Introduction to chromatic homotopy

Neil Strickland

October 23, 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- A finite spectrum is an expression ΣⁿX, where X is a based finite simplicial complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not necessarily if n < 0.) We write F for the class of finite spectra.</p>
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow \\ m \neq k}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_*(H_*(X; \mathbb{Q}), H_*(Y; \mathbb{Q})).$
- The category *F* has formal properties similar to those of Vect_{*}: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}(S^d, S^0)$. This is known for $d \leq 100$ or so, but not for general d.
- There is also a category S of all spectra. Any spectrum is a filtered colimit of finite spectra.

- A finite spectrum is an expression ΣⁿX, where X is a based finite simplicial complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not necessarily if n < 0.) We write F for the class of finite spectra.</p>
- ▶ We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow k}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_*(H_*(X; \mathbb{Q}), H_*(Y; \mathbb{Q})).$
- The category *F* has formal properties similar to those of Vect_{*}: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}(S^d, S^0)$. This is known for $d \leq 100$ or so, but not for general d.
- There is also a category S of all spectra. Any spectrum is a filtered colimit of finite spectra.

- A finite spectrum is an expression ΣⁿX, where X is a based finite simplicial complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not necessarily if n < 0.) We write F for the class of finite spectra.</p>
- ► We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow k \\ m \to k}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_*(H_*(X; \mathbb{Q}), H_*(Y; \mathbb{Q})).$
- The category *F* has formal properties similar to those of Vect_{*}: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}(S^d, S^0)$. This is known for $d \leq 100$ or so, but not for general d.
- There is also a category S of all spectra. Any spectrum is a filtered colimit of finite spectra.

- A finite spectrum is an expression ΣⁿX, where X is a based finite simplicial complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not necessarily if n < 0.) We write F for the class of finite spectra.</p>
- ► We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow k}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_*(H_*(X; \mathbb{Q}), H_*(Y; \mathbb{Q})).$
- The category *F* has formal properties similar to those of Vect_{*}: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}(S^d, S^0)$. This is known for $d \leq 100$ or so, but not for general d.
- There is also a category S of all spectra. Any spectrum is a filtered colimit of finite spectra.

- A finite spectrum is an expression ΣⁿX, where X is a based finite simplicial complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not necessarily if n < 0.) We write F for the class of finite spectra.</p>
- ► We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow \\ m \neq k}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ► Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_*(H_*(X; \mathbb{Q}), H_*(Y; \mathbb{Q})).$
- The category *F* has formal properties similar to those of Vect_{*}: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}(S^d, S^0)$. This is known for $d \leq 100$ or so, but not for general d.
- There is also a category S of all spectra. Any spectrum is a filtered colimit of finite spectra.

- A finite spectrum is an expression ΣⁿX, where X is a based finite simplicial complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not necessarily if n < 0.) We write F for the class of finite spectra.</p>
- ► We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow \\ m \neq k}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \text{Vect}_*(H_*(X; \mathbb{Q}), H_*(Y; \mathbb{Q})).$
- The category *F* has formal properties similar to those of Vect_{*}: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}(S^d, S^0)$. This is known for $d \leq 100$ or so, but not for general d.
- There is also a category S of all spectra. Any spectrum is a filtered colimit of finite spectra.

- A finite spectrum is an expression ΣⁿX, where X is a based finite simplicial complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not necessarily if n < 0.) We write F for the class of finite spectra.</p>
- ► We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow \\ m \neq k}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \text{Vect}_*(H_*(X; \mathbb{Q}), H_*(Y; \mathbb{Q})).$
- The category *F* has formal properties similar to those of Vect_{*}: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}(S^d, S^0)$. This is known for $d \leq 100$ or so, but not for general d.
- There is also a category S of all spectra. Any spectrum is a filtered colimit of finite spectra.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- A finite spectrum is an expression ΣⁿX, where X is a based finite simplicial complex, and n ∈ Z. (This can be interpreted as a space if n ≥ 0, but not necessarily if n < 0.) We write F for the class of finite spectra.</p>
- ► We define $\mathcal{F}(\Sigma^n X, \Sigma^m Y) = \lim_{\substack{\longrightarrow k}} [\Sigma^{n+k} X, \Sigma^{m+k} Y]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- ▶ Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \text{Vect}_*(H_*(X; \mathbb{Q}), H_*(Y; \mathbb{Q})).$
- The category *F* has formal properties similar to those of Vect_{*}: there are tensor products, duals and adjoints.
- ▶ It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}(S^d, S^0)$. This is known for $d \leq 100$ or so, but not for general d.
- There is also a category S of all spectra. Any spectrum is a filtered colimit of finite spectra.

