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The Spanier-Whitehead category

▶ A finite spectrum is an expression ΣnX , where X is a based finite simplicial
complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not
necessarily if n < 0.) We write F for the class of finite spectra.

▶ We define F(ΣnX ,ΣmY ) = lim
−→k

[Σn+kX ,Σm+kY ]. This has a natural

structure as a (finitely generated) Abelian group. There is a composition
rule making F an additive category.

▶ This is an approximation to the homotopy category of finite complexes,
and has a rich and interesting structure.

▶ Homology gives an isomorphism
Q⊗F(X ,Y ) → Vect∗(H∗(X ;Q),H∗(Y ;Q)).

▶ The category F has formal properties similar to those of Vect∗: there are
tensor products, duals and adjoints.

▶ It is very hard work to calculate F(X ,Y ), even in simple cases like
F(Sd , S0). This is known for d ≤ 100 or so, but not for general d .

▶ There is also a category S of all spectra. Any spectrum is a filtered colimit
of finite spectra.
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The Ravenel Conjectures

▶ In 1984, Ravenel made a set of conjectures about the category of spectra.

▶ With the exception of the Telescope Conjecture (TC), all the conjectures
were proved by Devinatz, Hopkins and Smith.
This led to a huge body of results in chromatic homotopy theory.

▶ It soon became the consensus that TC was probably false, and there was a
programme by Mahowald, Ravenel and Schick to disprove it, but they
could not complete the argument.

▶ A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.

▶ There are invariants K(p, n)∗(X ) of spectra X (for p prime and n ≥ 0)
called Morava K -theory. These play a central rôle in all the conjectures.

▶ Idea: focus on aspects of the category of spectra that are detected by
K(p, n) for a fixed (p, n).

▶ There are two subtly different versions of this: TC says they are the same.

▶ This is easy for n = 0, true for n = 1 and false for n > 1.

▶ Alternative formulation: TC says that if K(p, n)∗(X ) = 0, then X can be
written as a filtered colimit of finite spectra Xα with K(p, n)∗(Xα) = 0.
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Ordinary cohomology

▶ For any space X we have a cohomology ring H∗(X )

▶ For many spaces this can be described explicitly: for example, if
X = { two-dimensional subspaces of C4} then
H∗(X ) = Z[c1, c2]/(c31 − 2c1c2, c

2
1 c2 − c22 ).

▶ We can also consider the scheme XH = spec(H∗(X )),
so H∗(X ) is the ring of functions on XH .

▶ Now f : X → Y gives fH : XH → YH (depending only on the homotopy
class) and (X ⨿ Y )H = XH ⨿ YH and (X × Y )H ∼ XH × YH .

▶ How good an invariant is this?
▶ If fH : XH → YH is an isomorphism then f is a homotopy equivalence

(subject to mild conditions).
▶ The map [X ,Y ] → Schemes(XH ,YH) = Rings(H∗(Y ),H∗(X ))

is typically far from being injective or surjective.
▶ If XH ≃ YH , that is only weak evidence for X ≃ Y .

▶ How to find better invariants?
(a) Use Steenrod operations on H∗(X ;Fp)
(b) Use generalised cohomology theories.

▶ But (a) is really part of (b).
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Generalised cohomology

▶ A generalised cohomology theory is a contravariant, homotopy invariant
functor E∗ : Spaces → Rings∗ with properties similar to H∗, but E∗(1)
need not be Z. It takes work to provide interesting examples.

▶ We often work with even periodic theories where E 1(1) = 0 and E−2(1)
contains a unit. Here it is natural to focus on E 0(X ).

▶ Given an even periodic theory E we put XE = spf(E 0X ).

▶ There is an even periodic theory KU with KU∗(1) = Z[u, u−1] (where
|u| = −2) and KU0(X ) is the ring of virtual complex vector bundles on X .

▶ Put MP(n) = {(v ,V ) | v ∈ V ≤ C2n}∞ and ΣmX = (Rm × X )∞ and
MPk(X ) = lim

−→n
[Σ2n−kX ,MP(n)].

This gives an even periodic theory with MP∗(1) = Z[a1, a2, a3, . . . ].
This is called periodic complex cobordism.

▶ The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP∗(u) = 0
then uk = 0 for large k. This is the most powerful known theorem of the
type algebra ⇒ topology.

▶ Fix a prime p and an integer n > 0. There is then an even periodic theory
K(p, n) with K(p, n)∗(1) = Fp[u, u

−1]. This is called Morava K -theory.

