The Telescope Conjecture as Galois Theory

Neil Strickland

November 7, 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- ▶ We have some trouble when studying Vect_Q, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞ -category framework: *G* acts on Vect_{*F*}, and the map Vect_Q \rightarrow Vect^{hG}_{*F*} is an equivalence.
- ▶ This gives a map $K(\mathbb{Q}) \to K(F)^{hG}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

Let Vect_Q be the category of finite-dimensional vector spaces over Q.

- ▶ We have some trouble when studying Vect_Q, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For $W \in \operatorname{Vect}_F$ and $g \in G$ define g^*W to be the same abelian group but with *F*-action twisted by *g*.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞ -category framework: *G* acts on Vect_{*F*}, and the map Vect_Q \rightarrow Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- We have some trouble when studying Vect_Q, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.

• Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.

- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞ -category framework: *G* acts on Vect_{*F*}, and the map Vect_Q \rightarrow Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- ▶ We have some trouble when studying $Vect_Q$, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For $W \in \operatorname{Vect}_F$ and $g \in G$ define g^*W to be the same abelian group but with *F*-action twisted by *g*.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞ -category framework: *G* acts on Vect_{*F*}, and the map Vect_Q \rightarrow Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- ▶ We have some trouble when studying $Vect_Q$, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞ -category framework: *G* acts on Vect_{*F*}, and the map Vect_Q \rightarrow Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
- ▶ We can define ϕ : $F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- We have some trouble when studying Vect_Q, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞ -category framework: *G* acts on Vect_{*F*}, and the map Vect_Q \rightarrow Vect^{hG}_{*F*} is an equivalence.
- ► This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- ▶ This is an isomorphism (the "tensor formula").

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- We have some trouble when studying Vect_Q, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞ -category framework: *G* acts on Vect_{*F*}, and the map Vect_{*Q*} \rightarrow Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- We have some trouble when studying Vect_Q, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- ▶ In ∞-category framework: *G* acts on Vect_{*F*}, and the map Vect_Q → Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- We have some trouble when studying Vect_Q, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- ▶ In ∞-category framework: *G* acts on Vect_{*F*}, and the map Vect_Q → Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- ▶ We have some trouble when studying $Vect_Q$, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^*W \simeq W$ for all $g \in G$, we can construct $V \in \text{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- ▶ In ∞-category framework: *G* acts on Vect_{*F*}, and the map Vect_Q → Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

- We can define $\phi: F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

- Let Vect_Q be the category of finite-dimensional vector spaces over Q.
- We have some trouble when studying Vect_Q, because Q is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F/\mathbb{Q} with Galois group $G = \operatorname{Aut}(F)$.
- For V ∈ Vect_Q we have W = F ⊗ V ∈ Vect_F. This has a Q-linear action of G with W^G = V.
- For W ∈ Vect_F and g ∈ G define g^{*}W to be the same abelian group but with F-action twisted by g.
- Given coherent identifications g^{*}W ≃ W for all g ∈ G, we can construct V ∈ Vect_Q with W ≃ F ⊗ V.
- ▶ In ∞-category framework: *G* acts on Vect_{*F*}, and the map Vect_Q → Vect^{hG}_{*F*} is an equivalence.
- This gives a map K(Q) → K(F)^{hG}, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

- ▶ We can define ϕ : $F \otimes_{\mathbb{Q}} F \to Map(G, F)$ by $\phi(a \otimes b)(g) = ag(b)$.
- This is an isomorphism (the "tensor formula").

Suppose that G acts on W. What is W^G?

One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.

For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}(\pi_{k+1}(f)) \to \pi_k(F) \to \ker(\pi_k(f))$.

So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.

- ► Here δ_i : Map $(G, W) \rightarrow$ Map (G^2, W) is given by $(\delta_0 w)(g, h) = g w(h), (\delta_1 w)(g, h) = w(gh), (\delta_2 w)(g, h) = w(g).$
- ► The (homotopy) inverse limit is W^{hG} , the homotopy fixed points. Here $\pi_k(W^{hG}) = H^k(G; W)$, which is 0 for k > 0 in Galois context.
- ▶ Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W \cdots$ (and this is like an Adams resolution).

► For
$$G = \langle g \rangle \simeq \mathbb{Z}$$
, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

▶ Suppose that G acts on W. What is W^G?

One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.

For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}(\pi_{k+1}(f)) \to \pi_k(F) \to \ker(\pi_k(f))$.

So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.

- ► Here δ_i : Map $(G, W) \rightarrow$ Map (G^2, W) is given by $(\delta_0 w)(g, h) = g w(h), (\delta_1 w)(g, h) = w(gh), (\delta_2 w)(g, h) = w(g).$
- The (homotopy) inverse limit is W^{hG}, the homotopy fixed points. Here π_k(W^{hG}) = H^k(G; W), which is 0 for k > 0 in Galois context.
- ▶ Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W \cdots$ (and this is like an Adams resolution).

