Ambidexterity 3

Neil Strickland

May 26, 2023

For a finite groupoid G, put $S_G = [G, S]$. Any $V: G \to \mathcal{L}$ (i.e. $V \in \mathcal{L}_G$) gives $S^V, S^{-V} \in \mathcal{S}_G$. • Define $\pi_n^G(X) = \lim_{X \to V \subset C} [S^V, (S^{-n} \wedge X)(V)]^G.$ \blacktriangleright Say $f: X \rightarrow Y$ is a genuine equivalence if Say $f: X \to Y$ is a Borel equivalence if \blacktriangleright Two ∞ -categories: S_G has Borel equivalences inverted, For $X \in S_G$ and $a, b \in obj(G)$ we have $G(a, b)_+ \to S(X_a, X_b)$ and ▶ The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS. • Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab}: X_a \to X_b$, which is

These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.

Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

For a finite groupoid G, put $S_G = [G, S]$. Any $V: G \to \mathcal{L}$ (i.e. $V \in \mathcal{L}_G$) gives $S^V, S^{-V} \in \mathcal{S}_G$. • Define $\pi_n^G(X) = \lim_{X \to V \subset C} [S^V, (S^{-n} \wedge X)(V)]^G.$ \blacktriangleright Say $f: X \rightarrow Y$ is a genuine equivalence if Say $f: X \to Y$ is a Borel equivalence if \blacktriangleright Two ∞ -categories: S_G has Borel equivalences inverted, For $X \in S_G$ and $a, b \in obj(G)$ we have $G(a, b)_+ \to S(X_a, X_b)$ and

▶ The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.

- ▶ Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab}: X_a \to X_b$, which is essentially $\sum_{u \in G(a,b)} u_*$.
- These induce $\nu: c_1(X) \rightarrow c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

- For a finite groupoid G, put $S_G = [G, S]$.
- Any $V: G \to \mathcal{L}$ (i.e. $V \in \mathcal{L}_G$) gives $S^V, S^{-V} \in \mathcal{S}_G$.
- ▶ Define $\pi_n^G(X) = \lim_{\longrightarrow V \in \mathcal{L}_G} [S^V, (S^{-n} \land X)(V)]^G.$
- Say $f: X \to Y$ is a genuine equivalence if $\pi^{H}_{*}(f)$ is iso for all subgroupoids $H \leq G$.
- Say f: X → Y is a Borel equivalence if π_{*}(f_a): π_{*}(X_a) → π_{*}(Y_a) is iso for all a ∈ obj(G) (or equivalently, π^H_{*}(f) is iso for all discrete subgroupoids H ≤ G)
- Two ∞ -categories: S_G has Borel equivalences inverted, GS_G has genuine equivalences inverted.
- For X ∈ S_G and a, b ∈ obj(G) we have G(a, b)₊ → S(X_a, X_b) and correspondingly Σ[∞]G(a, b)₊ ∧ X_a → X_b and Σ[∞]G(a, b)₊ → F(X_a, X_b).
- ► The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- Combining these gives a map S⁰ → F(X_a, X_b) or ν_{ab}: X_a → X_b, which is essentially ∑_{u∈G(a,b)} u_{*}.
- These induce $\nu: c_1(X) \rightarrow c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

For a finite groupoid G, put $S_G = [G, S]$. Any $V: G \to \mathcal{L}$ (i.e. $V \in \mathcal{L}_G$) gives $S^V, S^{-V} \in \mathcal{S}_G$. • Define $\pi_n^G(X) = \lim_{X \to V \in G} [S^V, (S^{-n} \wedge X)(V)]^G$. \blacktriangleright Say $f: X \rightarrow Y$ is a genuine equivalence if Say $f: X \to Y$ is a Borel equivalence if \blacktriangleright Two ∞ -categories: S_G has Borel equivalences inverted, For $X \in S_G$ and $a, b \in obj(G)$ we have $G(a, b)_+ \to S(X_a, X_b)$ and ▶ The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty} G(a, b)_+$ in hS. • Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab}: X_a \to X_b$, which is These induce $\nu: c_1(X) \to c_*(X)$ in hS; iso if G is empty or contractible. Now suppose we have $q: G \rightarrow H$. By applying the above to comma

categories, we get $\nu: q_!(X) \to q_*(X)$ in hS_H , and this is iso if q is faithful (*Wirthmüller isomorphism*).

- For a finite groupoid G, put S_G = [G, S].
 Any V: G → L (i.e. V ∈ L_G) gives S^V, S^{-V} ∈ S_G.
 Define π^G_n(X) = lim → V∈L_G [S^V, (S⁻ⁿ ∧ X)(V)]^G.
 Say f: X → Y is a genuine equivalence if π^H_{*}(f) is iso for all subgroupoids H ≤ G.
 Say f: X → Y is a Borel equivalence if π_{*}(f_a): π_{*}(X_a) → π_{*}(Y_a) is iso for all a ∈ obj(G) (or equivalently, π^H_{*}(f) is iso for all discrete subgroupoids H ≤ S
- ► Two ∞-categories: S_G has Borel equivalences inverted, GS_G has genuine equivalences inverted.
- For X ∈ S_G and a, b ∈ obj(G) we have G(a, b)₊ → S(X_a, X_b) and correspondingly Σ[∞]G(a, b)₊ ∧ X_a → X_b and Σ[∞]G(a, b)₊ → F(X_a, X_b).
- The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- ▶ Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab}: X_a \to X_b$, which is essentially $\sum_{u \in G(a,b)} u_*$.
- ▶ These induce $\nu: c_1(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

• For a finite groupoid G, put $S_G = [G, S]$.
• Any $V: G \to \mathcal{L}$ (i.e. $V \in \mathcal{L}_G$) gives $S^V, S^{-V} \in \mathcal{S}_G$.
• Define $\pi_n^G(X) = \lim_{V \in \mathcal{L}_G} [S^V, (S^{-n} \wedge X)(V)]^G$.
Say $f: X \to Y$ is a genuine equivalence if
$\pi^{H}_{*}(f)$ is iso for all subgroupoids $H \leq G$.
Say $f: X \to Y$ is a Borel equivalence if
$\pi_*(f_a) \colon \pi_*(X_a) \to \pi_*(Y_a)$ is iso for all $a \in \operatorname{obj}(G)$
(or equivalently, $\pi^{H}_{*}(f)$ is iso for all discrete subgroupoids $H\leq G$).
• Two ∞ -categories: S_G has Borel equivalences inverted,
GS_G has genuine equivalences inverted.

- For $X \in S_G$ and $a, b \in obj(G)$ we have $G(a, b)_+ \to S(X_a, X_b)$ and correspondingly $\Sigma^{\infty}G(a, b)_+ \wedge X_a \to X_b$ and $\Sigma^{\infty}G(a, b)_+ \to F(X_a, X_b)$.
- The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- ▶ Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab}: X_a \to X_b$, which is essentially $\sum_{u \in G(a,b)} u_*$.
- ▶ These induce $\nu: c_1(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

 GS_G has genuine equivalences inverted.

