_{r}}\right)$ is again free of finite rank, and $E^{1} B A=0$.
- Or: $\mathbb{G}:=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ is a formal group scheme over $S:=\operatorname{spf}\left(E^{0}\right)$, and $\operatorname{spf}\left(E^{0}(B A)\right)=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$.

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite $G-C W$ complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
\Rightarrow Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{h G}=E G / H=B H$.
- The CW structure gives $\operatorname{skel}_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} V_{i}\left(G / H_{i}\right)+$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg .
\triangleright Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$. Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg .
\Rightarrow Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg .
\Rightarrow Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$.
- Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $\widetilde{K}^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
\Rightarrow (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
- There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation).

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $\mathrm{c}_{\mathrm{a}}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{n G}=E G / H=B H$.
- The CW structure gives skel $(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} V_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg.
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$ Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg.
> Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg .
- Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$
- Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $\widetilde{K}^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
- There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation).

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{n G}=E G / H=B H$.
- The CW structure gives skel $(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} V_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg.
$>$ Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$ Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg .
\rightarrow Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $\left.E^{*}((X \times F))_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg.
- Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$
\rightarrow Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{\text {. }}(B G)$, and $K^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
\rightarrow There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation).

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{n G}=E G / H=B H$.
- The CW structure gives skel $l_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} V_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$ Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg .
\Rightarrow Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg .
- Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$
\Rightarrow Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $\widetilde{K}^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
- There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation)

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{n G}=E G / H=B H$.
- The CW structure gives skel $l_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} V_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg .

Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg .

- Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg.
- Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$
- Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $K^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
- There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation)

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{h G}=E G / H=B H$.
- The CW structure gives $\operatorname{skel}_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} \bigvee_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg.
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$.
- Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg .
\Rightarrow Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$
- Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $K^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
\rightarrow (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
\rightarrow There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation)

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{h G}=E G / H=B H$.
- The CW structure gives $\operatorname{skel}_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} \bigvee_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg .
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$. Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg .
\rightarrow Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg. \rightarrow Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$ \rightarrow Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $K^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for F is more complicated $F_{w} B G$ is the wrong object.)
$>$ There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation)

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{h G}=E G / H=B H$.
- The CW structure gives $\operatorname{skel}_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} \bigvee_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg .
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$. Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg .
- Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg .
\rightarrow Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $\widetilde{K}^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
\rightarrow (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
\rightarrow There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation)

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{n G}=E G / H=B H$.
- The CW structure gives skel $l_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} V_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg .
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$. Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg.
- Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg.
- Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$.
> $\widetilde{K}^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
- There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of
small nilpotence class; also the generalised character theory of
Hopkins-Kuhn-Ravenel, and a clear picture of the relation with
representation theory (Chern approximation).

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{n G}=E G / H=B H$.
- The CW structure gives skel $l_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} V_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg .
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$. Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg.
- Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg.
- Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$.
- Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $\widetilde{K}^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
\rightarrow There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation).

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{n G}=E G / H=B H$.
- The CW structure gives skel $l_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} V_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg .
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$. Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg.
- Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg.
- Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$.
- Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $\widetilde{K}^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
small nilpotence class; also the generalised character theory of
Hopkins-Kuhn-Ravenel, and a clear picture of the relation with
representation theory (Chern approximation).