► For
$$G = \langle g \rangle \simeq \mathbb{Z}$$
, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

Suppose that G acts on W. What is W^G?

One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.

For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}(\pi_{k+1}(f)) \to \pi_k(F) \to \ker(\pi_k(f))$.

So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.

- ► Here δ_i : Map $(G, W) \rightarrow$ Map (G^2, W) is given by $(\delta_0 w)(g, h) = g w(h), (\delta_1 w)(g, h) = w(gh), (\delta_2 w)(g, h) = w(g).$
- The (homotopy) inverse limit is W^{hG}, the homotopy fixed points. Here π_k(W^{hG}) = H^k(G; W), which is 0 for k > 0 in Galois context.
- ▶ Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W \cdots$ (and this is like an Adams resolution).

► For
$$G = \langle g \rangle \simeq \mathbb{Z}$$
, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

Suppose that G acts on W. What is W^G?

- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.

So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.

- ► Here δ_i : Map $(G, W) \rightarrow$ Map (G^2, W) is given by $(\delta_0 w)(g, h) = g w(h), (\delta_1 w)(g, h) = w(gh), (\delta_2 w)(g, h) = w(g).$
- ► The (homotopy) inverse limit is W^{hG} , the homotopy fixed points. Here $\pi_k(W^{hG}) = H^k(G; W)$, which is 0 for k > 0 in Galois context.
- ▶ Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W \qquad \cdots$ (and this is like an Adams resolution).

► For
$$G = \langle g \rangle \simeq \mathbb{Z}$$
, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

- Suppose that G acts on W. What is W^G?
- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.
- So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.

Consider instead the cosimplicial object

$$W \Longrightarrow Map(G, W) \Longrightarrow Map(G^2, W) \Longrightarrow Map(G^2, W)$$

- ► Here δ_i : Map $(G, W) \rightarrow$ Map (G^2, W) is given by $(\delta_0 w)(g, h) = g w(h), (\delta_1 w)(g, h) = w(gh), (\delta_2 w)(g, h) = w(g).$
- ► The (homotopy) inverse limit is W^{hG} , the homotopy fixed points. Here $\pi_k(W^{hG}) = H^k(G; W)$, which is 0 for k > 0 in Galois context.
- ▶ Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W$ (and this is like an Adams resolution).

► For
$$G = \langle g \rangle \simeq \mathbb{Z}$$
, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

- Suppose that G acts on W. What is W^G?
- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.
- So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.
- ► Consider instead the cosimplicial object $W \implies Map(G, W) \implies Map(G^2, W) \implies Map(G^2, W)$
- Here δ_i : Map $(G, W) \rightarrow$ Map (G^2, W) is given by $(\delta_0 w)(g, h) = g w(h), (\delta_1 w)(g, h) = w(gh), (\delta_2 w)(g, h) = w(g).$
- ► The (homotopy) inverse limit is W^{hG} , the homotopy fixed points. Here $\pi_k(W^{hG}) = H^k(G; W)$, which is 0 for k > 0 in Galois context.
- ▶ Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W$ (and this is like an Adams resolution).

► For
$$G = \langle g \rangle \simeq \mathbb{Z}$$
, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

- Suppose that G acts on W. What is W^G?
- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.
- So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.
- ► Consider instead the cosimplicial object $W \implies Map(G, W) \implies Map(G^2, W) \implies Map(G^2, W)$
- ► Here δ_i : Map(G, W) \rightarrow Map(G², W) is given by ($\delta_0 w$)(g, h) = g w(h), ($\delta_1 w$)(g, h) = w(gh), ($\delta_2 w$)(g, h) = w(g).
- ► The (homotopy) inverse limit is W^{hG}, the homotopy fixed points. Here π_k(W^{hG}) = H^k(G; W), which is 0 for k > 0 in Galois context.
- ► Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W$ (and this is like an Adams resolution)
- ► For $G = \langle g \rangle \simeq \mathbb{Z}$, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

- Suppose that G acts on W. What is W^G?
- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.
- So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.
- ► Consider instead the cosimplicial object $W \implies Map(G, W) \implies Map(G^2, W) \implies Map(G^2, W)$
- ► Here δ_i : Map(G, W) \rightarrow Map(G², W) is given by ($\delta_0 w$)(g, h) = g w(h), ($\delta_1 w$)(g, h) = w(gh), ($\delta_2 w$)(g, h) = w(g).
- ► The (homotopy) inverse limit is W^{hG}, the homotopy fixed points. Here π_k(W^{hG}) = H^k(G; W), which is 0 for k > 0 in Galois context.
- ▶ Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W$ (and this is like an Adams resolution)
- ► For $G = \langle g \rangle \simeq \mathbb{Z}$, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