▶ The K(p, n)’s together carry roughly the same information as MP.
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Formal groups — what are they good for?

▶ Every even periodic theory E gives a formal group PE .

▶ The functor E 7→ PE is not too far from being an equivalence.

▶ The most elementary examples of formal groups are the additive and
multiplicative formal groups; these correspond to HP and KU.
(Here HP i (X ) =

∏
j H

i+2j(X ).)

▶ Steenrod operations in HP0(X ;Fp) and Adams operations in KU0(X ) are
closely related to endomorphisms of the associated formal groups.

▶ The ring MP0(1) is naturally isomorphic to the Lazard ring, which plays a
central role in formal group theory.

▶ The Morava K -theories K(p, n) all have different formal groups.

▶ Together with HP0(X ;Fp) and HP0(X ;Q) this gives all formal groups
over fields up to Galois twisting.

▶ For many spaces X the scheme XE can be described naturally in terms of
PE . For example, if X = BU(n) = {n − dimensional subspaces of C∞}
then XE = (Pn

E )/Σn.
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Examples of formal groups

▶ For any ring R we define commutative groups as follows:
▶ Ga(R) = {a ∈ R | a is nilpotent } (under addition)
▶ Gm(R) = {u ∈ R | u − 1 is nilpotent } (under multiplication)
▶ Gr (R) = {A =

[
c −s
s c

]
∈ M2(R) | c2 + s2 = 1, c − 1 nilpotent }

▶ Ge(R) = {(u, v) ∈ Nil(R)2 | v − u3 + uv2 = 0} (an elliptic curve)

▶ These are all functorial in R.

▶ We can define natural bijections xi : Gi (R) → Nil(R) by xa(a) = a and
xm(u) = u − 1 and xr (A) = s/c and xe(u, v) = u.

▶ One can check that xi (a ∗ b) = Fi (xi (a), xi (b)) where Fa(s, t) = s + t and
Fm(s, t) = s + t + st and Fr (s, t) = (s + t)/(1− st) =

∑
i≥0 s

i t i (s + t).
(One cannot be so explicit for Fe .)

▶ The functors Gi are formal groups; the power series Fi are formal group
laws.

▶ Axioms: F (s, 0) = s, F (s, t) = F (t, s) and F (F (s, t), u) = F (s,F (t, u)).

▶ More general version: we have a ground ring k, and G(R) is only
functorial for k-algebras, and F (s, t) ∈ k[[s, t]].

▶ Example: for any a ∈ k we have an FGL F (s, t) = s + t + ast over k.
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Formal groups from even periodic theories

▶ P = (C[t] \ {0})/C× = {1− dim subspaces of C[t]} = CP∞.

▶ This is a commutative topological monoid (with inverses up to homotopy).

▶ So PE is a formal group scheme over 1E = spec(E 0(1)).

▶ We can calculate E∗(CPn) by induction on n using Mayer-Vietoris. It
follows that there exists x with E 0(P) = E 0(1)[[x ]]
(but there is no canonical choice of x).

▶ This gives E 0(P × P) = E 0(1)[[x1, x2]]. The multiplication map
µ : P × P → P has µ∗(x) = F (x1, x2) for some formal group law F .

▶ Now fix a prime p and let π : P → P be the p’th power map and put
B = (C[t] \ {0})/Cp.

▶ Suppose that p = 0 in E 0(1). Under some conditions that are often
satisfied, we have E 0(B) = E 0(1)[[x ]]/π∗(x) and this is free of finite rank
over E 0(1). If so, then the rank is always pn for some n > 0, called the
height.

▶ For E = K(p, n) we have π∗(x) = xpn and the height is n.

▶ Over an algebraically closed field of characteristic p, any two formal
groups of the same height are isomorphic.
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The Lazard ring

▶ Consider a formal power series F (s, t) =
∑

i,j bijs
i t j ∈ k[[s, t]].

When is this an FGL?

▶ For F (s, 0) = s we need bi0 = δi,1. For F (s, t) = F (t, s) we need bij = bji .

▶ Now
F (s, t) = s + t + b11st + b12(st

2 + s2t) + b22s
2t2 + b13(st

3 + s3t) + O(5)

▶ Using this we get
F (F (s, t), u)− F (s,F (t, u)) = (2b11b12 + 3b13 − 2b22)(s − u)stu + O(5)

▶ For an FGL we must have 2b11b12 + 3b13 − 2b22. In terms of the
parameters a1 = b11 and a2 = b12 and a3 = b22 − b13 we get
F (s, t) = s+t+a1st+a2st(s+t)+2(a3−a1a2)st(s

2+st+t2)+a3s
2t2+O(5).