Morava K and E of $B G$

- Claim: if G is a finite groupoid and $X: G \rightarrow \mathcal{T}$ is a finite G-CW complex then $E^{*}\left(c_{!}(X)\right)$ is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_{!}(X)=X_{h G}=(E G \times X) / G$ and $(G / H)_{h G}=E G / H=B H$.
- The CW structure gives $\operatorname{skel}_{d}(X) /$ skel $_{d-1}(X) \simeq \Sigma^{d} \bigvee_{i}\left(G / H_{i}\right)_{+}$; so enough to prove $E^{*}(B H)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^{*}\left(X_{h G}\right)$ is fg.
- Put $m=|G|$ and $F=\left\{\right.$ flags $\left.\left(W_{0}<W_{1}<\cdots<W_{m}=\mathbb{C}[G]\right)\right\}$. Then $X \times F$ has abelian isotropy so $E^{*}\left((X \times F)_{h G}\right)$ is fg .
- Also $(X \times F)_{h G}$ is an iterated projective bundle over $X_{h G}$ so $E^{*}\left((X \times F)_{h G}\right)$ is free over $E^{*}\left(X_{h G}\right)$ with canonical finite basis; so $E^{*}\left(X_{h G}\right)$ is also fg.
- Also: there is an equaliser $E^{*}\left(X_{h G}\right) \rightarrow E^{*}\left((X \times F)_{h G}\right) \rightrightarrows E^{*}\left(\left(X \times F^{2}\right)_{h G}\right)$.
- Similarly $K^{i}(B G)$ is a finite vector space over \mathbb{F}_{p} with dual $K_{-i}(B G)$, and $\widetilde{K}^{*}(B G)=\operatorname{ker}\left(K^{*}(B G) \rightarrow K^{*}\right)$ is a nilpotent ideal.
- (Story for E is more complicated; $E_{*} B G$ is the wrong object.)
- There are nice calculations for $\Sigma_{m}, G L_{m}(F)$ with $p \nmid|F|<\infty$, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (Chern approximation).

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
\Rightarrow Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $G S_{G}$
$>$ Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^{G} \Sigma^{\infty} X=\Sigma^{\infty} X^{G}$ and $\phi^{G}\left(S^{ \pm V}\right)=S^{ \pm V^{G}}$ and $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
$\Rightarrow \pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G} \mathcal{S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}\left(\right.$ cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules $)$
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $E G \wedge X=0$.
\Rightarrow As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G_{+}$.
- There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.
$\Rightarrow E G_{+} \wedge(-)$ converts nonequivariant equivalences to equivariant ones, so $E G_{+} \wedge K \simeq E G_{+} \wedge F\left(E G_{+}, K\right)$. Using this: $\operatorname{cof}(\widetilde{\nu}) \simeq \widetilde{E} G \wedge F\left(E G_{+}, K\right)$.
- Thus: enough to prove $\tilde{E} G \wedge F\left(E G_{+}, K\right)=0$ in $\mathcal{G} \mathcal{S}_{G}$.

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
\Rightarrow Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category GSG
$>$ Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May)
 $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
$\triangleright \pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G S}\left(c^{*}(X), Y\right)=S\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}\left(c f M_{G} \simeq M^{G}\right.$ for free $\mathbb{Z}[G]$-modules $)$
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $E G \wedge X=0$
\Rightarrow As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G_{+}$
- There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.
$-E G_{+} \wedge(-)$ converts nonequivariant equivalences to equivariant ones, so $E G_{+} \wedge K \simeq E G_{+} \wedge F\left(E G_{+}, K\right)$. Using this: $\operatorname{cof}(\widetilde{\nu}) \simeq \widetilde{E} G \wedge F\left(E G_{+}, K\right)$.
- Thus: enough to prove $E G \wedge F\left(E G_{+}, K\right)=0$ in $\mathcal{G} \mathcal{S}_{G}$

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G} \mathcal{S}_{G}$
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May)

- $\pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G} \mathcal{S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}\left(\right.$ cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules $)$
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$: say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $E G \wedge X=0$
- As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G$
- There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.
- $E G_{+} \wedge(-)$ converts nonequivariant equivalences to equivariant ones, so $E G_{+} \wedge K \simeq E G_{+} \wedge F\left(E G_{+}, K\right)$. Using this: $\operatorname{cof}(\widetilde{\nu}) \simeq \widetilde{E} G \wedge F\left(E G_{+}, K\right)$.
\rightarrow Thus: enough to prove $E G \wedge F\left(E G_{+}, K\right)=0$ in $\mathcal{G S} \mathcal{S}_{G}$

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).