- Suppose that G acts on W. What is W^G?
- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.
- So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.
- ► Consider instead the cosimplicial object $W \implies Map(G, W) \implies Map(G^2, W) \implies Map(G^2, W)$
- ► Here δ_i : Map(G, W) \rightarrow Map(G², W) is given by ($\delta_0 w$)(g, h) = g w(h), ($\delta_1 w$)(g, h) = w(gh), ($\delta_2 w$)(g, h) = w(g).
- ► The (homotopy) inverse limit is W^{hG}, the homotopy fixed points. Here π_k(W^{hG}) = H^k(G; W), which is 0 for k > 0 in Galois context.
- ▶ Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W \cdots$ (and this is like an Adams resolution).
- ► For $G = \langle g \rangle \simeq \mathbb{Z}$, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

- Suppose that G acts on W. What is W^G?
- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.
- So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.
- ► Consider instead the cosimplicial object $W \implies Map(G, W) \implies Map(G^2, W) \implies Map(G^2, W)$
- ► Here δ_i : Map(G, W) \rightarrow Map(G², W) is given by ($\delta_0 w$)(g, h) = g w(h), ($\delta_1 w$)(g, h) = w(gh), ($\delta_2 w$)(g, h) = w(g).
- ► The (homotopy) inverse limit is W^{hG}, the homotopy fixed points. Here π_k(W^{hG}) = H^k(G; W), which is 0 for k > 0 in Galois context.
- Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is

$$W \Longrightarrow F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes V$$

(and this is like an Adams resolution).

For $G = \langle g \rangle \simeq \mathbb{Z}$, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

- Suppose that G acts on W. What is W^G?
- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.
- So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.
- ► Consider instead the cosimplicial object $W \implies Map(G, W) \implies Map(G^2, W) \implies Map(G^2, W)$
- ► Here δ_i : Map(G, W) \rightarrow Map(G², W) is given by ($\delta_0 w$)(g, h) = g w(h), ($\delta_1 w$)(g, h) = w(gh), ($\delta_2 w$)(g, h) = w(g).
- ► The (homotopy) inverse limit is W^{hG}, the homotopy fixed points. Here π_k(W^{hG}) = H^k(G; W), which is 0 for k > 0 in Galois context.
- ► Using $F \otimes F = Map(G, F)$ we see that the cosimplicial object is $W \implies F \otimes W \implies F^{\otimes 2} \otimes W \implies F^{\otimes 3} \otimes W$

(and this is like an Adams resolution).

For $G = \langle g \rangle \simeq \mathbb{Z}$, we just have $W^{hG} = \operatorname{fib}(g-1)$ (as $BG \simeq S^1$).

- Suppose that G acts on W. What is W^G?
- One answer: W^G is the equaliser of the maps δ₀, δ₁: W → Map(G, W) given by δ₀(w)(g) = gw and δ₁(w)(g) = w, i.e. the kernel of δ₀ − δ₁.
- For a map $f: X \to Y$ of spectra with ∞ -categorical kernel (= homotopy fibre) F, we have a short exact sequence $cok(\pi_{k+1}(f)) \to \pi_k(F) \to ker(\pi_k(f))$.
- So $\pi_k(F)$ mixes the kernel and cokernel: not usually what we want.
- ► Consider instead the cosimplicial object $W \implies Map(G, W) \implies Map(G^2, W) \implies Map(G^2, W)$
- Here δ_i : Map $(G, W) \rightarrow$ Map (G^2, W) is given by $(\delta_0 w)(g, h) = g w(h), (\delta_1 w)(g, h) = w(gh), (\delta_2 w)(g, h) = w(g).$
- ► The (homotopy) inverse limit is W^{hG}, the homotopy fixed points. Here π_k(W^{hG}) = H^k(G; W), which is 0 for k > 0 in Galois context.
- Using F ⊗ F = Map(G, F) we see that the cosimplicial object is W ⇒ F ⊗ W ⇒ F^{⊗2} ⊗ W ⇒ F^{⊗3} ⊗ W (and this is like an Adams resolution).
 For G = ⟨g⟩ ≃ ℤ, we just have W^{hG} = fib(g − 1) (as BG ≃ S¹).

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_2 which is a profinite group
- Similarly, for W ∈ Vect_Q we have Q^{⊗r} ⊗ W = C(Γ^r, W), and these form a cosimplicial object from which we get Q^{hΓ} = Q.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \setminus p\mathbb{Z}$ there is $\psi^a \in \operatorname{Aut}(L)$ with $\psi^a(u) = u^a$ for all $u \in \mu_{p^{\infty}}$. This also works for $a \in \mathbb{Z}_p^{\times} = \lim_{k \to u} (\mathbb{Z}/p^k)^{\times}$.
- We find that *L* is Galois with group $\mathbb{Z}_{\rho}^{\times} \simeq \mathbb{F}_{\rho}^{\times} \times (1 + \rho \mathbb{Z}_{\rho}) \simeq C_{\rho-1} \times (1 + \rho \mathbb{Z}_{\rho}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

• Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .

- The Galois group $\Gamma = \operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions K₁ → K₂ → K₃ → · · · with union Q and finite Galois groups Γ₁ ← Γ₂ ← Γ₃ ← · · · . Then Γ is the inverse limit of the groups Γ_r, which is a profinite group.
- Similarly, for W ∈ Vect_Q we have Q^{⊗r} ⊗ W = C(Γ^r, W), and these form a cosimplicial object from which we get Q^{hΓ} = Q.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \setminus p\mathbb{Z}$ there is $\psi^a \in \operatorname{Aut}(L)$ with $\psi^a(u) = u^a$ for all $u \in \mu_{p^{\infty}}$. This also works for $a \in \mathbb{Z}_p^{\times} = \lim_{k \to u} (\mathbb{Z}/p^k)^{\times}$.
- We find that *L* is Galois with group $\mathbb{Z}_{\rho}^{\times} \simeq \mathbb{F}_{\rho}^{\times} \times (1 + p\mathbb{Z}_{\rho}) \simeq C_{\rho-1} \times (1 + p\mathbb{Z}_{\rho}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e).\mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W = C(\Gamma^{r}, W)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\Gamma} = \mathbb{Q}$.
- ▶ Put $\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$
- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For a ∈ ℤ \ pℤ there is ψ^a ∈ Aut(L) with ψ^a(u) = u^a for all u ∈ μ_{p∞}. This also works for a ∈ ℤ[×]_p = lim_μ (ℤ/p^k)[×].
- We find that *L* is Galois with group $\mathbb{Z}_{\rho}^{\times} \simeq \mathbb{F}_{\rho}^{\times} \times (1 + p\mathbb{Z}_{\rho}) \simeq C_{\rho-1} \times (1 + p\mathbb{Z}_{\rho}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Now Q
 ⊗ Q is the ring C(Γ,Q) of continuous maps from Γ to Q. (Here Q is discrete so continuous = locally constant.)
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W = C(\Gamma^r, W)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\Gamma} = \mathbb{Q}$.
- ▶ Put $\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$
- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For a ∈ ℤ \ pℤ there is ψ^a ∈ Aut(L) with ψ^a(u) = u^a for all u ∈ μ_{p∞}. This also works for a ∈ ℤ[×]_p = lim_μ (ℤ/p^k)[×].
- We find that *L* is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times (1 + p\mathbb{Z}_{p}) \simeq C_{p-1} \times (1 + p\mathbb{Z}_{p}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W = C(\Gamma^r, W)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\Gamma} = \mathbb{Q}$.
- ▶ Put $\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$
- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \setminus p\mathbb{Z}$ there is $\psi^a \in \operatorname{Aut}(L)$ with $\psi^a(u) = u^a$ for all $u \in \mu_{p^{\infty}}$. This also works for $a \in \mathbb{Z}_p^{\times} = \lim_{\leftarrow \iota} (\mathbb{Z}/p^k)^{\times}$.
- We find that *L* is Galois with group $\mathbb{Z}_{\rho}^{\times} \simeq \mathbb{F}_{\rho}^{\times} \times (1 + p\mathbb{Z}_{\rho}) \simeq C_{\rho-1} \times (1 + p\mathbb{Z}_{\rho}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Similarly, for W ∈ Vect_Q we have Q^{⊗r} ⊗ W = C(Γ^r, W), and these form a cosimplicial object from which we get Q^{hΓ} = Q.
- ▶ Put $\mu_{p^{\infty}} = \{ u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0 \} = \{ \exp(2\pi i m/p^k) \mid m, k \in \mathbb{N} \}.$
- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \setminus p\mathbb{Z}$ there is $\psi^a \in \operatorname{Aut}(L)$ with $\psi^a(u) = u^a$ for all $u \in \mu_{p^{\infty}}$. This also works for $a \in \mathbb{Z}_p^{\times} = \lim_{\leftarrow \iota} (\mathbb{Z}/p^k)^{\times}$.
- We find that *L* is Galois with group $\mathbb{Z}_{\rho}^{\times} \simeq \mathbb{F}_{\rho}^{\times} \times (1 + p\mathbb{Z}_{\rho}) \simeq C_{\rho-1} \times (1 + p\mathbb{Z}_{\rho}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- ► Similarly, for $W \in \text{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W = C(\Gamma^r, W)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\Gamma} = \mathbb{Q}$.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For a ∈ ℤ \ pℤ there is ψ^a ∈ Aut(L) with ψ^a(u) = u^a for all u ∈ μ_{p∞}. This also works for a ∈ ℤ[×]_p = lim_μ (ℤ/p^k)[×].
- We find that *L* is Galois with group $\mathbb{Z}_{\rho}^{\times} \simeq \mathbb{F}_{\rho}^{\times} \times (1 + \rho \mathbb{Z}_{\rho}) \simeq C_{\rho-1} \times (1 + \rho \mathbb{Z}_{\rho}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- ► Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W = C(\Gamma^r, W)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\Gamma} = \mathbb{Q}$.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(μ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups
- For a ∈ ℤ \ pℤ there is ψ^a ∈ Aut(L) with ψ^a(u) = u^a for all u ∈ μ_{p∞}. This also works for a ∈ ℤ[×]_p = lim_μ (ℤ/p^k)[×].
- We find that *L* is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times (1 + p\mathbb{Z}_{p}) \simeq C_{p-1} \times (1 + p\mathbb{Z}_{p}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Similarly, for W ∈ Vect_Q we have Q^{⊗r} ⊗ W = C(Γ^r, W), and these form a cosimplicial object from which we get Q^{bΓ} = Q.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \setminus p\mathbb{Z}$ there is $\psi^a \in \operatorname{Aut}(L)$ with $\psi^a(u) = u^a$ for all $u \in \mu_{p^{\infty}}$. This also works for $a \in \mathbb{Z}_p^{\times} = \lim_{t \to u^+} (\mathbb{Z}/p^k)^{\times}$.
- We find that *L* is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times (1 + p\mathbb{Z}_{p}) \simeq C_{p-1} \times (1 + p\mathbb{Z}_{p}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Similarly, for W ∈ Vect_Q we have Q^{⊗r} ⊗ W = C(Γ^r, W), and these form a cosimplicial object from which we get Q^{hΓ} = Q.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For a ∈ ℤ \ pℤ there is ψ^a ∈ Aut(L) with ψ^a(u) = u^a for all u ∈ μ_{p∞}. This also works for a ∈ ℤ[×]_p = lim_p (ℤ/p^k)[×].
- We find that *L* is Galois with group $\mathbb{Z}_{\rho}^{\times} \simeq \mathbb{F}_{\rho}^{\times} \times (1 + \rho \mathbb{Z}_{\rho}) \simeq C_{\rho-1} \times (1 + \rho \mathbb{Z}_{\rho}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_n^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Similarly, for W ∈ Vect_Q we have Q^{⊗r} ⊗ W = C(Γ^r, W), and these form a cosimplicial object from which we get Q^{hΓ} = Q.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For a ∈ ℤ \ pℤ there is ψ^a ∈ Aut(L) with ψ^a(u) = u^a for all u ∈ μ_{p∞}. This also works for a ∈ ℤ[×]_p = lim_μ (ℤ/p^k)[×].
- We find that *L* is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times (1 + p\mathbb{Z}_{p}) \simeq C_{p-1} \times (1 + p\mathbb{Z}_{p}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_n^{\times}} \psi^a$.