- For $X \in S_G$ and $a, b \in obj(G)$ we have $G(a, b)_+ \to S(X_a, X_b)$ and correspondingly $\Sigma^{\infty}G(a, b)_+ \wedge X_a \to X_b$ and $\Sigma^{\infty}G(a, b)_+ \to F(X_a, X_b)$.
- The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- Combining these gives a map S⁰ → F(X_a, X_b) or ν_{ab}: X_a → X_b, which is essentially ∑_{u∈G(a,b)} u_{*}.
- These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

- Two ∞ -categories: S_G has Borel equivalences inverted, \mathcal{GS}_G has genuine equivalences inverted.
- For X ∈ S_G and a, b ∈ obj(G) we have G(a, b)₊ → S(X_a, X_b) and correspondingly Σ[∞]G(a, b)₊ ∧ X_a → X_b and Σ[∞]G(a, b)₊ → F(X_a, X_b).
- ► The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- Combining these gives a map S⁰ → F(X_a, X_b) or ν_{ab}: X_a → X_b, which is essentially ∑_{u∈G(a,b)} u_{*}.
- These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

 \mathcal{GS}_{G} has genuine equivalences inverted.

- ▶ For $X \in S_G$ and $a, b \in obj(G)$ we have $G(a, b)_+ \to S(X_a, X_b)$ and correspondingly $\Sigma^{\infty}G(a, b)_+ \land X_a \to X_b$ and $\Sigma^{\infty}G(a, b)_+ \to F(X_a, X_b)$
- ► The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- Combining these gives a map S⁰ → F(X_a, X_b) or ν_{ab}: X_a → X_b, which is essentially ∑_{u∈G(a,b)} u_{*}.
- These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

- For X ∈ S_G and a, b ∈ obj(G) we have G(a, b)₊ → S(X_a, X_b) and correspondingly Σ[∞]G(a, b)₊ ∧ X_a → X_b and Σ[∞]G(a, b)₊ → F(X_a, X_b).
- The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab} \colon X_a \to X_b$, which is essentially $\sum_{u \in G(a,b)} u_*$.
- These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

• For a finite groupoid G, put $S_G = [G, S]$.
• Any $V: G \to \mathcal{L}$ (i.e. $V \in \mathcal{L}_G$) gives $S^V, S^{-V} \in \mathcal{S}_G$.
• Define $\pi_n^G(X) = \lim_{\longrightarrow V \in \mathcal{L}_G} [S^V, (S^{-n} \wedge X)(V)]^G.$
Say $f: X \to Y$ is a genuine equivalence if $\pi^H_*(f)$ is iso for all subgroupoids $H \leq G$.
 Say f: X → Y is a Borel equivalence if π_*(f_a): π_*(X_a) → π_*(Y_a) is iso for all a ∈ obj(G) (or equivalently, π^H_*(f) is iso for all discrete subgroupoids H ≤ G).
Two ∞-categories: S _G has Borel equivalences inverted, GS _G has genuine equivalences inverted.

- For X ∈ S_G and a, b ∈ obj(G) we have G(a, b)₊ → S(X_a, X_b) and correspondingly Σ[∞]G(a, b)₊ ∧ X_a → X_b and Σ[∞]G(a, b)₊ → F(X_a, X_b).
- The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- Combining these gives a map S⁰ → F(X_a, X_b) or ν_{ab}: X_a → X_b, which is essentially ∑_{u∈G(a,b)} u_{*}.
- These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

 $\mathcal{GS}_{\mathcal{G}}$ has genuine equivalences inverted.

For $X \in S_G$ and $a, b \in obj(G)$ we have $G(a, b)_+ \to S(X_a, X_b)$ and correspondingly $\Sigma^{\infty}G(a, b)_+ \land X_a \to X_b$ and $\Sigma^{\infty}G(a, b)_+ \to F(X_a, X_b)$.

► The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.

- Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab}: X_a \to X_b$, which is essentially $\sum_{u \in G(a,b)} u_*$.
- These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

• For a finite groupoid G, put $S_G = [G, S]$.
▶ Any $V: G \to \mathcal{L}$ (i.e. $V \in \mathcal{L}_G$) gives $S^V, S^{-V} \in \mathcal{S}_G$.
• Define $\pi_n^G(X) = \lim_{V \in \mathcal{L}_G} [S^V, (S^{-n} \wedge X)(V)]^G$.
Say $f: X \to Y$ is a genuine equivalence if
$\pi^{H}_{*}(f)$ is iso for all subgroupoids $H \leq G$.
Say $f: X \to Y$ is a Borel equivalence if
$\pi_*(f_{a}) \colon \pi_*(X_{a}) o \pi_*(Y_{a})$ is iso for all ${a} \in \operatorname{obj}(G)$
(or equivalently, $\pi^{H}_{*}(f)$ is iso for all discrete subgroupoids $H\leq G$).
Two ∞ -categories: S_G has Borel equivalences inverted,

 $\mathcal{GS}_{\mathcal{G}}$ has genuine equivalences inverted.

For X ∈ S_G and a, b ∈ obj(G) we have G(a, b)₊ → S(X_a, X_b) and correspondingly Σ[∞]G(a, b)₊ ∧ X_a → X_b and Σ[∞]G(a, b)₊ → F(X_a, X_b).

• The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.

▶ Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab} : X_a \to X_b$, which is essentially $\sum_{u \in G(a,b)} u_*$.

These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.

Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

- Two ∞-categories: S_G has Borel equivalences inverted, GS_G has genuine equivalences inverted.
- For X ∈ S_G and a, b ∈ obj(G) we have G(a, b)₊ → S(X_a, X_b) and correspondingly Σ[∞]G(a, b)₊ ∧ X_a → X_b and Σ[∞]G(a, b)₊ → F(X_a, X_b).
- ► The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.
- ▶ Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab}: X_a \to X_b$, which is essentially $\sum_{u \in G(a,b)} u_*$.
- ▶ These induce $\nu: c_1(X) \rightarrow c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get v: q₁(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

For a finite groupoid G, put $S_G = [G, S]$.
• Any $V: G \to \mathcal{L}$ (i.e. $V \in \mathcal{L}_G$) gives $S^V, S^{-V} \in \mathcal{S}_G$.
• Define $\pi_n^G(X) = \lim_{V \in \mathcal{L}_G} [S^V, (S^{-n} \wedge X)(V)]^G$.
Say $f: X \to Y$ is a genuine equivalence if
$\pi^{\sf H}_*(f)$ is iso for all subgroupoids ${\sf H} \leq {\sf G}$.
Say $f: X \to Y$ is a Borel equivalence if
$\pi_*(f_{a})\colon \pi_*(X_{a}) o \pi_*(Y_{a})$ is iso for all $a\in obj(G)$
(or equivalently, $\pi^{H}_{*}(f)$ is iso for all discrete subgroupoids $H \leq G$).
\blacktriangleright Two ∞ -categories: S_c has Borel equivalences inverted.

Two ∞-categories: S_G has Borel equivalences inverted, GS_G has genuine equivalences inverted.