$\triangleright \pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}$ (cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules).
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G+S^{0}\right)$ say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $E G \wedge X=0$.
- As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G_{+}$.
- There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.
- $E G_{+} \wedge(-)$ converts nonequivariant equivalences to equivariant ones, so $E G_{+} \wedge K \simeq E G_{+} \wedge F\left(E G_{+}, K\right)$. Using this: $\operatorname{cof}(\widetilde{\nu}) \simeq \widetilde{E} G \wedge F\left(E G_{+}, K\right)$. - Thus: enough to prove $\tilde{E} G \wedge F\left(E G_{+}, K\right)=0$ in $\mathcal{G} \mathcal{S}_{G}$.

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^{G} \Sigma^{\infty} X=\Sigma^{\infty} X^{G}$ and $\phi^{G}\left(S^{ \pm V}\right)=S^{ \pm V^{G}}$ and $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $E G \wedge X=0$.
\Rightarrow As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G_{+}$
- There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.
- $E G_{+} \wedge(-)$ converts nonequivariant equivalences to equivariant ones so $E G_{+} \wedge K \simeq E G_{+} \wedge F\left(E G_{+}, K\right)$. Using this: $\operatorname{cof}(\widetilde{\nu}) \simeq \tilde{E} G \wedge F\left(E G_{+}, K\right)$. - Thus: enough to prove $\widetilde{E} G \wedge F\left(E G_{+}, K\right)=0$ in $\mathcal{G} \mathcal{S}_{G}$.

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G} \mathcal{S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^{G} \Sigma^{\infty} X=\Sigma^{\infty} X^{G}$ and $\phi^{G}\left(S^{ \pm V}\right)=S^{ \pm V^{G}}$ and $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
- $\pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}$ (cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules).
\rightarrow Recall $E G$ is contractible with free G-action, and $E G=\operatorname{cof}\left(E G+\rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $E G \wedge X=0$.

\rightarrow As $F G_{1} \wedge K$ is free we have $\lambda^{G}(F G \wedge K)=(F G 1 \wedge K)_{h G}=K \wedge B G_{+}$

\rightarrow There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.
$\rightarrow E G_{+} \wedge(-)$ converts nonequivariant equivalences to equivariant ones, so $E G_{+} \wedge K \simeq E G_{+} \wedge F\left(E G_{+}, K\right)$. Using this: $\operatorname{cof}(\widetilde{\nu}) \simeq \widetilde{E} G \wedge F\left(E G_{+}, K\right)$. \rightarrow Thus: enough to prove $E G \wedge F\left(E G_{+}, K\right)=0$ in $\mathcal{G} \mathcal{S}_{G}$.

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G} \mathcal{S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^{G} \Sigma^{\infty} X=\Sigma^{\infty} X^{G}$ and $\phi^{G}\left(S^{ \pm V}\right)=S^{ \pm V^{G}}$ and $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
- $\pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}$ (cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules).
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $\widetilde{E} G \wedge X=0$.

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G} \mathcal{S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^{G} \Sigma^{\infty} X=\Sigma^{\infty} X^{G}$ and $\phi^{G}\left(S^{ \pm V}\right)=S^{ \pm V^{G}}$ and $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
- $\pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}$ (cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules).
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $\widetilde{E} G \wedge X=0$.
- As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G_{+}$.

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G} \mathcal{S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^{G} \Sigma^{\infty} X=\Sigma^{\infty} X^{G}$ and $\phi^{G}\left(S^{ \pm V}\right)=S^{ \pm V^{G}}$ and $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
- $\pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}$ (cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules).
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $\widetilde{E} G \wedge X=0$.
- As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G_{+}$.
- There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G} \mathcal{S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^{G} \Sigma^{\infty} X=\Sigma^{\infty} X^{G}$ and $\phi^{G}\left(S^{ \pm V}\right)=S^{ \pm V^{G}}$ and $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
- $\pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}$ (cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules).
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $\widetilde{E} G \wedge X=0$.
- As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G_{+}$.
- There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.
$-E G_{+} \wedge(-)$ converts nonequivariant equivalences to equivariant ones, so $E G_{+} \wedge K \simeq E G_{+} \wedge F\left(E G_{+}, K\right)$. Using this: $\operatorname{cof}(\widetilde{\nu}) \simeq \widetilde{E} G \wedge F\left(E G_{+}, K\right)$.