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called *Morava K-theory*. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called *Morava K-theory*. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called *Morava K-theory*. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

・ロト・西ト・山田・山田・山口・

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called *Morava K-theory*. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

・ロト・西ト・山田・山田・山口・

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.

A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.

- There are invariants K(p, n)_∗(X) of spectra X (for p prime and n ≥ 0) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

・ロト・四ト・モート ヨー うへの

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- ► Alternative formulation: TC says that if K(p, n)_{*}(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_α with K(p, n)_{*}(X_α) = 0.

- In 1984, Ravenel made a set of conjectures about the category of spectra.
- With the exception of the Telescope Conjecture (TC), all the conjectures were proved by Devinatz, Hopkins and Smith. This led to a huge body of results in chromatic homotopy theory.
- It soon became the consensus that TC was probably false, and there was a programme by Mahowald, Ravenel and Schick to disprove it, but they could not complete the argument.
- A disproof was announced by Burklund, Hahn, Levy and Schlank in 2023.
- ▶ There are invariants $K(p, n)_*(X)$ of spectra X (for p prime and $n \ge 0$) called Morava K-theory. These play a central rôle in all the conjectures.
- Idea: focus on aspects of the category of spectra that are detected by K(p, n) for a fixed (p, n).
- There are two subtly different versions of this: TC says they are the same.
- This is easy for n = 0, true for n = 1 and false for n > 1.
- Alternative formulation: TC says that if K(p, n)*(X) = 0, then X can be written as a filtered colimit of *finite* spectra X_a with K(p, n)*(X_a) = 0.

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X II Y)_H = X_H II Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- The map $[X, Y] \rightarrow$ Schemes $(X_H, Y_H) =$ Rings $(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

For any space X we have a cohomology ring $H^*(X)$

For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 - 2c_1c_2, c_1^2c_2 - c_2^2).$

- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X II Y)_H = X_H II Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

- ▶ The map $[X, Y] \rightarrow$ Schemes $(X_H, Y_H) =$ Rings $(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X II Y)_H = X_H II Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

- ▶ The map $[X, Y] \rightarrow$ Schemes $(X_H, Y_H) =$ Rings $(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X II Y)_H = X_H II Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

- ▶ The map $[X, Y] \rightarrow$ Schemes $(X_H, Y_H) =$ Rings $(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X II Y)_H = X_H II Y_H and (X × Y)_H ~ X_H × Y_H.

How good an invariant is this?

If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

- ▶ The map $[X, Y] \rightarrow$ Schemes $(X_H, Y_H) =$ Rings $(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X ∐ Y)_H = X_H ∐ Y_H and (X × Y)_H ~ X_H × Y_H.

How good an invariant is this?

If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

- ▶ The map $[X, Y] \rightarrow$ Schemes $(X_H, Y_H) =$ Rings $(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X ∐ Y)_H = X_H ∐ Y_H and (X × Y)_H ~ X_H × Y_H.

How good an invariant is this?

If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ▶ The map $[X, Y] \rightarrow$ Schemes $(X_H, Y_H) =$ Rings $(H^*(Y), H^*(X))$ is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X ∐ Y)_H = X_H ∐ Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X)) is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X ∐ Y)_H = X_H ∐ Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X)) is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X ∐ Y)_H = X_H ∐ Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X)) is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.

How to find better invariants?

- (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
- (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X ∐ Y)_H = X_H ∐ Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X)) is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X ∐ Y)_H = X_H ∐ Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X)) is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.

But (a) is really part of (b).

- For any space X we have a cohomology ring $H^*(X)$
- For many spaces this can be described explicitly: for example, if $X = \{ \text{ two-dimensional subspaces of } \mathbb{C}^4 \}$ then $H^*(X) = \mathbb{Z}[c_1, c_2]/(c_1^3 2c_1c_2, c_1^2c_2 c_2^2).$
- We can also consider the scheme X_H = spec(H^{*}(X)), so H^{*}(X) is the ring of functions on X_H.
- Now f: X → Y gives f_H: X_H → Y_H (depending only on the homotopy class) and (X ∐ Y)_H = X_H ∐ Y_H and (X × Y)_H ~ X_H × Y_H.
- How good an invariant is this?
 - If f_H: X_H → Y_H is an isomorphism then f is a homotopy equivalence (subject to mild conditions).

- The map [X, Y] → Schemes(X_H, Y_H) = Rings(H*(Y), H*(X)) is typically far from being injective or surjective.
- If $X_H \simeq Y_H$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
 - (a) Use Steenrod operations on $H^*(X; \mathbb{F}_p)$
 - (b) Use generalised cohomology theories.
- But (a) is really part of (b).

