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» There is a unique ¢g: MPy — Ey carrying Fup to Fe.

» Using Landweber exactness and Brown representability: there is a
commutative ring spectrum E with EgX = mo(E A X) = Eo Q@up, (MPoX).

> There is also a ring spectrum K with K°X = (E°X)/(uwo, ..., tn—1)
whenever the sequence is regular (and same for Ko X).
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Put U =C[t] \ {0} so CP> = U/C*

Define ¢m: CP*° — CP° by ¢m([f]) = [f™], so

(%) = [M]Fyp (X) = [M]mp(x) € MP®(CP>) (and same for E, K).
The map h(s, f)(t) = s+ (1 — s)(1 + st)f(t) gives a contraction of U.
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CP® has a tautological bundle T with Tjs; = Cf and ¢, (T) ~ T®™.

Then BC,, = E(T®™) \ (zero section) so
cofibre(BC,, — CP*°) = Thom(T®™)
Using the Thom isomorphism we get MP°(BCx) = MP°[x]/[m]mp(x) and
MP'(BC,,) = 0 (and same for E, K).
> If m = p“my with pt mi then [m]x(x) is a unit multiple of
[P](x) = x*" so KO(BC) = Fp{x' | i < p™}.
» Similarly E°(BCn) = E°{x' | i < p™} (free of finite rank over E°).
> For A finite abelian: E°(BA) = E°(BCm,) ®o - - @0 E°(BCn,)
is again free of finite rank, and E'BA = 0.
> Or: G := spf(E°(CP™)) is a formal group scheme over S := spf(E®), and
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Claim: if G is a finite groupoid and X: G — 7T is a finite G-CW complex
then E*(a(X)) is finitely generated over E™.

Can reduce to the case of a group, where c(X) = Xne = (EG x X)/G
and (G/H)hg = EG/H = BH.

The CW structure gives skelq(X)/ skelg—1(X) ~ £ V/,(G/H)+; so
enough to prove E*(BH) is finitely generated for all isotropy groups H.

So if all isotropy groups for X are abelian, then E*(Xi¢) is fg.

Put m = |G| and F = {flags (Wo < W1 < --- < W, = C[G])}.

Then X x F has abelian isotropy so E*((X X F)ag) is fg.

Also (X X F)nc is an iterated projective bundle over Xpg so E*((X X F)sc)
is free over E*(Xhg) with canonical finite basis; so E*(Xhc) is also fg.
Also: there is an equaliser E*(Xag) — E*((X X F)ng) = E*((X x F)1g).
Similarly K'(BG) is a finite vector space over F, with dual K_;(BG), and
K*(BG) = ker(K*(BG) — K*) is a nilpotent ideal.

(Story for E is more complicated; E.BG is the wrong object.)

There are nice calculations for X, GLn(F) with p { |F| < oo, groups of
small nilpotence class; also the generalised character theory of

Hopkins-Kuhn-Ravenel, and a clear picture of the relation with
representation theory (Chern approximation).
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