Tate vanishing

- Theorem (Greenlees-Sadofsky): for G a finite groupoid, $\nu: c_{!}\left(c^{*}(K)\right) \rightarrow c_{*}\left(c^{*}(K)\right)$ is an equivalence.
- Equivalently: if G is a finite group, then $K \wedge B G_{+} \rightarrow F\left(B G_{+}, K\right)$ is an equivalence, or $K_{*}(B G)=K^{-*}(B G)$.
- For the proof we work in the genuine equivariant category $\mathcal{G} \mathcal{S}_{G}$.
- Two fixed point functors $\phi^{G}, \lambda^{G}: \mathcal{G} \mathcal{S}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^{G} \Sigma^{\infty} X=\Sigma^{\infty} X^{G}$ and $\phi^{G}\left(S^{ \pm V}\right)=S^{ \pm V^{G}}$ and $\phi^{G}(X \wedge Y)=\phi^{G}(X) \wedge \phi^{G}(Y)$.
- $\pi_{*}^{G}(X)=\pi_{*}\left(\lambda^{G}(X)\right)$ and $\mathcal{G S}\left(c^{*}(X), Y\right)=\mathcal{S}\left(X, \lambda^{G}(Y)\right)$ and if Y is free then $\lambda^{G}(Y) \simeq Y^{h G} \simeq Y_{h G}$ (cf $M_{G} \simeq M^{G}$ for free $\mathbb{Z}[G]$-modules).
- Recall $E G$ is contractible with free G-action, and $\widetilde{E} G=\operatorname{cof}\left(E G_{+} \rightarrow S^{0}\right)$; say X is free iff $X \in \operatorname{loc}\left\langle G_{+}\right\rangle$iff $E G_{+} \wedge X \simeq X$ iff $\widetilde{E} G \wedge X=0$.
- As $E G_{+} \wedge K$ is free, we have $\lambda^{G}\left(E G_{+} \wedge K\right)=\left(E G_{+} \wedge K\right)_{h G}=K \wedge B G_{+}$.
- There is a map $\widetilde{\nu}: E G_{+} \wedge K \rightarrow F\left(E G_{+}, K\right)$ such that $\lambda^{G}(\widetilde{\nu})=\nu$.
$-E G_{+} \wedge(-)$ converts nonequivariant equivalences to equivariant ones, so $E G_{+} \wedge K \simeq E G_{+} \wedge F\left(E G_{+}, K\right)$. Using this: $\operatorname{cof}(\widetilde{\nu}) \simeq \widetilde{E} G \wedge F\left(E G_{+}, K\right)$.
- Thus: enough to prove $\widetilde{E} G \wedge F\left(E G_{+}, K\right)=0$ in $\mathcal{G} \mathcal{S}_{G}$.

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so
$S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get
$K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$
$>\operatorname{Now} \lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and π_{*} (this) $=K^{*}(B G)$. (Thom class of $\left.-m V\right)$.
- Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0 .
- As $\pi_{*}^{G}\left(K^{t G}\right)=0$ and $\operatorname{res}_{H}^{G}\left(K^{t G}\right)=0$ for $H<G$ we have $K^{t G}=0$.
- Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$).
- If $n>1$ then $K^{0}\left(B C_{p^{k}}\right)=\mathbb{F}_{p}[x] / x^{p^{n k}}$ and $\theta(f)=$ coefficient of $x^{p^{n k}-1}$ in f.
- For any G the man $\left(K^{0}(B G) \xrightarrow{\delta_{1}} K^{0}(B G) \otimes K^{0}(B G) \xrightarrow{1 \otimes \theta} K^{0}(B G)\right)$
is the identity, and this characterises θ.