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with even periodic theories where E¹(1) = 0 and E⁻²(1) contains a unit. Here it is natural to focus on E⁰(X).
- Given an even periodic theory E we put $X_E = \operatorname{spf}(E^0 X)$.
- There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ▶ Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \varinjlim [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with *even periodic theories* where $E^1(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^0(X)$.
- Given an even periodic theory *E* we put $X_E = spf(E^0X)$.
- There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{k \to \infty} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with *even periodic theories* where $E^{1}(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory *E* we put $X_E = spf(E^0X)$.
- There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ▶ Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{k \to \infty} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with *even periodic theories* where $E^{1}(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_E = spf(E^0X)$.
- There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ▶ Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{k \to \infty} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.
- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with *even periodic theories* where $E^{1}(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_E = spf(E^0X)$.
- There is an even periodic theory KU with KU^{*}(1) = ℤ[u, u⁻¹] (where |u| = −2) and KU⁰(X) is the ring of virtual complex vector bundles on X.
- ▶ Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{m \to n} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.

The K(p, n)'s together carry roughly the same information as MP.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with *even periodic theories* where $E^{1}(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_E = spf(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ▶ Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{m \to \infty} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The K(p, n)'s together carry roughly the same information as MP.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with *even periodic theories* where $E^{1}(1) = 0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_E = spf(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ► Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \varinjlim_{k \to \infty} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with $K(p, n)^*(1) = \mathbb{F}_p[u, u^{-1}]$. This is called *Morava K-theory*.

The K(p, n)'s together carry roughly the same information as MP.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with even periodic theories where E¹(1) = 0 and E⁻²(1) contains a unit. Here it is natural to focus on E⁰(X).
- Given an even periodic theory E we put $X_E = spf(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ► Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{\to n} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with K(p, n)*(1) = 𝔽_p[u, u⁻¹]. This is called Morava K-theory.
- The K(p, n)'s together carry roughly the same information as MP.

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*}: Spaces → Rings^{*} with properties similar to H^{*}, but E^{*}(1) need not be Z. It takes work to provide interesting examples.
- We often work with even periodic theories where E¹(1) = 0 and E⁻²(1) contains a unit. Here it is natural to focus on E⁰(X).
- Given an even periodic theory E we put $X_E = spf(E^0X)$.
- ▶ There is an even periodic theory KU with $KU^*(1) = \mathbb{Z}[u, u^{-1}]$ (where |u| = -2) and $KU^0(X)$ is the ring of virtual complex vector bundles on X.
- ► Put $MP(n) = \{(v, V) \mid v \in V \leq \mathbb{C}^{2n}\}_{\infty}$ and $\Sigma^m X = (\mathbb{R}^m \times X)_{\infty}$ and $MP^k(X) = \lim_{\to n} [\Sigma^{2n-k}X, MP(n)].$

This gives an even periodic theory with $MP^*(1) = \mathbb{Z}[a_1, a_2, a_3, ...]$. This is called *periodic complex cobordism*.

- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if MP*(u) = 0 then u^k = 0 for large k. This is the most powerful known theorem of the type algebra ⇒ topology.
- Fix a prime p and an integer n > 0. There is then an even periodic theory K(p, n) with K(p, n)*(1) = 𝔽_p[u, u⁻¹]. This is called Morava K-theory.
- The K(p, n)'s together carry roughly the same information as MP.

- Every even periodic theory E gives a formal group P_E .
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; F_p) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- ► Together with HP⁰(X; F_p) and HP⁰(X; Q) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n) / \Sigma_n$.

Every even periodic theory E gives a formal group P_E.

- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; F_p) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- ► Together with HP⁰(X; F_p) and HP⁰(X; Q) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n) / \Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; F_p) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- Together with HP⁰(X; 𝔽_p) and HP⁰(X; ℚ) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n) / \Sigma_n$.

- Every even periodic theory E gives a formal group P_E.
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; 𝔽_P) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- ► Together with HP⁰(X; F_p) and HP⁰(X; Q) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n) / \Sigma_n$.

- Every even periodic theory E gives a formal group P_E.
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; F_p) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- Together with HP⁰(X; 𝔽_p) and HP⁰(X; ℚ) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n) / \Sigma_n$.

- Every even periodic theory E gives a formal group P_E.
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in $HP^0(X; \mathbb{F}_p)$ and Adams operations in $KU^0(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- Together with HP⁰(X; 𝔽_p) and HP⁰(X; ℚ) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n) / \Sigma_n$.