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Similarly, for W ∈ Vect_Q we have Q^{⊗r} ⊗ W = C(Γ^r, W), and these form a cosimplicial object from which we get Q^{hΓ} = Q.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For a ∈ ℤ \ pℤ there is ψ^a ∈ Aut(L) with ψ^a(u) = u^a for all u ∈ μ_{p∞}. This also works for a ∈ ℤ[×]_p = lim_μ (ℤ/p^k)[×].
- We find that *L* is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times (1 + p\mathbb{Z}_{p}) \simeq C_{p-1} \times (1 + p\mathbb{Z}_{p}).$
- A construction: $\mathbb{Q}(\mu_{p^n}) = (1-e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p-1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.
Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}} =$ algebraic closure of \mathbb{Q} .
- ▶ The Galois group $\Gamma = Aut(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- ▶ We can find finite Galois extensions $K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_1 \twoheadleftarrow \Gamma_2 \twoheadleftarrow \Gamma_3 \twoheadleftarrow \cdots$. Then Γ is the inverse limit of the groups Γ_r , which is a profinite group.
- Similarly, for W ∈ Vect_Q we have Q^{⊗r} ⊗ W = C(Γ^r, W), and these form a cosimplicial object from which we get Q^{hΓ} = Q.

▶ Put
$$\mu_{p^{\infty}} = \{u \in \overline{\mathbb{Q}} \mid u^{p^k} = 1 \text{ for } k \gg 0\} = \{\exp(2\pi i m/p^k) \mid m, k \in \mathbb{N}\}.$$

- Put L = Q(µ_{p∞}) = maximal p-cyclotomic extension of Q. This is as good as Q for studying representations of finite p-groups.
- For a ∈ ℤ \ pℤ there is ψ^a ∈ Aut(L) with ψ^a(u) = u^a for all u ∈ μ_{p∞}. This also works for a ∈ ℤ[×]_p = lim_μ (ℤ/p^k)[×].

▶ We find that *L* is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times (1 + p\mathbb{Z}_{p}) \simeq C_{p-1} \times (1 + p\mathbb{Z}_{p}).$

• A construction: $\mathbb{Q}(\mu_{p^n}) = (1 - e) \cdot \mathbb{Q}[C_{p^n}]$, where $e = (p - 1)^{-1} \sum_{a \in \mathbb{F}_p^{\times}} \psi^a$.

