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complex, and n € Z. (This can be interpreted as a space if n > 0, but not
necessarily if n < 0.) We write F for the class of finite spectra.

> We define F(X"X,Z"Y) = lim [E""* X, X" Y]. This has a natural
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structure as a (finitely generated) Abelian group. There is a composition
rule making F an additive category.

» This is an approximation to the homotopy category of finite complexes,
and has a rich and interesting structure.

» Homology gives an isomorphism
Q® F(X,Y) — Vect.(H.(X; Q), H.(Y;Q)).

» The category F has formal properties similar to those of Vect,: there are
tensor products, duals and adjoints.

> It is very hard work to calculate F(X, Y), even in simple cases like
F(S9,5°%). This is known for d < 100 or so, but not for general d.

» There is also a category S of all spectra. Any spectrum is a filtered colimit
of finite spectra.
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The Ravenel Conjectures
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In 1984, Ravenel made a set of conjectures about the category of spectra.

With the exception of the Telescope Conjecture (TC), all the conjectures
were proved by Devinatz, Hopkins and Smith.
This led to a huge body of results in chromatic homotopy theory.

It soon became the consensus that TC was probably false, and there was a
programme by Mahowald, Ravenel and Schick to disprove it, but they
could not complete the argument.

A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.

There are invariants K(p, n).(X) of spectra X (for p prime and n > 0)
called Morava K-theory. These play a central rdle in all the conjectures.

Idea: focus on aspects of the category of spectra that are detected by
K(p, n) for a fixed (p, n).

There are two subtly different versions of this: TC says they are the same.
This is easy for n =0, true for n = 1 and false for n > 1.

Alternative formulation: TC says that if K(p, n).(X) = 0, then X can be
written as a filtered colimit of finite spectra X, with K(p, n).(X.) = 0.
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» For many spaces this can be described explicitly: for example, if
X = { two-dimensional subspaces of C*} then
H*(X) = Z[a, ]/(¢ — 2ac, o — ).

» We can also consider the scheme Xy = spec(H* (X)),
so H*(X) is the ring of functions on X4.

» Now f: X — Y gives fy: Xy — Yu (depending only on the homotopy
class) and (X LI Y)y = Xy I Yy and (X X Y)u ~ Xu X Yh.
» How good an invariant is this?
» If fy: Xy — Yy is an isomorphism then f is a homotopy equivalence
(subject to mild conditions).
» The map [X, Y] — Schemes(Xy, Yy) = Rings(H*(Y), H*(X))
is typically far from being injective or surjective.
> If Xy ~ Yy, that is only weak evidence for X ~ Y.
» How to find better invariants?
(a) Use Steenrod operations on H*(X;F;)
(b) Use generalised cohomology theories.

> But (a) is really part of (b).
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» A generalised cohomology theory is a contravariant, homotopy invariant
functor E*: Spaces — Rings™ with properties similar to H*, but E*(1)
need not be Z. It takes work to provide interesting examples.

> We often work with even periodic theories where E*(1) = 0 and E~3(1)
contains a unit. Here it is natural to focus on E°(X).

> Given an even periodic theory E we put Xg = spf(E°X).

> There is an even periodic theory KU with KU*(1) = Z[u, u™'] (where
|u| = —2) and KU°(X) is the ring of virtual complex vector bundles on X.

> Put MP(n) = {(v,V)|vEV <C*}x and "X = (R™ x X)e and
MP*(X) = lim [Z2"~%X, MP(n)].

—n
This gives an even periodic theory with MP*(1) = Z[a1, a2, as, ... ].
This is called periodic complex cobordism.
» The Nilpotence (pre) Theorem of Hopkins-Devinatz-Smith: if MP*(u) =0

then u* = 0 for large k. This is the most powerful known theorem of the
type algebra = topology.

» Fix a prime p and an integer n > 0. There is then an even periodic theory
K(p, n) with K(p, n)*(1) = Fy[u, u™']. This is called Morava K-theory.

» The K(p, n)'s together carry roughly the same information as MP.
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The functor E — Pk is not too far from being an equivalence.

» The most elementary examples of formal groups are the additive and
multiplicative formal groups; these correspond to HP and KU.
(Here HP'(X) = Hj H™(X).)

> Steenrod operations in HP°(X;TF,) and Adams operations in KU°(X) are
closely related to endomorphisms of the associated formal groups.

» The ring MP°(1) is naturally isomorphic to the Lazard ring, which plays a
central role in formal group theory.

» The Morava K-theories K(p, n) all have different formal groups.

> Together with HP°(X;F,) and HP°(X; Q) this gives all formal groups
over fields up to Galois twisting.

» For many spaces X the scheme Xg can be described naturally in terms of
Pe. For example, if X = BU(n) = {n — dimensional subspaces of C*°}
then Xg = (P£)/%,.
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» For any ring R we define commutative groups as follows:
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» The functors G; are formal groups; the power series F; are formal group
laws.

> Axioms: F(s,0) =s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s, F(t,u)).

> More general version: we have a ground ring k, and G(R) is only
functorial for k-algebras, and F(s,t) € k[s, t].

» Example: for any a € k we have an FGL F(s, t) = s+ t + ast over k.
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This is a commutative topological monoid (with inverses up to homotopy).