For X ∈ S_G and a, b ∈ obj(G) we have G(a, b)₊ → S(X_a, X_b) and correspondingly Σ[∞]G(a, b)₊ ∧ X_a → X_b and Σ[∞]G(a, b)₊ → F(X_a, X_b).

► The map $p: G(a, b) \to 1$ gives a transfer $p^t: S^0 \to \Sigma^{\infty}G(a, b)_+$ in hS.

- ▶ Combining these gives a map $S^0 \to F(X_a, X_b)$ or $\nu_{ab} : X_a \to X_b$, which is essentially $\sum_{u \in G(a,b)} u_*$.
- ▶ These induce $\nu: c_!(X) \to c_*(X)$ in hS; iso if G is empty or contractible.
- Now suppose we have q: G → H. By applying the above to comma categories, we get ν: q_!(X) → q_{*}(X) in hS_H, and this is iso if q is faithful (Wirthmüller isomorphism).

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- ▶ Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(C ⊕ V) → MP'(V) which assemble to give x: Σ[∞]CP[∞] → MP i.e. x ∈ MP⁰(CP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- ▶ Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j\geq 0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

► For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$

▶ Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.

- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(C ⊕ V) → MP'(V) which assemble to give x: Σ[∞]CP[∞] → MP i.e. x ∈ MP⁰(CP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- ▶ Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j\geq 0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- ▶ Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

► For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$

• Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV}MP'(V \oplus iV)$.

- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- ► There are natural maps $\Sigma^V P(\mathbb{C} \oplus V) \to MP'(V)$ which assemble to give $x \colon \Sigma^\infty \mathbb{C}P^\infty \to MP$ i.e. $x \in MP^0(\mathbb{C}P^\infty)$.
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[[x]]$.
- ▶ Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j>0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- ▶ Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- ► There are natural maps $\Sigma^V P(\mathbb{C} \oplus V) \to MP'(V)$ which assemble to give $x \colon \Sigma^\infty \mathbb{C}P^\infty \to MP$ i.e. $x \in MP^0(\mathbb{C}P^\infty)$.
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[[x]]$.
- ▶ Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j>0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- ► There are natural maps $\Sigma^V P(\mathbb{C} \oplus V) \to MP'(V)$ which assemble to give $x \colon \Sigma^\infty \mathbb{C}P^\infty \to MP$ i.e. $x \in MP^0(\mathbb{C}P^\infty)$.
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[[x]]$.
- ▶ Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j>0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- ▶ Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[[x]]$.
- ▶ Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j>0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- ▶ Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- ▶ Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j>0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- ▶ Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,i>0} a_{ij} y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,i>0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV}MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).

• We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j\geq 0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.

- Commutative monoid structure implies $F_{MP}(x, 0) = x$ and $F_{MP}(x, y) = F_{MP}(y, x)$ and $F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z)$ so F_{MP} is a formal group law.
- Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV}MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j\geq 0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies F_{MP}(x, 0) = x and F_{MP}(x, y) = F_{MP}(y, x) and F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z) so F_{MP} is a formal group law.
- Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV}MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j\geq 0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies F_{MP}(x, 0) = x and F_{MP}(x, y) = F_{MP}(y, x) and F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z) so F_{MP} is a formal group law.
- ▶ Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum MP by $MP(V) = \Omega^{iV} MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j \ge 0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies F_{MP}(x, 0) = x and F_{MP}(x, y) = F_{MP}(y, x) and F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z) so F_{MP} is a formal group law.
- Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV}MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j \ge 0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies F_{MP}(x, 0) = x and F_{MP}(x, y) = F_{MP}(y, x) and F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z) so F_{MP} is a formal group law.
- ▶ Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- ▶ Also: for any formal group law *F* over any ring *R*, there is a unique ϕ : $\pi_0(MP) \rightarrow R$ carrying F_{MP} to *F*. So $\pi_0(MP)$ is the Lazard ring.

- For a complex inner product space V put $MP'(V) = \{(u, U) \mid u \in U \le V \oplus V\} \cup \{\infty\}$
- Define an orthogonal ring spectrum *MP* by $MP(V) = \Omega^{iV}MP'(V \oplus iV)$.
- ▶ Using $\pi_{2+k}MP'(\mathbb{C}) = \pi_{2+k}(S^0 \vee \mathbb{C}P^2 \vee S^4) \rightarrow \pi_kMP = MP_k = MP^{-k}$ we get $u^{-1} \in MP_{-2}$ and $u \in MP_2$ with $u^{-1}u = 1$; so $MP_{2i+j} = MP_j$.
- There are natural maps Σ^VP(ℂ ⊕ V) → MP'(V) which assemble to give x: Σ[∞]ℂP[∞] → MP i.e. x ∈ MP⁰(ℂP[∞]).
- ▶ Using cofibrations $\mathbb{C}P^{n-1} \to \mathbb{C}P^n \to S^{2n}$ we get $MP^*(\mathbb{C}P^\infty) = MP^*[x]$.
- Using Künneth we get $MP^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = MP^*[[y, z]]$.
- We can identify CP[∞] with (C[t] \ {0})/C[×], which is a commutative monoid under multiplication (and a group up to homotopy).
- We have mult^{*}(x) = $F_{MP}(y, z) = \sum_{i,j \ge 0} a_{ij}y^i z^j$ for some $a_{ij} \in \pi_0(MP)$.
- Commutative monoid structure implies F_{MP}(x, 0) = x and F_{MP}(x, y) = F_{MP}(y, x) and F_{MP}(x, F_{MP}(y, z)) = F_{MP}(F_{MP}(x, y), z) so F_{MP} is a formal group law.
- ▶ Theorem (Quillen): $\pi_1(MP) = 0$ and $\pi_0(MP) = \mathbb{Z}[a_1, a_2, ...]$ with $a_1 = a_{11}, a_2 = a_{12}, a_3 = a_{22} a_{13}, a_4 = a_{15}, a_5 = a_{16} + a_{25} + a_{34}, ...$
- Also: for any formal group law F over any ring R, there is a unique $\phi: \pi_0(MP) \to R$ carrying F_{MP} to F. So $\pi_0(MP)$ is the Lazard ring.

Fix a prime p and n > 0.

▶ Put $l(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[x], \quad F(x,y) = l^{-1}(l(x) + l(y)) \in FGL(\mathbb{Q}).$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{\kappa} \colon MP_0 \to \mathbb{F}_p$ carrying F_{MP} to F_{κ} .
- Vite $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{K}(x) = [p]_{F_{K}}(x) = x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_l = \prod_{t=1}^r u_{i_t}^{\pi_t(l)}$. Then put $l_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [x]$ and $F_E(x, y) = l_E^{-1} (l_E(x) + l_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime p and n > 0.

▶ Put $I(x) = \sum_{k\geq 0} x^{p^{n^k}}/p^k \in \mathbb{Q}\llbracket x \rrbracket$, $F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q})$.

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_K \colon MP_0 \to \mathbb{F}_p$ carrying F_{MP} to F_K .
- Vite $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{K}(x) = [p]_{F_{K}}(x) = x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_l = \prod_{t=1}^r u_{i_t}^{\pi_t(l)}$. Then put $I_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0)[x]$ and $F_E(x, y) = I_E^{-1}(I_E(x) + I_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Morava K and E

Fix a prime p and n > 0.