- Every even periodic theory E gives a formal group P_E.
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; F_p) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- Together with HP⁰(X; 𝔽_p) and HP⁰(X; ℚ) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n)/\Sigma_n$.

- Every even periodic theory E gives a formal group P_E .
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; F_p) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- ► Together with HP⁰(X; 𝔽_p) and HP⁰(X; ℚ) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E . For example, if $X = BU(n) = \{n \text{dimensional subspaces of } \mathbb{C}^{\infty}\}$ then $X_E = (P_E^n) / \Sigma_n$.

- Every even periodic theory E gives a formal group P_E.
- The functor $E \mapsto P_E$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here HPⁱ(X) = ∏_i H^{i+2j}(X).)
- Steenrod operations in HP⁰(X; F_p) and Adams operations in KU⁰(X) are closely related to endomorphisms of the associated formal groups.
- The ring MP⁰(1) is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories K(p, n) all have different formal groups.
- ► Together with HP⁰(X; 𝔽_p) and HP⁰(X; ℚ) this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_E can be described naturally in terms of P_E. For example, if X = BU(n) = {n − dimensional subspaces of C[∞]} then X_E = (Pⁿ_E)/Σ_n.

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{ u \in R \mid u-1 \text{ is nilpotent } \}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 \mid v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- We can define natural bijections $x_i : G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_e .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- We can define natural bijections $x_i: G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_{e} .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- For any ring R we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
 - $G_m(R) = \{ u \in R \mid u-1 \text{ is nilpotent } \}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_{e} .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- For any ring *R* we define commutative groups as follows:
 - $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
 - $G_m(R) = \{ u \in R \mid u 1 \text{ is nilpotent } \}$ (under multiplication)
 - $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
 - $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_{e} .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$

•
$$G_e(R) = \{(u, v) \in \operatorname{Nil}(R)^2 \mid v - u^3 + uv^2 = 0\}$$
 (an elliptic curve)

These are all functorial in R.

- We can define natural bijections $x_i : G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_{e} .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{ u \in R \mid u 1 \text{ is nilpotent } \}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$

•
$$G_e(R) = \{(u, v) \in Nil(R)^2 \mid v - u^3 + uv^2 = 0\}$$
 (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_{e} .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s, t) \in k[\![s, t]\!]$.
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_{e} .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- We can define natural bijections $x_i: G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_{e} .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s, t) \in k[\![s, t]\!]$.
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_e .)

The functors G_i are formal groups; the power series F_i are formal group laws.

- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and $F(s, t) \in k[\![s, t]\!]$.
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_e .)

The functors G_i are formal groups; the power series F_i are formal group laws.

- Axioms: F(s, 0) = s, F(s, t) = F(t, s) and F(F(s, t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- We can define natural bijections $x_i : G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_e .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

(ロ)、

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{u \in R \mid u-1 \text{ is nilpotent }\}$ (under multiplication)
- $G_r(R) = \{A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(R) \mid c^2 + s^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i(s + t)$. (One cannot be so explicit for F_e .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t),u) = F(s,F(t,u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].

Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

For any ring *R* we define commutative groups as follows:

- $G_a(R) = \{a \in R \mid a \text{ is nilpotent }\}$ (under addition)
- $G_m(R) = \{ u \in R \mid u-1 \text{ is nilpotent } \}$ (under multiplication)
- $G_r(\dot{R}) = \{\dot{A} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \in M_2(\dot{R}) \mid c^2 + \dot{s}^2 = 1, \ c 1 \text{ nilpotent } \}$
- $G_e(R) = \{(u, v) \in Nil(R)^2 | v u^3 + uv^2 = 0\}$ (an elliptic curve)

These are all functorial in R.

- ▶ We can define natural bijections x_i : $G_i(R) \to Nil(R)$ by $x_a(a) = a$ and $x_m(u) = u 1$ and $x_r(A) = s/c$ and $x_e(u, v) = u$.
- One can check that $x_i(a * b) = F_i(x_i(a), x_i(b))$ where $F_a(s, t) = s + t$ and $F_m(s, t) = s + t + st$ and $F_r(s, t) = (s + t)/(1 st) = \sum_{i \ge 0} s^i t^i (s + t)$. (One cannot be so explicit for F_e .)
- The functors G_i are formal groups; the power series F_i are formal group laws.
- Axioms: F(s,0) = s, F(s,t) = F(t,s) and F(F(s,t), u) = F(s, F(t, u)).
- More general version: we have a ground ring k, and G(R) is only functorial for k-algebras, and F(s, t) ∈ k[[s, t]].
- Example: for any $a \in k$ we have an FGL F(s, t) = s + t + ast over k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1) [[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π*(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.

- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 - \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$

- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1) [[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π*(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.

- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 - \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$

This is a commutative topological monoid (with inverses up to homotopy).

- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1) [[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π*(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.

- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1) [[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π*(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.

- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- ▶ This gives $E^0(P \times P) = E^0(1)[[x_1, x_2]]$. The multiplication map $\mu : P \times P \to P$ has $\mu^*(x) = F(x_1, x_2)$ for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π*(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.

- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1)[[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π*(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.
- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1) [[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π*(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.
- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

(ロ)、

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1) [[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π^{*}(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.

- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1) [[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π^{*}(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.

- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.
Formal groups from even periodic theories

- ▶ $P = (\mathbb{C}[t] \setminus \{0\})/\mathbb{C}^{\times} = \{1 \text{dim subspaces of } \mathbb{C}[t]\} = \mathbb{C}P^{\infty}.$
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_E is a formal group scheme over $1_E = \operatorname{spec}(E^0(1))$.
- We can calculate E^{*}(ℂPⁿ) by induction on n using Mayer-Vietoris. It follows that there exists x with E⁰(P) = E⁰(1) [[x]] (but there is no canonical choice of x).
- This gives E⁰(P × P) = E⁰(1) [[x₁, x₂]]. The multiplication map µ: P × P → P has µ^{*}(x) = F(x₁, x₂) for some formal group law F.
- Now fix a prime p and let π: P → P be the p'th power map and put B = (C[t] \ {0})/C_p.
- Suppose that p = 0 in E⁰(1). Under some conditions that are often satisfied, we have E⁰(B) = E⁰(1) [[x]]/π^{*}(x) and this is free of finite rank over E⁰(1). If so, then the rank is always pⁿ for some n > 0, called the *height*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- For E = K(p, n) we have $\pi^*(x) = x^{p^n}$ and the height is n.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

The Lazard ring

- Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^i t^j \in k[\![s, t]\!]$. When is this an FGL?
- For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \rightarrow FGL(k)$ is bijective for all k.

- Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^i t^j \in k[[s, t]]$. When is this an FGL?
- For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now

 $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$

- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \rightarrow FGL(k)$ is bijective for all k.

• Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^it^j \in k[[s, t]]$. When is this an FGL?

For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.

- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring L = Z[a₁, a₂,...] there is a universal formal group law F_u such that the resulting map Rings(L, k) → FGL(k) is bijective for all k.

- Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^it^j \in k[[s, t]]$. When is this an FGL?
- For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring L = Z[a₁, a₂,...] there is a universal formal group law F_u such that the resulting map Rings(L, k) → FGL(k) is bijective for all k.

- Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^it^j \in k[[s, t]]$. When is this an FGL?
- For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring L = Z[a₁, a₂,...] there is a universal formal group law F_u such that the resulting map Rings(L, k) → FGL(k) is bijective for all k.

- Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^it^j \in k[[s, t]]$. When is this an FGL?
- For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- ► For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \rightarrow FGL(k)$ is bijective for all k.

- Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^it^j \in k[[s, t]]$. When is this an FGL?
- For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \rightarrow FGL(k)$ is bijective for all k.

- Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^it^j \in k[[s, t]]$. When is this an FGL?
- For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring $L = \mathbb{Z}[a_1, a_2, ...]$ there is a universal formal group law F_u such that the resulting map Rings $(L, k) \rightarrow FGL(k)$ is bijective for all k.

- Consider a formal power series $F(s, t) = \sum_{i,j} b_{ij}s^it^j \in k[[s, t]]$. When is this an FGL?
- For F(s,0) = s we need $b_{i0} = \delta_{i,1}$. For F(s,t) = F(t,s) we need $b_{ij} = b_{ji}$.
- Now $F(s,t) = s + t + b_{11}st + b_{12}(st^2 + s^2t) + b_{22}s^2t^2 + b_{13}(st^3 + s^3t) + O(5)$
- Using this we get $F(F(s,t),u) - F(s,F(t,u)) = (2b_{11}b_{12} + 3b_{13} - 2b_{22})(s-u)stu + O(5)$
- For an FGL we must have $2b_{11}b_{12} + 3b_{13} 2b_{22}$. In terms of the parameters $a_1 = b_{11}$ and $a_2 = b_{12}$ and $a_3 = b_{22} b_{13}$ we get $F(s,t) = s+t+a_1st+a_2st(s+t)+2(a_3-a_1a_2)st(s^2+st+t^2)+a_3s^2t^2+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a₄, a₅,... so that F(s, t) can be expressed in terms of the a_i, and no further relations are required to make the associativity axiom hold.
- ▶ Reformulation: over the Lazard ring L = Z[a₁, a₂,...] there is a universal formal group law F_u such that the resulting map Rings(L, k) → FGL(k) is bijective for all k.