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
\square $S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
$>$ As $S^{\infty V}=\operatorname{cof}\left(S(\infty V) \rightarrow S^{0}\right)$, we get
$K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$
$\triangleright \operatorname{Now} \lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and $\pi_{*}($ this $)=K^{*}(B G)$. (Thom class of $\left.-m V\right)$
$>$ Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0 .
- As $\pi_{*}^{G}\left(K^{t G}\right)=0$ and $\operatorname{res}_{H}^{G}\left(K^{t G}\right)=0$ for $H<G$ we have $K^{t G}=0$.
\Rightarrow Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$)
- If $n>1$ then $K^{0}\left(B C_{p^{k}}\right)=\mathbb{F}_{p}[x] / x^{p^{n k}}$ and $\theta(f)=$ coefficient of $x^{p^{n k}-1}$ in f
\Rightarrow For any G, the map $\left(K^{0}(B G) \xrightarrow{\delta_{1}} K^{0}(B G) \otimes K^{0}(B G) \xrightarrow{1 \otimes \theta} K^{0}(B G)\right)$
is the identity, and this characterises θ

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get
$\Rightarrow \operatorname{Now} \lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and π_{*} (this) $=K^{*}(B G)$. (Thom class of $\left.-m V\right)$.
- Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0 .
- As $\pi_{*}^{G}\left(K^{t G}\right)=0$ and $\operatorname{res}_{H}^{G}\left(K^{t G}\right)=0$ for $H<G$ we have $K^{t G}=0$.
- Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$)
- If $n>1$ then $K^{0}\left(B C_{p^{k}}\right)=\mathbb{F}_{p}[x] / x^{p^{n k}}$ and $\theta(f)=$ coefficient of $x^{p^{n k}-1}$ in f.
- For any G, the map $\left(K^{0}(B G) \xrightarrow{\delta_{1}} K^{0}(B G) \otimes K^{0}(B G) \xrightarrow{1 \otimes \theta} K^{0}(B G)\right)$
is the identity, and this characterises θ

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so
$S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
$\triangleright \operatorname{Now} \lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and π_{*} (this) $=K^{*}(B G)$. (Thom class of $\left.-m V\right)$.
\Rightarrow Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0
\Rightarrow Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$)
- If $n>1$ then $K^{0}\left(B C_{p^{k}}\right)=\mathbb{F}_{p}[x] / x^{p^{n k}}$ and $\theta(f)=$ coefficient of $x^{p^{n k}-1}$ in f
\Rightarrow For any G, the map $\left(K^{0}(B G) \xrightarrow{\delta_{1}} K^{0}(B G) \otimes K^{0}(B G) \xrightarrow{1 \otimes \theta} K^{0}(B G)\right)$
is the identity, and this characterises θ

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so $S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get $K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$.
and π_{*} (this) $=K^{*}(B G)$.(Thom class of $\left.-m V\right)$.
\Rightarrow Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0
- Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$)
\Rightarrow If $n>1$ then $K^{0}\left(B C_{p^{k}}\right)=\mathbb{F}_{p}[x] / x^{p^{n k}}$ and $\theta(f)=$ coefficient of $x^{p^{n k}-1}$ in f
\bullet For any G, the map $\left(K^{0}(B G) \xrightarrow{\delta_{1}} K^{0}(B G) \otimes K^{0}(B G) \xrightarrow{1 \otimes \theta} K^{0}(B G)\right)$ is the identity, and this characterises θ

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so $S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get $K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$.
- Now $\lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and $\pi_{*}($ this $)=K^{*}(B G)$. (Thom class of $\left.-m V\right)$.

nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0

\Rightarrow Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}($ of the form $a \otimes b \mapsto \theta(a b))$

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so $S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get $K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$.
- Now $\lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and π_{*} (this) $=K^{*}(B G)$. (Thom class of $\left.-m V\right)$.
- Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0 .

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so $S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get $K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$.
- Now $\lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and π_{*} (this) $=K^{*}(B G)$. (Thom class of $\left.-m V\right)$.
- Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0 .
- As $\pi_{*}^{G}\left(K^{t G}\right)=0$ and $\operatorname{res}_{H}^{G}\left(K^{t G}\right)=0$ for $H<G$ we have $K^{t G}=0$.

pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$).