▶ Put $I(x) = \sum_{k\geq 0} x^{p^{n^k}}/p^k \in \mathbb{Q}[x]$, $F(x,y) = I^{-1}(I(x) + I(y)) \in FGL(\mathbb{Q})$.

▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.

• There is a unique $\phi_{\mathcal{K}} \colon MP_0 \to \mathbb{F}_p$ carrying F_{MP} to $F_{\mathcal{K}}$.

- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{K}(x) = [p]_{F_{K}}(x) = x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_l = \prod_{t=1}^r u_{i_t}^{\pi_t(l)}$. Then put $l_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [x]$ and $F_E(x, y) = l_E^{-1} (l_E(x) + l_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Morava K and E

Fix a prime p and n > 0.

▶ Put $I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{\mathcal{K}} \colon MP_0 \to \mathbb{F}_p$ carrying F_{MP} to $F_{\mathcal{K}}$.
- Vite $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_K(x) = [p]_{F_K}(x) = x^{p^n}$ i.e. F_K has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_l = \prod_{t=1}^r u_{i_t}^{\pi_t(l)}$. Then put $l_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [x]$ and $F_E(x, y) = l_E^{-1} (l_E(x) + l_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Morava K and E

- Fix a prime p and n > 0.
- ▶ Put $I(x) = \sum_{k\geq 0} x^{p^{n^k}}/p^k \in \mathbb{Q}\llbracket x \rrbracket$, $F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q})$.
- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_K \colon MP_0 \to \mathbb{F}_p$ carrying F_{MP} to F_K .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{K}(x) = [p]_{F_{K}}(x) = x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_l = \prod_{t=1}^r u_{i_t}^{\pi_t(l)}$. Then put $l_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [x]$ and $F_E(x, y) = l_E^{-1}(l_E(x) + l_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

- Fix a prime p and n > 0.
- ▶ Put $I(x) = \sum_{k\geq 0} x^{p^{n^k}}/p^k \in \mathbb{Q}\llbracket x \rrbracket$, $F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q})$.
- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{\mathcal{K}} \colon MP_0 \to \mathbb{F}_p$ carrying F_{MP} to $F_{\mathcal{K}}$.
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_K(x) = [p]_{F_K}(x) = x^{p^n}$ i.e. F_K has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_l = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $l_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0)[[x]]$ and $F_E(x, y) = l_E^{-1}(l_E(x) + l_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

- Fix a prime p and n > 0.
- ▶ Put $I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$
- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{\mathcal{K}} \colon MP_0 \to \mathbb{F}_p$ carrying F_{MP} to $F_{\mathcal{K}}$.
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{K}(x) = [p]_{F_{K}}(x) = x^{p^{n}}$ i.e. F_{K} has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \dots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_l = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $l_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0)[[x]]$ and $F_E(x, y) = l_E^{-1}(l_E(x) + l_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

- Fix a prime p and n > 0.
- ▶ Put $I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$
- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{F_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $F_{\mathcal{K}}$ has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $l_E(x) = \sum_I u_I x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [x]$ and $F_E(x, y) = l_E^{-1}(l_E(x) + l_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

- Fix a prime p and n > 0.
- ▶ Put $I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$
- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{F_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $F_{\mathcal{K}}$ has height n.
- Define $E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$ with $u_0 = p$, $u_n = 1$.
- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} \rho^{i_s}$ and $u_l = \prod_{t=1}^r u_{i_t}^{\pi_t(l)}$. Then put $l_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0)[\![x]\!]$ and $F_E(x, y) = l_E^{-1}(l_E(x) + l_E(y))$
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime
$$p$$
 and $n > 0$.

▶ Put
$$I(x) = \sum_{k\geq 0} x^{p^{nk}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in FGL(\mathbb{Q}).$$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_{K} \in FGL(\mathbb{F}_{p})$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{\mathcal{F}_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $\mathcal{F}_{\mathcal{K}}$ has height n.

• Define
$$E_0 = \mathbb{Z}_p \llbracket u_1, \ldots, u_{n-1} \rrbracket$$
 with $u_0 = p$, $u_n = 1$

For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put

 $I_E(x) = \sum_I u_I x^{p^{n/n}} / p^{|I|} \in (\mathbb{Q} \otimes E_0)[x]$ and $F_E(x, y) = I_E^{-1}(I_E(x) + I_E(y)).$

- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime
$$p$$
 and $n > 0$.

▶ Put
$$I(x) = \sum_{k\geq 0} x^{p^{nk}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in FGL(\mathbb{Q}).$$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_{K} \in FGL(\mathbb{F}_{p})$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{F_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $F_{\mathcal{K}}$ has height n.

• Define
$$E_0 = \mathbb{Z}_p \llbracket u_1, \ldots, u_{n-1} \rrbracket$$
 with $u_0 = p$, $u_n = 1$.

For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $I_E(x) = \sum_l u_l x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [\![x]\!]$ and $F_E(x, y) = I_E^{-1}(I_E(x) + I_E(y))$.

- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime
$$p$$
 and $n > 0$.

▶ Put
$$I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_{K} \in FGL(\mathbb{F}_{p})$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{\mathcal{F}_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $\mathcal{F}_{\mathcal{K}}$ has height n.

• Define
$$E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$$
 with $u_0 = p, u_n = 1$.

For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $l_E(x) = \sum_I u_I x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [\![x]\!]$ and $F_E(x, y) = l_F^{-1}(l_E(x) + l_E(y))$.

- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0 (E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime
$$p$$
 and $n > 0$.

▶ Put
$$I(x) = \sum_{k\geq 0} x^{p^{nk}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in FGL(\mathbb{Q}).$$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_{K} \in FGL(\mathbb{F}_{p})$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{F_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $F_{\mathcal{K}}$ has height n.

• Define
$$E_0 = \mathbb{Z}_p \llbracket u_1, \ldots, u_{n-1} \rrbracket$$
 with $u_0 = p, u_n = 1$

For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $l_E(x) = \sum_I u_I x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [\![x]\!]$ and $F_E(x, y) = l_F^{-1}(l_E(x) + l_E(y))$.

- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with E₀X = π₀(E ∧ X) = E₀ ⊗_{MP₀} (MP₀X).
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime
$$p$$
 and $n > 0$.

▶ Put
$$I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{F_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $F_{\mathcal{K}}$ has height n.

• Define
$$E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$$
 with $u_0 = p, u_n = 1$.

For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $I_E(x) = \sum_I u_I x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [\![x]\!]$ and $F_E(x, y) = I_E^{-1}(I_E(x) + I_E(y))$.

- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with $E_0 X = \pi_0(E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime
$$p$$
 and $n > 0$.

▶ Put
$$I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{F_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $F_{\mathcal{K}}$ has height n.

• Define
$$E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$$
 with $u_0 = p, u_n = 1$.

For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $I_E(x) = \sum_I u_I x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0)[\![x]\!]$ and $F_E(x, y) = I_E^{-1}(I_E(x) + I_E(y))$.

- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum *E* with $E_0X = \pi_0(E \land X) = E_0 \otimes_{MP_0} (MP_0X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime
$$p$$
 and $n > 0$.

▶ Put
$$I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{\mathcal{K}} \colon MP_0 \to \mathbb{F}_p$ carrying F_{MP} to $F_{\mathcal{K}}$.
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{F_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $F_{\mathcal{K}}$ has height n.

• Define
$$E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$$
 with $u_0 = p, u_n = 1$.

- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $I_E(x) = \sum_I u_I x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [\![x]\!]$ and $F_E(x, y) = I_E^{-1}(I_E(x) + I_E(y))$.
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- ▶ Using Landweber exactness and Brown representability: there is a commutative ring spectrum *E* with $E_0 X = \pi_0(E \land X) = E_0 \otimes_{MP_0} (MP_0 X)$.
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Fix a prime
$$p$$
 and $n > 0$.

▶ Put
$$I(x) = \sum_{k\geq 0} x^{p^{n^k}} / p^k \in \mathbb{Q}[[x]], \quad F(x,y) = I^{-1}(I(x) + I(y)) \in \mathsf{FGL}(\mathbb{Q}).$$

- ▶ In fact $F \in FGL(\mathbb{Z})$ so we can reduce mod p to get $F_K \in FGL(\mathbb{F}_p)$.
- There is a unique $\phi_{K} \colon MP_{0} \to \mathbb{F}_{p}$ carrying F_{MP} to F_{K} .
- Write $x +_F y = F(x, y)$ and $[n]_F(x) = x + \cdots + x$ (*n* terms).
- We find that $[p]_{\mathcal{K}}(x) = [p]_{F_{\mathcal{K}}}(x) = x^{p^n}$ i.e. $F_{\mathcal{K}}$ has height n.

• Define
$$E_0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$$
 with $u_0 = p, u_n = 1$.

- For $I = (i_1, ..., i_r)$ in $\{1, ..., n\}^r$ we put |I| = r and $||I|| = i_1 + \cdots + i_r$ and $\pi_t(I) = \prod_{s < t} p^{i_s}$ and $u_I = \prod_{t=1}^r u_{i_t}^{\pi_t(I)}$. Then put $I_E(x) = \sum_I u_I x^{p^{||I||}} / p^{|I|} \in (\mathbb{Q} \otimes E_0) [\![x]\!]$ and $F_E(x, y) = I_E^{-1}(I_E(x) + I_E(y))$.
- ▶ Using the Functional Equation Lemma: $F_E \in FGL(E_0)$.
- ▶ This is a *universal deformation* of F_K : if $F' \in FGL(R')$ and $F' = F_K \mod$ a nilpotent ideal, then F' comes from F_E (details are complex).
- There is a unique $\phi_E \colon MP_0 \to E_0$ carrying F_{MP} to F_E .
- Using Landweber exactness and Brown representability: there is a commutative ring spectrum E with E₀X = π₀(E ∧ X) = E₀ ⊗_{MP0} (MP₀X).
- ▶ There is also a ring spectrum K with $K^0X = (E^0X)/(u_0, ..., u_{n-1})$ whenever the sequence is regular (and same for K_0X).

Put U = C[t] \ {0} so CP[∞] = U/C[×]
Define φ_m: CP[∞] → CP[∞] by φ_m([f]) = [f^m], so φ^{*}_m(x) = [m]_{FMP}(x) = [m]_{MP}(x) ∈ MP⁰(CP[∞]) (and same for E, K).
The map h(s, f)(t) = s + (1 - s)(1 + st)f(t) gives a contraction of U.
Put C_m = ⟨e^{2πi/m}⟩ < C[×] and BC_m = U/C_m.
CP[∞] has a tautological bundle T with T_[f] = Cf and φ^{*}_m(T) ≃ T^{⊗m}.
Then BC_m = E(T^{⊗m}) \ (zero section) so cofibre(BC_m → CP[∞]) = Thom(T^{⊗m})
Using the Thom isomorphism we get MP⁰(BC_m) = MP⁰[[x]]/[m]_{MP}(x) and MP¹(BC_m) = 0 (and same for E, K).

- If $m = p^k m_1$ with $p \nmid m_1$ then $[m]_K(x)$ is a unit multiple of $[p^k]_K(x) = x^{p^{nk}}$ so $K^0(BC_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$
- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^0(BA) = E^0(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^0(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

• Put $U = \mathbb{C}[t] \setminus \{0\}$ so $\mathbb{C}P^{\infty} = U/\mathbb{C}^{\times}$

- ▶ Define $\phi_m : \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$ by $\phi_m([f]) = [f^m]$, so $\phi_m^*(x) = [m]_{F_{MP}}(x) = [m]_{MP}(x) \in MP^0(\mathbb{C}P^{\infty})$ (and same for E, K).
- The map h(s, f)(t) = s + (1 s)(1 + st)f(t) gives a contraction of U.
- Put $C_m = \langle e^{2\pi i/m} \rangle < \mathbb{C}^{\times}$ and $BC_m = U/C_m$.
- ▶ $\mathbb{C}P^{\infty}$ has a tautological bundle T with $T_{[f]} = \mathbb{C}f$ and $\phi_m^*(T) \simeq T^{\otimes m}$.

- ▶ Using the Thom isomorphism we get MP⁰(BC_m) = MP⁰ [[x]]/[m]_{MP}(x) and MP¹(BC_m) = 0 (and same for E, K).
- If $m = p^k m_1$ with $p \nmid m_1$ then $[m]_{\mathcal{K}}(x)$ is a unit multiple of $[p^k]_{\mathcal{K}}(x) = x^{p^{nk}}$ so $\mathcal{K}^0(BC_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$
- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^{0}(BA) = E^{0}(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^{0}(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

• Put
$$U = \mathbb{C}[t] \setminus \{0\}$$
 so $\mathbb{C}P^{\infty} = U/\mathbb{C}^{\times}$

▶ Define $\phi_m : \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$ by $\phi_m([f]) = [f^m]$, so $\phi_m^*(x) = [m]_{F_{MP}}(x) = [m]_{MP}(x) \in MP^0(\mathbb{C}P^{\infty})$ (and same for E, K).

The map h(s, f)(t) = s + (1 - s)(1 + st)f(t) gives a contraction of U.

• Put
$$C_m = \langle e^{2\pi i/m} \rangle < \mathbb{C}^{\times}$$
 and $BC_m = U/C_m$.

▶ $\mathbb{C}P^{\infty}$ has a tautological bundle T with $T_{[f]} = \mathbb{C}f$ and $\phi_m^*(T) \simeq T^{\otimes m}$.