- ► Recall $MP^0(X) = \lim_{n \to \infty} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1) [x]$. (We do not need to know $MP^0(1)$ for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- ► Recall $MP^0(X) = \lim_{n \to n} [\Sigma^{2n}X, MP(n)]$ (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with $MP^0(P) = MP^0(1)[x]$. (We do not need to know $MP^0(1)$ for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^{1}(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and MP¹(1) = 0).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map $MP^0(1) \rightarrow H_*(MP)$. We can push forward the FGL over $MP^0(1)$ to get an FGL over $H_*(MP)$.
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map MP⁰(1) → H_{*}(MP). We can push forward the FGL over MP⁰(1) to get an FGL over H_{*}(MP).
- ▶ In fact this is $F(s,t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s,t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Recall MP⁰(X) = lim_n [Σ²ⁿX, MP(n)] (for X a finite complex). Both P and MP(n) are defined using complex linear algebra so it is not hard to give an explicit x with MP⁰(P) = MP⁰(1) [[x]]. (We do not need to know MP⁰(1) for this.)
- Using this we get a formal group law F over $MP^0(1)$.
- ▶ Recall that FGL(k) = Rings(L, k) so we get a ring map $L \to MP^0(1)$.
- Quillen's theorem: this is an isomorphism (and $MP^1(1) = 0$).
- Outline of proof:
 - Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
 - There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$H_*(MP) = \mathbb{Z}[b_0, b_1, b_2, \dots][b_0^{-1}].$$

- A simple topological construction gives a map MP⁰(1) → H_{*}(MP). We can push forward the FGL over MP⁰(1) to get an FGL over H_{*}(MP).
- ▶ In fact this is $F(s, t) = f^{-1}(f(s) + f(t))$, where $f(t) = \sum_i b_i t^{i+1}$. So f gives an isomorphism from F to the additive law $F_a(s, t) = s + t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut(F_a), its relationship with Steenrod operations, and the Adams spectral sequence.

- Fact: if K(p, n)_{*}(X) = 0, then K(p, m)_{*}(X) = 0 for all m < n (including K(p, 0)_{*}(X) = H_{*}(X; ℚ)).
- Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if K(p, n)_{*}(X) ≠ 0 and K(p, m)_{*}(X) = 0 for m < n. Let F(p, n) be the category of X of type at least n at p.</p>
- Nilpotence theorem: if u: Σ^dX → X and K(p, n)_{*}(u) = 0 for all (p, n) then u^k = 0: Σ^{dk}X → X for k ≫ 0.
- Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map v: Σ^dX → X (for some d > 0) giving an isomorphism on K(p, n)_{*}(X) (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- Chromatic convergence theorem: π^s_{*}(X) = F(S^{*}, X) can be built up in layers. The difference between layers n and n − 1 is in some sense controlled by K(p, n), and consists of families that are periodic of period 2(pⁿ − 1)p^k for large k.

Fact: if K(p, n)_{*}(X) = 0, then K(p, m)_{*}(X) = 0 for all m < n (including K(p, 0)_{*}(X) = H_{*}(X; ℚ)).

Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.

- Say X has type n at p if K(p, n)_{*}(X) ≠ 0 and K(p, m)_{*}(X) = 0 for m < n. Let F(p, n) be the category of X of type at least n at p.</p>
- Nilpotence theorem: if u: Σ^dX → X and K(p, n)_{*}(u) = 0 for all (p, n) then u^k = 0: Σ^{dk}X → X for k ≫ 0.
- Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map v: Σ^dX → X (for some d > 0) giving an isomorphism on K(p, n)_{*}(X) (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- Chromatic convergence theorem: π^s_{*}(X) = F(S^{*}, X) can be built up in layers. The difference between layers n and n − 1 is in some sense controlled by K(p, n), and consists of families that are periodic of period 2(pⁿ − 1)p^k for large k.