- We can try to do Galois theory with rings instead of fields.
- Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_A(B) = \operatorname{Aut}(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that *B* is a non-faithful Galois extension of *A*.
- ▶ Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated *A*-modules *V* we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of *V*, not *V* itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We can try to do Galois theory with rings instead of fields.

- Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_A(B) = \operatorname{Aut}(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that *B* is a non-faithful Galois extension of *A*.
- ▶ Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated A-modules V we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of V, not V itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- ► Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $Aut_A(B) = Aut(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that *B* is a non-faithful Galois extension of *A*.
- ▶ Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated A-modules V we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of V, not V itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- ► Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $Aut_A(B) = Aut(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that *B* is a non-faithful Galois extension of *A*.
- ▶ Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated A-modules V we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of V, not V itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- ► Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $Aut_A(B) = Aut(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that *B* is a non-faithful Galois extension of *A*.
- ► Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated *A*-modules *V* we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of *V*, not *V* itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- ► Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $Aut_A(B) = Aut(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that *B* is a non-faithful Galois extension of *A*.
- ► Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated *A*-modules *V* we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of *V*, not *V* itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- ► Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_A(B) = \operatorname{Aut}(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- ► Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated A-modules V we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of V, not V itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- ► Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_A(B) = \operatorname{Aut}(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.

• Take
$$A = \mathbb{Z}[p^{-1}]$$
 and $B = \mathbb{Q}(\mu_{p^{\infty}})$.

This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated A-modules V we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of V, not V itself

The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- ► Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_A(B) = \operatorname{Aut}(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- ► Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated *A*-modules *V* we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of *V*, not *V* itself
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- ► Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_A(B) = \operatorname{Aut}(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- ► Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated *A*-modules *V* we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of *V*, not *V* itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- We can try to do Galois theory with rings instead of fields.
- Take $A = \mathbb{Q} \times \mathbb{Q}$ and $B = \overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_A(B) = \operatorname{Aut}(\overline{\mathbb{Q}}) = \Gamma$.
- This is like a Galois extension, in that $B \otimes_A B = C(\Gamma, B)$.
- ▶ However, for $V = (V_0, V_1) \in Mod_A$ we have $B \otimes_A V = (\overline{\mathbb{Q}} \otimes V_0, 0)$ and $(B \otimes_A V)^{h\Gamma} = (V_0, 0)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- ► Take $A = \mathbb{Z}[p^{-1}]$ and $B = \mathbb{Q}(\mu_{p^{\infty}})$. This is like a Galois extension, with $B \otimes_A B = C(\mathbb{Z}_p^{\times}, B)$. However, for finitely generated A-modules V we have $(B \otimes_A V)^{h\mathbb{Z}_p^{\times}} = \mathbb{Q} \otimes V$, which is a localization of V, not V itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

- Fix n > 0. Over $\overline{\mathbb{F}}_p$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = 𝔽_p, and the associated formal group spf(K(n)⁰(ℂP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- Let F be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring WF, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).
- This can be done very explicitly for small *p* and *n*.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = ℝ_p, and the associated formal group spf(K(n)⁰(CP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- Let F be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring WF, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).
- This can be done very explicitly for small *p* and *n*.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = 𝔽_p, and the associated formal group spf(K(n)⁰(ℂP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- Let F be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring WF, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).
- This can be done very explicitly for small p and n.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = F_p, and the associated formal group spf(K(n)⁰(CP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- Let F be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring WF, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).
- This can be done very explicitly for small *p* and *n*.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = F_p, and the associated formal group spf(K(n)⁰(CP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- Let F be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring WF, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).
- This can be done very explicitly for small *p* and *n*.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = F_p, and the associated formal group spf(K(n)⁰(CP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- Let F be a finite field of order pⁿ (so F ≃ 𝔽ⁿ_p additively). Then there is a ring WF, isomorphic to ℤⁿ_p additively, with WF/p ≃ F as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).

- This can be done very explicitly for small *p* and *n*.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = F_p, and the associated formal group spf(K(n)⁰(CP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- ▶ Let *F* be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring *WF*, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).

- This can be done very explicitly for small *p* and *n*.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = F_p, and the associated formal group spf(K(n)⁰(CP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- ▶ Let *F* be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring *WF*, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).

- This can be done very explicitly for small p and n.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = F_p, and the associated formal group spf(K(n)⁰(CP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- ▶ Let *F* be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring *WF*, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).
- This can be done very explicitly for small p and n.