- ▶ Using the Thom isomorphism we get MP⁰(BC_m) = MP⁰ [[x]]/[m]_{MP}(x) and MP¹(BC_m) = 0 (and same for E, K).
- If $m = p^k m_1$ with $p \nmid m_1$ then $[m]_{\mathcal{K}}(x)$ is a unit multiple of $[p^k]_{\mathcal{K}}(x) = x^{p^{nk}}$ so $\mathcal{K}^0(BC_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$
- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^{0}(BA) = E^{0}(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^{0}(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^0(BA) = E^0(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^0(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

- If $m = p^k m_1$ with $p \nmid m_1$ then $[m]_K(x)$ is a unit multiple of $[p^k]_K(x) = x^{p^{nk}}$ so $K^0(BC_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$
- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^{0}(BA) = E^{0}(BC_{m_{1}}) \otimes_{E^{0}} \cdots \otimes_{E^{0}} E^{0}(BC_{m_{r}})$ is again free of finite rank, and $E^{1}BA = 0$.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

- Using the Thom isomorphism we get $MP^0(BC_m) = MP^0[[x]]/[m]_{MP}(x)$ and $MP^1(BC_m) = 0$ (and same for E, K).
- If $m = p^k m_1$ with $p \nmid m_1$ then $[m]_{\mathcal{K}}(x)$ is a unit multiple of $[p^k]_{\mathcal{K}}(x) = x^{p^{nk}}$ so $\mathcal{K}^0(BC_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$
- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^{0}(BA) = E^{0}(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^{0}(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

 $[p^{k}]_{\kappa}(x) = x^{p^{nk}} \text{ so } K^{0}(BC_{m}) = \mathbb{F}_{p}\{x^{i} \mid i < p^{nk}\}.$

- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^0(BA) = E^0(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^0(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: G := spf(E⁰(CP[∞])) is a formal group scheme over S := spf(E⁰), and spf(E⁰(BA)) = Hom(A^{*}, G), where A^{*} = Hom(A, S¹).

If
$$m = p^k m_1$$
 with $p \nmid m_1$ then $[m]_{\mathcal{K}}(x)$ is a unit multiple of $[p^k]_{\mathcal{K}}(x) = x^{p^{nk}}$ so $\mathcal{K}^0(BC_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$

- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^0(BA) = E^0(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^0(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

$$[p^k]_{\mathcal{K}}(x) = x^{p^{nk}} \text{ so } \mathcal{K}^0(BC_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$$

Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).

- ▶ For A finite abelian: $E^0(BA) = E^0(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^0(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

 $[p^k]_{\mathcal{K}}(x) = x^{p^{nk}} \text{ so } \mathcal{K}^0(BC_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$

- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- For A finite abelian: E⁰(BA) = E⁰(BC_{m1}) ⊗_{E⁰} ··· ⊗_{E⁰} E⁰(BC_{mr}) is again free of finite rank, and E¹BA = 0.
- Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

 $[p^{k}]_{\mathcal{K}}(x) = x^{p^{nk}} \text{ so } \mathcal{K}^{0}(BC_{m}) = \mathbb{F}_{p}\{x^{i} \mid i < p^{nk}\}.$

- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^0(BA) = E^0(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^0(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.

• Or: $\mathbb{G} := \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ is a formal group scheme over $S := \operatorname{spf}(E^0)$, and $\operatorname{spf}(E^0(BA)) = \operatorname{Hom}(A^*, \mathbb{G})$, where $A^* = \operatorname{Hom}(A, S^1)$.

$$[p^k]_{\mathcal{K}}(x) = x^{p^{nk}} \text{ so } \mathcal{K}^0(\mathcal{B}\mathcal{C}_m) = \mathbb{F}_p\{x^i \mid i < p^{nk}\}.$$

- Similarly $E^0(BC_m) = E^0\{x^i \mid i < p^{nk}\}$ (free of finite rank over E^0).
- ▶ For A finite abelian: $E^0(BA) = E^0(BC_{m_1}) \otimes_{E^0} \cdots \otimes_{E^0} E^0(BC_{m_r})$ is again free of finite rank, and $E^1BA = 0$.
- Or: G := spf(E⁰(CP[∞])) is a formal group scheme over S := spf(E⁰), and spf(E⁰(BA)) = Hom(A^{*}, G), where A^{*} = Hom(A, S¹).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_1(X) = X_{hG} = (EG \times X)/G$ and $(G/H)_{hG} = EG/H = BH$.
- The CW structure gives skel_d(X)/ skel_{d−1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < · · · < W_m = C[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{bG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- Also: there is an equaliser $E^*(X_{hG}) \to E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where $c_1(X) = X_{hG} = (EG \times X)/G$ and $(G/H)_{hG} = EG/H = BH$.
- The CW structure gives skel_d(X)/ skel_{d-1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < · · · < W_m = C[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{bG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- Also: there is an equaliser $E^*(X_{hG}) \to E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- ▶ The CW structure gives $\operatorname{skel}_d(X)/\operatorname{skel}_{d-1}(X) \simeq \Sigma^d \bigvee_i (G/H_i)_+$; so enough to prove $E^*(BH)$ is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < · · · < W_m = C[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{bG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- Also: there is an equaliser $E^*(X_{hG}) \to E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d-1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < · · · < W_m = ℂ[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{hG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- Also: there is an equaliser $E^*(X_{hG}) \to E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d−1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < · · · < W_m = C[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{hG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- Also: there is an equaliser $E^*(X_{hG}) \to E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d-1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < · · · < W_m = ℂ[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{bG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- Also: there is an equaliser $E^*(X_{hG}) \to E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d−1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < ··· < W_m = ℂ[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{hG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- Also: there is an equaliser $E^*(X_{hG}) \to E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d−1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < ··· < W_m = ℂ[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{hG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- Also: there is an equaliser $E^*(X_{hG}) \to E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d−1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < ··· < W_m = ℂ[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{hG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- ▶ Also: there is an equaliser $E^*(X_{hG}) \rightarrow E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly K'(BG) is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d−1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < ··· < W_m = ℂ[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{hG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- ▶ Also: there is an equaliser $E^*(X_{hG}) \rightarrow E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d−1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < · · · < W_m = ℂ[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{hG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- ▶ Also: there is an equaliser $E^*(X_{hG}) \rightarrow E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- (Story for *E* is more complicated; E_*BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Claim: if G is a finite groupoid and X: G → T is a finite G-CW complex then E^{*}(c₁(X)) is finitely generated over E^{*}.
- Can reduce to the case of a group, where c₁(X) = X_{hG} = (EG × X)/G and (G/H)_{hG} = EG/H = BH.
- The CW structure gives skel_d(X)/ skel_{d−1}(X) ≃ Σ^d ∨_i(G/H_i)₊; so enough to prove E^{*}(BH) is finitely generated for all isotropy groups H.
- So if all isotropy groups for X are abelian, then $E^*(X_{hG})$ is fg.
- Put m = |G| and F = {flags (W₀ < W₁ < · · · < W_m = ℂ[G])}. Then X × F has abelian isotropy so E^{*}((X × F)_{hG}) is fg.
- Also $(X \times F)_{hG}$ is an iterated projective bundle over X_{hG} so $E^*((X \times F)_{hG})$ is free over $E^*(X_{hG})$ with canonical finite basis; so $E^*(X_{hG})$ is also fg.
- ▶ Also: there is an equaliser $E^*(X_{hG}) \rightarrow E^*((X \times F)_{hG}) \rightrightarrows E^*((X \times F^2)_{hG})$.
- Similarly $K^i(BG)$ is a finite vector space over \mathbb{F}_p with dual $K_{-i}(BG)$, and $\widetilde{K}^*(BG) = \ker(K^*(BG) \to K^*)$ is a nilpotent ideal.
- Story for E is more complicated; E_{*}BG is the wrong object.)
- There are nice calculations for Σ_m, GL_m(F) with p ∤ |F| < ∞, groups of small nilpotence class; also the generalised character theory of Hopkins-Kuhn-Ravenel, and a clear picture of the relation with representation theory (*Chern approximation*).

- Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category \mathcal{GS}_G .
- ▶ Two fixed point functors ϕ^{G} , λ^{G} : $\mathcal{GS}_{G} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ▶ $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and EG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff EG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^G(\widetilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ► Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category GSG.
- ▶ Two fixed point functors ϕ^{G} , λ^{G} : $\mathcal{GS}_{G} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ▶ $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and EG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff EG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^G(\widetilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category GSG.
- ▶ Two fixed point functors ϕ^{G} , λ^{G} : $\mathcal{GS}_{G} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ▶ $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and EG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff EG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^G(\widetilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category $\mathcal{GS}_{\mathcal{G}}$.
- ▶ Two fixed point functors ϕ^{G} , λ^{G} : $\mathcal{GS}_{G} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ▶ $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and EG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff EG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^G(\widetilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category \mathcal{GS}_G .
- ▶ Two fixed point functors ϕ^{G} , λ^{G} : $\mathcal{GS}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).
- $\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$ and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.
- ▶ $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and EG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff EG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^G(\widetilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category \mathcal{GS}_G .
- ▶ Two fixed point functors $\phi^{\mathsf{G}}, \lambda^{\mathsf{G}} : \mathcal{GS}_{\mathsf{G}} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ▶ $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and EG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff EG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^G(\widetilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\tilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category \mathcal{GS}_G .
- ▶ Two fixed point functors $\phi^{\mathsf{G}}, \lambda^{\mathsf{G}} : \mathcal{GS}_{\mathsf{G}} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ▶ $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and ẼG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff ẼG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^G(\widetilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category \mathcal{GS}_G .
- ▶ Two fixed point functors $\phi^{\mathsf{G}}, \lambda^{\mathsf{G}} : \mathcal{GS}_{\mathsf{G}} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ► $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and ẼG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff ẼG ∧ X = 0.

As $EG_+ \wedge K$ is free, we have $\lambda^G (EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.

- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^{G}(\widetilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category \mathcal{GS}_G .
- ▶ Two fixed point functors ϕ^{G} , λ^{G} : $\mathcal{GS}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ► $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and ẼG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff ẼG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\tilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^G(\tilde{\nu}) = \nu$.
- ► $EG_+ \land (-)$ converts nonequivariant equivalences to equivariant ones, so $EG_+ \land K \simeq EG_+ \land F(EG_+, K)$. Using this: $cof(\tilde{\nu}) \simeq \tilde{E}G \land F(EG_+, K)$.
- ▶ Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- For the proof we work in the genuine equivariant category \mathcal{GS}_G .
- ▶ Two fixed point functors ϕ^{G} , λ^{G} : $\mathcal{GS}_{G} \rightarrow \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ► $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and ẼG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff ẼG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \wedge K \to F(EG_+, K)$ such that $\lambda^{G}(\widetilde{\nu}) = \nu$.
- EG₊ ∧ (−) converts nonequivariant equivalences to equivariant ones, so EG₊ ∧ K ≃ EG₊ ∧ F(EG₊, K). Using this: cof(ν̃) ≃ ẼG ∧ F(EG₊, K).
- ▶ Thus: enough to prove $\tilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- ▶ For the proof we work in the genuine equivariant category GS_G .
- ▶ Two fixed point functors $\phi^{\mathsf{G}}, \lambda^{\mathsf{G}} : \mathcal{GS}_{\mathsf{G}} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^\infty X = \Sigma^\infty X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ► $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and ẼG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff ẼG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \land K \to F(EG_+, K)$ such that $\lambda^{G}(\widetilde{\nu}) = \nu$.
- EG₊ ∧ (−) converts nonequivariant equivalences to equivariant ones, so EG₊ ∧ K ≃ EG₊ ∧ F(EG₊, K). Using this: cof(ν̃) ≃ ẼG ∧ F(EG₊, K).
- ▶ Thus: enough to prove $EG \land F(EG_+, K) = 0$ in GS_G .

- ▶ Theorem (Greenlees-Sadofsky): for *G* a finite groupoid, $\nu: c_!(c^*(K)) \rightarrow c_*(c^*(K))$ is an equivalence.
- Equivalently: if G is a finite group, then K ∧ BG₊ → F(BG₊, K) is an equivalence, or K_{*}(BG) = K^{-*}(BG).
- ▶ For the proof we work in the genuine equivariant category GS_G .
- ▶ Two fixed point functors $\phi^{\mathsf{G}}, \lambda^{\mathsf{G}} : \mathcal{GS}_{\mathsf{G}} \to \mathcal{S}$ (geometric, Lewis-May).

•
$$\phi^G \Sigma^{\infty} X = \Sigma^{\infty} X^G$$
 and $\phi^G (S^{\pm V}) = S^{\pm V^G}$ and $\phi^G (X \wedge Y) = \phi^G (X) \wedge \phi^G (Y)$.

- ► $\pi^G_*(X) = \pi_*(\lambda^G(X))$ and $\mathcal{GS}(c^*(X), Y) = \mathcal{S}(X, \lambda^G(Y))$ and if Y is free then $\lambda^G(Y) \simeq Y^{hG} \simeq Y_{hG}$ (cf $M_G \simeq M^G$ for free $\mathbb{Z}[G]$ -modules).
- Recall EG is contractible with free G-action, and ẼG = cof(EG₊ → S⁰); say X is free iff X ∈ loc(G₊) iff EG₊ ∧ X ≃ X iff ẼG ∧ X = 0.
- As $EG_+ \wedge K$ is free, we have $\lambda^G(EG_+ \wedge K) = (EG_+ \wedge K)_{hG} = K \wedge BG_+$.
- There is a map $\widetilde{\nu} \colon EG_+ \land K \to F(EG_+, K)$ such that $\lambda^{G}(\widetilde{\nu}) = \nu$.
- EG₊ ∧ (−) converts nonequivariant equivalences to equivariant ones, so EG₊ ∧ K ≃ EG₊ ∧ F(EG₊, K). Using this: cof(ν̃) ≃ ẼG ∧ F(EG₊, K).
- Thus: enough to prove $\widetilde{E}G \wedge F(EG_+, K) = 0$ in \mathcal{GS}_G .

For finite G, we need $K^{tG} = 0$, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- For H < G we have $\operatorname{res}_{H}^{G}(K^{tG}) \simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \ominus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$
- As $S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$, we get $K^{tG} \simeq S^{\infty V} \wedge K^{tG} \simeq S^{\infty V} \wedge F(EG_+, K)$.
- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^{G}_{*}(K^{tG}) = 0$ and $\operatorname{res}^{G}_{H}(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b ↦ θ(ab)).