- Fact: if K(p, n)_{*}(X) = 0, then K(p, m)_{*}(X) = 0 for all m < n (including K(p, 0)_{*}(X) = H_{*}(X; ℚ)).
- Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if K(p, n)_{*}(X) ≠ 0 and K(p, m)_{*}(X) = 0 for m < n. Let F(p, n) be the category of X of type at least n at p.</p>
- Nilpotence theorem: if u: Σ^dX → X and K(p, n)_{*}(u) = 0 for all (p, n) then u^k = 0: Σ^{dk}X → X for k ≫ 0.
- Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map v: Σ^dX → X (for some d > 0) giving an isomorphism on K(p, n)_{*}(X) (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- Chromatic convergence theorem: π^s_{*}(X) = F(S^{*}, X) can be built up in layers. The difference between layers n and n − 1 is in some sense controlled by K(p, n), and consists of families that are periodic of period 2(pⁿ − 1)p^k for large k.

- Fact: if K(p, n)_{*}(X) = 0, then K(p, m)_{*}(X) = 0 for all m < n (including K(p, 0)_{*}(X) = H_{*}(X; ℚ)).
- Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if u: Σ^dX → X and K(p, n)_{*}(u) = 0 for all (p, n) then u^k = 0: Σ^{dk}X → X for k ≫ 0.
- Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map v: Σ^dX → X (for some d > 0) giving an isomorphism on K(p, n)_{*}(X) (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- Chromatic convergence theorem: π^s_{*}(X) = F(S^{*}, X) can be built up in layers. The difference between layers n and n − 1 is in some sense controlled by K(p, n), and consists of families that are periodic of period 2(pⁿ − 1)p^k for large k.

- Fact: if K(p, n)_{*}(X) = 0, then K(p, m)_{*}(X) = 0 for all m < n (including K(p, 0)_{*}(X) = H_{*}(X; ℚ)).
- Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if u: Σ^dX → X and K(p, n)_{*}(u) = 0 for all (p, n) then u^k = 0: Σ^{dk}X → X for k ≫ 0.
- Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map v: Σ^dX → X (for some d > 0) giving an isomorphism on K(p, n)_{*}(X) (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- Chromatic convergence theorem: π^S_{*}(X) = F(S^{*}, X) can be built up in layers. The difference between layers n and n − 1 is in some sense controlled by K(p, n), and consists of families that are periodic of period 2(pⁿ − 1)p^k for large k.

- Fact: if K(p, n)_{*}(X) = 0, then K(p, m)_{*}(X) = 0 for all m < n (including K(p, 0)_{*}(X) = H_{*}(X; ℚ)).
- Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if u: Σ^dX → X and K(p, n)_{*}(u) = 0 for all (p, n) then u^k = 0: Σ^{dk}X → X for k ≫ 0.
- Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map v: Σ^dX → X (for some d > 0) giving an isomorphism on K(p, n)_{*}(X) (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- Chromatic convergence theorem: π^S_{*}(X) = F(S^{*}, X) can be built up in layers. The difference between layers n and n − 1 is in some sense controlled by K(p, n), and consists of families that are periodic of period 2(pⁿ − 1)p^k for large k.

- Fact: if K(p, n)_{*}(X) = 0, then K(p, m)_{*}(X) = 0 for all m < n (including K(p, 0)_{*}(X) = H_{*}(X; ℚ)).
- Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if $K(p, n)_*(X) \neq 0$ and $K(p, m)_*(X) = 0$ for m < n. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if u: Σ^dX → X and K(p, n)_{*}(u) = 0 for all (p, n) then u^k = 0: Σ^{dk}X → X for k ≫ 0.
- Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map v: Σ^dX → X (for some d > 0) giving an isomorphism on K(p, n)_{*}(X) (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- Chromatic convergence theorem: π^S_{*}(X) = F(S^{*}, X) can be built up in layers. The difference between layers n and n − 1 is in some sense controlled by K(p, n), and consists of families that are periodic of period 2(pⁿ − 1)p^k for large k.

- Fact: if K(p, n)_{*}(X) = 0, then K(p, m)_{*}(X) = 0 for all m < n (including K(p, 0)_{*}(X) = H_{*}(X; ℚ)).
- Also, if $K(p, n)_*(X) = 0$ for all p and n then X = 0.
- Say X has type n at p if K(p, n)_{*}(X) ≠ 0 and K(p, m)_{*}(X) = 0 for m < n. Let F(p, n) be the category of X of type at least n at p.</p>
- Nilpotence theorem: if u: Σ^dX → X and K(p, n)_{*}(u) = 0 for all (p, n) then u^k = 0: Σ^{dk}X → X for k ≫ 0.
- Periodicity theorem: if X ∈ F(p, n) with n > 0 then there is a map v: Σ^dX → X (for some d > 0) giving an isomorphism on K(p, n)_{*}(X) (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if C is a subcategory of F satisfying some natural conditions, then it must be one of the categories F(p, n).
- Chromatic convergence theorem: π^S_{*}(X) = F(S^{*}, X) can be built up in layers. The difference between layers n and n − 1 is in some sense controlled by K(p, n), and consists of families that are periodic of period 2(pⁿ − 1)p^k for large k.