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so $S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get $K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$.
- Now $\lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and π_{*} (this) $=K^{*}(B G)$. (Thom class of $\left.-m V\right)$.
- Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0 .
- As $\pi_{*}^{G}\left(K^{t G}\right)=0$ and $\operatorname{res}_{H}^{G}\left(K^{t G}\right)=0$ for $H<G$ we have $K^{t G}=0$.
- Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$).

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so $S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get $K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$.
- Now $\lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and π_{*} (this) $=K^{*}(B G)$. (Thom class of $\left.-m V\right)$.
- Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0 .
- As $\pi_{*}^{G}\left(K^{t G}\right)=0$ and $\operatorname{res}_{H}^{G}\left(K^{t G}\right)=0$ for $H<G$ we have $K^{t G}=0$.
- Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$).
- If $n>1$ then $K^{0}\left(B C_{p^{k}}\right)=\mathbb{F}_{p}[x] / x^{p^{n k}}$ and $\theta(f)=$ coefficient of $x^{p^{n k}-1}$ in f.

Tate vanishing

For finite G, we need $K^{t G}=0$, where $K^{t G}=\widetilde{E}_{G} \wedge F\left(E G_{+}, K\right)=0$.

- For $H<G$ we have $\operatorname{res}_{H}^{G}\left(K^{t G}\right) \simeq K^{t H}$; assume $K^{t H}=0$ by induction.
- We also have $G / H_{+} \wedge K^{t G}=\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(K^{t G}\right)\right)=\operatorname{ind}_{H}^{G}(0)=0$.
- Put $V=\mathbb{C}[G] \ominus \mathbb{C}$ so $V^{G}=0$ so $S(\infty V)^{G}=\emptyset$ so $S(\infty V)_{+} \in \operatorname{loc}\left\langle G / H_{+} \mid H<G\right\rangle$ so $S(\infty V)_{+} \wedge K^{t G}=0$
- As $S^{\infty V}=\operatorname{cof}\left(S(\infty V)_{+} \rightarrow S^{0}\right)$, we get $K^{t G} \simeq S^{\infty V} \wedge K^{t G} \simeq S^{\infty V} \wedge F\left(E G_{+}, K\right)$.
- Now $\lambda^{G}\left(S^{m V} \wedge F\left(E G_{+}, K\right)\right)=\lambda^{G} F\left(S^{-m V} \wedge E G_{+}, K\right)=F\left(B G_{+}^{-m V}, K\right)$ and π_{*} (this) $=K^{*}(B G)$.(Thom class of $\left.-m V\right)$.
- Taking $m \rightarrow \infty$ we get $\pi_{*}^{G}\left(K^{t G}\right)=e(V)^{-1} K^{-*}(B G)$, but $e(V)$ lies in the nilpotent ideal $\widetilde{K}^{0}(B G)$ so inverting $e(V)$ gives 0 .
- As $\pi_{*}^{G}\left(K^{t G}\right)=0$ and $\operatorname{res}_{H}^{G}\left(K^{t G}\right)=0$ for $H<G$ we have $K^{t G}=0$.
- Conclusion: $K^{0}(B G) \simeq K_{0}(B G) \simeq \operatorname{Hom}\left(K^{0}(B G), \mathbb{F}_{p}\right)$, so there is a perfect pairing $K^{0}(B G) \otimes K^{0}(B G) \rightarrow \mathbb{F}_{p}$ (of the form $a \otimes b \mapsto \theta(a b)$).
- If $n>1$ then $K^{0}\left(B C_{p^{k}}\right)=\mathbb{F}_{p}[x] / x^{p^{n k}}$ and $\theta(f)=$ coefficient of $x^{p^{n k}-1}$ in f.
- For any G, the map $\left(K^{0}(B G) \xrightarrow{\delta_{l}} K^{0}(B G) \otimes K^{0}(B G) \xrightarrow{1 \otimes \theta} K^{0}(B G)\right)$ is the identity, and this characterises θ.