▶ If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For finite G, we need $K^{tG} = 0$, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \ominus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$
- As $S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$, we get $K^{tG} \simeq S^{\infty V} \wedge K^{tG} \simeq S^{\infty V} \wedge F(EG_+, K)$.
- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).$ (Thom class of -mV).
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^G_*(K^{tG}) = 0$ and $\operatorname{res}^G_H(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b ↦ θ(ab)).

▶ If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For finite G, we need $K^{tG} = 0$, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \oplus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$

► As
$$S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$$
, we get $K^{tG} \simeq S^{\infty V} \land K^{tG} \simeq S^{\infty V} \land F(EG_+, K)$.

- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^{G}_{*}(K^{tG}) = 0$ and $\operatorname{res}^{G}_{H}(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b ↦ θ(ab)).

▶ If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For finite G, we need $K^{tG} = 0$, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \oplus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$
- ► As $S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$, we get $K^{tG} \simeq S^{\infty V} \land K^{tG} \simeq S^{\infty V} \land F(EG_+, K)$.
- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).$ (Thom class of -mV).
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^G_*(K^{tG}) = 0$ and $\operatorname{res}^G_H(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b ↦ θ(ab)).

▶ If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For finite G, we need $K^{tG} = 0$, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \ominus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$

► As
$$S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$$
, we get $K^{tG} \simeq S^{\infty V} \land K^{tG} \simeq S^{\infty V} \land F(EG_+, K)$.

- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^G_*(K^{tG}) = 0$ and $\operatorname{res}^G_H(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b ↦ θ(ab)).

▶ If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For finite G, we need $K^{tG} = 0$, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \oplus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$

► As
$$S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$$
, we get $K^{tG} \simeq S^{\infty V} \land K^{tG} \simeq S^{\infty V} \land F(EG_+, K)$.

- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^G_*(K^{tG}) = 0$ and $\operatorname{res}^G_H(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b ↦ θ(ab)).

▶ If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For finite G, we need $K^{tG} = 0$, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \oplus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$

► As
$$S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$$
, we get $K^{tG} \simeq S^{\infty V} \land K^{tG} \simeq S^{\infty V} \land F(EG_+, K)$.

- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^G_*(K^{tG}) = 0$ and $\operatorname{res}^G_H(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- ▶ Conclusion: $K^0(BG) \simeq K_0(BG) \simeq \text{Hom}(K^0(BG), \mathbb{F}_p)$, so there is a perfect pairing $K^0(BG) \otimes K^0(BG) \to \mathbb{F}_p$ (of the form $a \otimes b \mapsto \theta(ab)$).

▶ If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For any G, the map (K⁰(BG) → K⁰(BG) ⊗ K⁰(BG) → K⁰(BG)) is the identity, and this characterises θ.

For finite G, we need $K^{tG} = 0$, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \oplus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$

• As
$$S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$$
, we get $K^{tG} \simeq S^{\infty V} \land K^{tG} \simeq S^{\infty V} \land F(EG_+, K)$.

- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^{G}_{*}(K^{tG}) = 0$ and $\operatorname{res}^{G}_{H}(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- ▶ Conclusion: $K^0(BG) \simeq K_0(BG) \simeq \text{Hom}(K^0(BG), \mathbb{F}_p)$, so there is a perfect pairing $K^0(BG) \otimes K^0(BG) \to \mathbb{F}_p$ (of the form $a \otimes b \mapsto \theta(ab)$).

▶ If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For finite G, we need
$$K^{tG} = 0$$
, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \ominus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$

• As
$$S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$$
, we get $K^{tG} \simeq S^{\infty V} \wedge K^{tG} \simeq S^{\infty V} \wedge F(EG_+, K)$.

- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^G_*(K^{tG}) = 0$ and $\operatorname{res}^G_H(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b → θ(ab)).

If n > 1 then $K^0(BC_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For finite G, we need
$$K^{tG} = 0$$
, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \ominus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$

• As
$$S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$$
, we get $K^{tG} \simeq S^{\infty V} \wedge K^{tG} \simeq S^{\infty V} \wedge F(EG_+, K)$.

- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^{G}_{*}(K^{tG}) = 0$ and $\operatorname{res}^{G}_{H}(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b → θ(ab)).
- If n > 1 then $\mathcal{K}^0(\mathcal{BC}_{p^k}) = \mathbb{F}_p[x]/x^{p^{nk}}$ and $\theta(f) = \text{coefficient of } x^{p^{nk}-1} \text{ in } f$.
- ▶ For any *G*, the map $(K^0(BG) \xrightarrow{\delta_l} K^0(BG) \otimes K^0(BG) \xrightarrow{1 \otimes \theta} K^0(BG))$ is the identity, and this characterises θ .

For finite G, we need
$$K^{tG} = 0$$
, where $K^{tG} = \widetilde{E}_G \wedge F(EG_+, K) = 0$.

- ▶ For H < G we have res^{*G*}_{*H*}(K^{tG}) $\simeq K^{tH}$; assume $K^{tH} = 0$ by induction.
- We also have $G/H_+ \wedge K^{tG} = \operatorname{ind}_H^G(\operatorname{res}_H^G(K^{tG})) = \operatorname{ind}_H^G(0) = 0.$
- ▶ Put $V = \mathbb{C}[G] \ominus \mathbb{C}$ so $V^G = 0$ so $S(\infty V)^G = \emptyset$ so $S(\infty V)_+ \in \operatorname{loc}\langle G/H_+ \mid H < G \rangle$ so $S(\infty V)_+ \land K^{tG} = 0$

As
$$S^{\infty V} = \operatorname{cof}(S(\infty V)_+ \to S^0)$$
, we get
 $K^{tG} \simeq S^{\infty V} \wedge K^{tG} \simeq S^{\infty V} \wedge F(EG_+, K)$.

- Now $\lambda^G(S^{mV} \wedge F(EG_+, K)) = \lambda^G F(S^{-mV} \wedge EG_+, K) = F(BG_+^{-mV}, K)$ and $\pi_*(\text{this}) = K^*(BG).(\text{Thom class of } -mV).$
- Taking m→∞ we get π^G_{*}(K^{tG}) = e(V)⁻¹K^{-*}(BG), but e(V) lies in the nilpotent ideal K⁰(BG) so inverting e(V) gives 0.
- As $\pi^{G}_{*}(K^{tG}) = 0$ and $\operatorname{res}^{G}_{H}(K^{tG}) = 0$ for H < G we have $K^{tG} = 0$.
- Conclusion: K⁰(BG) ≃ K₀(BG) ≃ Hom(K⁰(BG), F_p), so there is a perfect pairing K⁰(BG) ⊗ K⁰(BG) → F_p (of the form a ⊗ b → θ(ab)).

• If n > 1 then $\mathcal{K}^0(\mathcal{BC}_{p^k}) = \mathbb{F}_p[x]/x^{p^{n^k}}$ and $\theta(f) = \text{coefficient of } x^{p^{n^k}-1}$ in f.

For any G, the map (K⁰(BG) → K⁰(BG) ⊗ K⁰(BG) → K⁰(BG)) is the identity, and this characterises θ.