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in \mathcal{C}^{f} \subseteq \mathcal{C}$ if X is a filtered colimit of finite spectra in \mathcal{C} .
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \not\simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1 \rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- The proof involves higher cyclotomic Galois extensions of ring spectra.

• Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$

- Say $X \in C^f \subseteq C$ if X is a filtered colimit of finite spectra in C.
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1 \rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- ▶ The proof involves higher cyclotomic Galois extensions of ring spectra.

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in \mathcal{C}^{f} \subseteq \mathcal{C}$ if X is a filtered colimit of finite spectra in \mathcal{C} .
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1\rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- The proof involves higher cyclotomic Galois extensions of ring spectra.

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in \mathcal{C}^{f} \subseteq \mathcal{C}$ if X is a filtered colimit of finite spectra in \mathcal{C} .
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1 \rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- The proof involves higher cyclotomic Galois extensions of ring spectra.

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in \mathcal{C}^{f} \subseteq \mathcal{C}$ if X is a filtered colimit of finite spectra in \mathcal{C} .
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1 \rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- ▶ The proof involves higher cyclotomic Galois extensions of ring spectra.

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in \mathcal{C}^{f} \subseteq \mathcal{C}$ if X is a filtered colimit of finite spectra in \mathcal{C} .
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1 \rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- The proof involves higher cyclotomic Galois extensions of ring spectra.

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in C^f \subseteq C$ if X is a filtered colimit of finite spectra in C.
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for K(BP(n-1)).
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- The proof involves higher cyclotomic Galois extensions of ring spectra.
- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in C^f \subseteq C$ if X is a filtered colimit of finite spectra in C.
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1 \rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- ▶ The proof involves higher cyclotomic Galois extensions of ring spectra.

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in \mathcal{C}^f \subseteq \mathcal{C}$ if X is a filtered colimit of finite spectra in \mathcal{C} .
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1 \rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- ▶ The proof involves higher cyclotomic Galois extensions of ring spectra.

- ロ ト - 4 回 ト - 4 □ - 4

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in C^f \subseteq C$ if X is a filtered colimit of finite spectra in C.
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1\rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- ▶ The proof involves higher cyclotomic Galois extensions of ring spectra.

- ロ ト - 4 回 ト - 4 □ - 4

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in \mathcal{C}^f \subseteq \mathcal{C}$ if X is a filtered colimit of finite spectra in \mathcal{C} .
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(\rho)}[v_1, \ldots, v_n]$ where $|v_k| = 2\rho^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1\rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).

▶ The proof involves higher cyclotomic Galois extensions of ring spectra.

- ロ ト - 4 回 ト - 4 □ - 4

- Fix (p, n) and put $C = \{X \mid K(p, n)_*(X) = 0\}.$
- Say $X \in \mathcal{C}^f \subseteq \mathcal{C}$ if X is a filtered colimit of finite spectra in \mathcal{C} .
- ▶ Put $\widehat{\mathcal{L}} = \{Y \mid [\mathcal{C}, Y] = 0\} \simeq S/C$ and $\widehat{\mathcal{L}}^f = \{Y \mid [\mathcal{C}^f, Y] = 0\} \simeq S/C^f$. There are localisation functors $\widehat{\mathcal{L}} : S \to \widehat{\mathcal{L}}$ and $\widehat{\mathcal{L}}^f : S \to \widehat{\mathcal{L}}^f$.
- ▶ TC is equivalent to $\widehat{L} \simeq \widehat{L}^{f}$; so we need to find X with $\widehat{L}X \simeq \widehat{L}^{f}X$.
- Mahowald, Ravenel and Schick used a particular X which seemed very promising; but recent progress uses a different type of example.
- For a sufficiently nice ring spectrum R, we have an algebraic K-theory spectrum K(R), closely related to the nerve of the category of R-modules.
- Redshift conjecture of Ausoni-Rognes: if R has chromatic height n, then K(R) should have height n + 1. Various formulations are now proved.
- ▶ There are spectra called $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ where $|v_k| = 2p^k 2$. These satisfy redshift.
- TC turns out to be true for $K(BP\langle n-1\rangle)$.
- ▶ However, there is an action of \mathbb{Z} on $BP\langle n-1 \rangle$ and we can define $B(n-1) = BP\langle n-1 \rangle^{h\mathbb{Z}}$. The new counterexample is K(B(n-1)).
- The proof involves higher cyclotomic Galois extensions of ring spectra.