▶ There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5.

▶ Lazard’s theorem: we can continue to define a4, a5, . . . so that F (s, t) can
be expressed in terms of the ai , and no further relations are required to
make the associativity axiom hold.

▶ Reformulation: over the Lazard ring L = Z[a1, a2, . . . ] there is a universal
formal group law Fu such that the resulting map Rings(L, k) → FGL(k) is
bijective for all k.
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Quillen’s theorem

▶ Recall MP0(X ) = lim
−→n

[Σ2nX ,MP(n)] (for X a finite complex). Both P

and MP(n) are defined using complex linear algebra so it is not hard to
give an explicit x with MP0(P) = MP0(1)[[x ]]. (We do not need to know
MP0(1) for this.)

▶ Using this we get a formal group law F over MP0(1).

▶ Recall that FGL(k) = Rings(L, k) so we get a ring map L → MP0(1).

▶ Quillen’s theorem: this is an isomorphism (and MP1(1) = 0).
▶ Outline of proof:

▶ Assemble the spaces MP(n) into a single “spectrum” called MP.
(This is the start of stable homotopy theory.)

▶ There are good methods for calcuating the homology of spaces defined
using complex linear algebra, and one can use them to prove that

H∗(MP) = Z[b0, b1, b2, . . . ][b−1
0 ].

▶ A simple topological construction gives a map MP0(1) → H∗(MP). We can
push forward the FGL over MP0(1) to get an FGL over H∗(MP).

▶ In fact this is F (s, t) = f −1(f (s) + f (t)), where f (t) =
∑

i bi t
i+1. So f

gives an isomorphism from F to the additive law Fa(s, t) = s + t.
▶ The remaining steps are harder to summarise, but they involve the action of

the group Aut(Fa), its relationship with Steenrod operations, and the
Adams spectral sequence.
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The chromatic filtration

▶ Fact: if K(p, n)∗(X ) = 0, then K(p,m)∗(X ) = 0 for all m < n
(including K(p, 0)∗(X ) = H∗(X ;Q)).

▶ Also, if K(p, n)∗(X ) = 0 for all p and n then X = 0.

▶ Say X has type n at p if K(p, n)∗(X ) ̸= 0 and K(p,m)∗(X ) = 0 for
m < n. Let F(p, n) be the category of X of type at least n at p.

▶ Nilpotence theorem: if u : ΣdX → X and K(p, n)∗(u) = 0 for all (p, n)
then uk = 0: ΣdkX → X for k ≫ 0.

▶ Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map
v : ΣdX → X (for some d > 0) giving an isomorphism on K(p, n)∗(X )
(and having a number of other properties, making it “almost unique”).

▶ Thick subcategory theorem: if C is a subcategory of F satisfying some
natural conditions, then it must be one of the categories F(p, n).

▶ Chromatic convergence theorem: πS
∗(X ) = F(S∗,X ) can be built up in

layers. The difference between layers n and n − 1 is in some sense
controlled by K(p, n), and consists of families that are periodic of period
2(pn − 1)pk for large k.
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The Telescope Conjecture again

▶ Fix (p, n) and put C = {X | K(p, n)∗(X ) = 0}.
▶ Say X ∈ Cf ⊆ C if X is a filtered colimit of finite spectra in C.
▶ Put L̂ = {Y | [C,Y ] = 0} ≃ S/C and L̂f = {Y | [Cf ,Y ] = 0} ≃ S/Cf .

There are localisation functors L̂ : S → L̂ and L̂f : S → L̂f .

▶ TC is equivalent to L̂ ≃ L̂f ; so we need to find X with L̂X ̸≃ L̂fX .

▶ Mahowald, Ravenel and Schick used a particular X which seemed very
promising; but recent progress uses a different type of example.

▶ For a sufficiently nice ring spectrum R, we have an algebraic K -theory
spectrum K(R), closely related to the nerve of the category of R-modules.

▶ Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then
K(R) should have height n + 1. Various formulations are now proved.

▶ There are spectra called BP⟨n⟩ with π∗(BP⟨n⟩) = Z(p)[v1, . . . , vn] where
|vk | = 2pk − 2. These satisfy redshift.

▶ TC turns out to be true for K(BP⟨n − 1⟩).
▶ However, there is an action of Z on BP⟨n − 1⟩ and we can define

B(n − 1) = BP⟨n − 1⟩hZ. The new counterexample is K(B(n − 1)).

▶ The proof involves higher cyclotomic Galois extensions of ring spectra.
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