So Pg is a formal group scheme over 1g = spec(E°(1)).
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We can calculate E*(CP") by induction on n using Mayer-Vietoris. It
follows that there exists x with E°(P) = E°(1)[x]
(but there is no canonical choice of x).
> This gives E°(P x P) = E°(1)[x1, x2]. The multiplication map

u: P X P — P has u*(x) = F(x1, x2) for some formal group law F.
» Now fix a prime p and let 7: P — P be the p'th power map and put

B = (C[]\ {0})/Cp.

» Suppose that p =0 in Eo(l). Under some conditions that are often
satisfied, we have E°(B) = E°(1)[x]/7*(x) and this is free of finite rank
over E°(1). If so, then the rank is always p" for some n > 0, called the
height.

> For E = K(p, n) we have 7*(x) = x”" and the height is n.

» Over an algebraically closed field of characteristic p, any two formal
groups of the same height are isomorphic.
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> Consider a formal power series F(s,t) =3, bis'tl € k[s, t].
When is this an FGL?
» For F(s,0) = s we need bjg = ;1. For F(s,t) = F(t,s) we need b; = bji.
> Now
F(S, t) =s-+t+ byist+ b12($t2 —+ Szt) + b2252t2 + b13(5t3 + 531.') + 0(5)
» Using this we get
F(F(s,t),u) — F(s, F(t,u)) = (2bu1b1> + 3b13 — 2bx)(s — u)stu + O(5)
» For an FGL we must have 2bi1b1> + 3b13 — 2b2. In terms of the
parameters a; = b1 and a; = b1z and as = bxy — b1z we get
F(s,t) = s+tt+aistt+arst(s+t)+2(as—arar)st(s*+st+t°)+ass?t*+0(5).
» There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5.
» Lazard's theorem: we can continue to define a4, as,... so that F(s,t) can

be expressed in terms of the a;, and no further relations are required to
make the associativity axiom hold.

» Reformulation: over the Lazard ring L = Z[a1, az, . . .] there is a universal
formal group law F, such that the resulting map Rings(L, k) — FGL(k) is
bijective for all k.
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» Recall MP°(X) = lim [X*"X, MP(n)] (for X a finite complex). Both P
and MP(n) are defﬁéﬁi using complex linear algebra so it is not hard to
give an explicit x with MP°(P) = MP°(1)[x]. (We do not need to know
MP°(1) for this.)

Using this we get a formal group law F over MP°(1).

Recall that FGL(k) = Rings(L, k) so we get a ring map L — MP°(1).
Quillen’s theorem: this is an isomorphism (and MP(1) = 0).

Outline of proof:

» Assemble the spaces MP(n) into a single “spectrum” called MP.
(This is the start of stable homotopy theory.)

» There are good methods for calcuating the homology of spaces defined
using complex linear algebra, and one can use them to prove that

H.(MP) = Z[by, by, by, ... |[b5 ]

vvyyvyy

> A simple topological construction gives a map MP°(1) — H.(MP). We can
push forward the FGL over MP9(1) to get an FGL over H.(MP).

> In fact this is F(s,t) = f~1(f(s) + f(t)), where f(t) =3, bjt'™L. So f
gives an isomorphism from F to the additive law F,(s,t) = s+ t.

» The remaining steps are harder to summarise, but they involve the action of
the group Aut(F.,), its relationship with Steenrod operations, and the
Adams spectral sequence.
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>

Fact: if K(p, n)«(X) =0, then K(p, m).(X) =0 for all m < n
(including K(p,0).(X) = H.(X;Q)).

Also, if K(p,n).«(X) =0 for all p and n then X = 0.

Say X has type n at p if K(p, n)«(X) # 0 and K(p, m)..(X) = 0 for
m < n. Let F(p, n) be the category of X of type at least n at p.

Nilpotence theorem: if u: /X — X and K(p, n).(u) = 0 for all (p, n)
then u* = 0: T%X — X for k> 0.

Periodicity theorem: if X € F(p, n) with n > 0 then there is a map
v: X — X (for some d > 0) giving an isomorphism on K(p, n).(X)
(and having a number of other properties, making it “almost unique").

Thick subcategory theorem: if C is a subcategory of F satisfying some
natural conditions, then it must be one of the categories F(p, n).

Chromatic convergence theorem: 73 (X) = F(S*, X) can be built up in
layers. The difference between layers n and n — 1 is in some sense
controlled by K(p, n), and consists of families that are periodic of period
2(p" — 1)p* for large k.
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TC is equivalent to L~ L*; so we need to find X with LX % I'X.

Mahowald, Ravenel and Schick used a particular X which seemed very
promising; but recent progress uses a different type of example.

For a sufficiently nice ring spectrum R, we have an algebraic K-theory
spectrum K(R), closely related to the nerve of the category of R-modules.

Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then
K(R) should have height n+ 1. Various formulations are now proved.

There are spectra called BP(n) with m.(BP(n)) = Zy)[v1, ..., va] where
[vk| = 2p* — 2. These satisfy redshift.

TC turns out to be true for K(BP({n — 1)).

However, there is an action of Z on BP{n — 1) and we can define
B(n—1) = BP{n —1)"2. The new counterexample is K(B(n — 1)).

The proof involves higher cyclotomic Galois extensions of ring spectra.