• By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- Fix n > 0. Over $\overline{\mathbb{F}_p}$, there is a formal group law F_0 with $[p]_{F_0}(x) = x +_{F_0} \cdots +_{F_0} x = x^{p^n}$. Any two such are isomorphic.
- There is an even periodic ring spectrum K(n) such that K(n)₀ = F_p, and the associated formal group spf(K(n)⁰(CP[∞])) corresponds to F₀ as above. This is *Morava K-theory*.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_*(X) = 0$ for m < n and $K(m)_*(X) \neq 0$ for $m \ge n$.
- ▶ Let *F* be a finite field of order p^n (so $F \simeq \mathbb{F}_p^n$ additively). Then there is a ring *WF*, isomorphic to \mathbb{Z}_p^n additively, with $WF/p \simeq F$ as rings.
- ▶ This is the *Witt ring* of *F*; it is unique up to canonical isomorphism.
- One construction: express F as 𝔽_p[x]/f(x) for some polynomial f over 𝔽_p, choose a lift f̃ over ℤ_p, put WF = ℤ_p[x]/f̃(x).

- This can be done very explicitly for small p and n.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_p}$.

- ▶ Over the ring E(n)₀ = W F_p [[u₁,..., u_{n-1}]] (with u₀ = p and u_n = 1) there is a formal group law F with [p]_F(x) = u_kx^{p^k} (mod u_j | j < k). Any two such are isomorphic.</p>
- There is an essentially unique even periodic ring spectrum E(n) such that $\pi_0(E(n)) = E(n)_0$ and the associated formal group $spf(E(n)^0(\mathbb{C}P^\infty))$ corresponds to F as above. This is *Morava E-theory*.
- There is an essentially unique version of E(n) that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}(F_0) \rightarrow \Gamma(n) = \operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}.$ We call $\Gamma(n)$ the *Morava stabiliser group*.
- ▶ It can be shown that $K(n)_0 E(n) = C(\Gamma(n), \mathbb{F}_p)$. Similarly, $C(\Gamma(n), E(n)_0)$ is the completion of $E(n)_0 E(n)$ with respect to the ideal $I = (p = u_0, u_1, \dots, u_{n-1})$.
- This mean that E(n) is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\Gamma(n)}$ is the K(n)-local sphere $L_{K(n)}S$.
- There is a sense in which E(n) is the algebraic closure of $L_{K(n)}S$, so $\Gamma(n)$ is the absolute Galois group.

- Over the ring E(n)₀ = W F_p [[u₁,..., u_{n-1}]] (with u₀ = p and u_n = 1) there is a formal group law F with [p]_F(x) = u_kx^{p^k} (mod u_j | j < k). Any two such are isomorphic.</p>
- There is an essentially unique even periodic ring spectrum E(n) such that $\pi_0(E(n)) = E(n)_0$ and the associated formal group $spf(E(n)^0(\mathbb{C}P^\infty))$ corresponds to F as above. This is *Morava E-theory*.
- There is an essentially unique version of E(n) that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}(F_0) \rightarrow \Gamma(n) = \operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}.$ We call $\Gamma(n)$ the *Morava stabiliser group*.
- ▶ It can be shown that $K(n)_0 E(n) = C(\Gamma(n), \mathbb{F}_p)$. Similarly, $C(\Gamma(n), E(n)_0)$ is the completion of $E(n)_0 E(n)$ with respect to the ideal $I = (p = u_0, u_1, \dots, u_{n-1})$.
- This mean that E(n) is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\Gamma(n)}$ is the K(n)-local sphere $L_{K(n)}S$.
- There is a sense in which E(n) is the algebraic closure of $L_{K(n)}S$, so $\Gamma(n)$ is the absolute Galois group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Over the ring E(n)₀ = W F_p [[u₁,..., u_{n-1}]] (with u₀ = p and u_n = 1) there is a formal group law F with [p]_F(x) = u_kx^{p^k} (mod u_j | j < k). Any two such are isomorphic.</p>
- ▶ There is an essentially unique even periodic ring spectrum E(n) such that $\pi_0(E(n)) = E(n)_0$ and the associated formal group $spf(E(n)^0(\mathbb{C}P^\infty))$ corresponds to F as above. This is *Morava E-theory*.
- There is an essentially unique version of E(n) that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}(F_0) \rightarrow \Gamma(n) = \operatorname{Aut}(E(n)) \twoheadrightarrow \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}$ We call $\Gamma(n)$ the *Morava stabiliser group*.
- ▶ It can be shown that $K(n)_0 E(n) = C(\Gamma(n), \mathbb{F}_p)$. Similarly, $C(\Gamma(n), E(n)_0)$ is the completion of $E(n)_0 E(n)$ with respect to the ideal $I = (p = u_0, u_1, \dots, u_{n-1})$.
- This mean that E(n) is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\Gamma(n)}$ is the K(n)-local sphere $L_{K(n)}S$.
- There is a sense in which E(n) is the algebraic closure of $L_{K(n)}S$, so $\Gamma(n)$ is the absolute Galois group.

- Over the ring E(n)₀ = W F_p [[u₁,..., u_{n-1}]] (with u₀ = p and u_n = 1) there is a formal group law F with [p]_F(x) = u_kx^{p^k} (mod u_j | j < k). Any two such are isomorphic.</p>
- ▶ There is an essentially unique even periodic ring spectrum E(n) such that $\pi_0(E(n)) = E(n)_0$ and the associated formal group $spf(E(n)^0(\mathbb{C}P^\infty))$ corresponds to F as above. This is *Morava* E-theory.
- There is an essentially unique version of E(n) that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}(F_0) \rightarrow \Gamma(n) = \operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}.$ We call $\Gamma(n)$ the *Morava stabiliser group*.
- ▶ It can be shown that $K(n)_0 E(n) = C(\Gamma(n), \mathbb{F}_p)$. Similarly, $C(\Gamma(n), E(n)_0)$ is the completion of $E(n)_0 E(n)$ with respect to the ideal $I = (p = u_0, u_1, \dots, u_{n-1})$.
- This mean that E(n) is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\Gamma(n)}$ is the K(n)-local sphere $L_{K(n)}S$.
- There is a sense in which E(n) is the algebraic closure of $L_{K(n)}S$, so $\Gamma(n)$ is the absolute Galois group.

- ▶ Over the ring E(n)₀ = W F_p [[u₁,..., u_{n-1}]] (with u₀ = p and u_n = 1) there is a formal group law F with [p]_F(x) = u_kx^{p^k} (mod u_j | j < k). Any two such are isomorphic.</p>
- ▶ There is an essentially unique even periodic ring spectrum E(n) such that $\pi_0(E(n)) = E(n)_0$ and the associated formal group $spf(E(n)^0(\mathbb{C}P^\infty))$ corresponds to F as above. This is *Morava* E-theory.
- There is an essentially unique version of E(n) that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}(F_0) \rightarrow \Gamma(n) = \operatorname{Aut}(E(n)) \twoheadrightarrow \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}.$ We call $\Gamma(n)$ the Morava stabiliser group.
- ▶ It can be shown that $K(n)_0 E(n) = C(\Gamma(n), \mathbb{F}_p)$. Similarly, $C(\Gamma(n), E(n)_0)$ is the completion of $E(n)_0 E(n)$ with respect to the ideal $I = (p = u_0, u_1, \dots, u_{n-1})$.
- This mean that E(n) is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\Gamma(n)}$ is the K(n)-local sphere $L_{K(n)}S$.
- There is a sense in which E(n) is the algebraic closure of $L_{K(n)}S$, so $\Gamma(n)$ is the absolute Galois group.

- Over the ring E(n)₀ = W F_p [[u₁,..., u_{n-1}]] (with u₀ = p and u_n = 1) there is a formal group law F with [p]_F(x) = u_kx^{p^k} (mod u_j | j < k). Any two such are isomorphic.</p>
- ▶ There is an essentially unique even periodic ring spectrum E(n) such that $\pi_0(E(n)) = E(n)_0$ and the associated formal group $spf(E(n)^0(\mathbb{C}P^\infty))$ corresponds to F as above. This is *Morava E-theory*.
- There is an essentially unique version of E(n) that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}(F_0) \rightarrow \Gamma(n) = \operatorname{Aut}(E(n)) \twoheadrightarrow \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}.$ We call $\Gamma(n)$ the Morava stabiliser group.
- ► It can be shown that $K(n)_0 E(n) = C(\Gamma(n), \mathbb{F}_p)$. Similarly, $C(\Gamma(n), E(n)_0)$ is the completion of $E(n)_0 E(n)$ with respect to the ideal $I = (p = u_0, u_1, \dots, u_{n-1})$.
- This mean that E(n) is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\Gamma(n)}$ is the K(n)-local sphere $L_{K(n)}S$.
- There is a sense in which E(n) is the algebraic closure of $L_{K(n)}S$, so $\Gamma(n)$ is the absolute Galois group.

- ▶ Over the ring E(n)₀ = W F_p [[u₁,..., u_{n-1}]] (with u₀ = p and u_n = 1) there is a formal group law F with [p]_F(x) = u_kx^{p^k} (mod u_j | j < k). Any two such are isomorphic.</p>
- ▶ There is an essentially unique even periodic ring spectrum E(n) such that $\pi_0(E(n)) = E(n)_0$ and the associated formal group $spf(E(n)^0(\mathbb{C}P^\infty))$ corresponds to F as above. This is *Morava E-theory*.
- There is an essentially unique version of E(n) that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}(F_0) \rightarrow \Gamma(n) = \operatorname{Aut}(E(n)) \twoheadrightarrow \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}.$ We call $\Gamma(n)$ the Morava stabiliser group.
- ► It can be shown that $K(n)_0 E(n) = C(\Gamma(n), \mathbb{F}_p)$. Similarly, $C(\Gamma(n), E(n)_0)$ is the completion of $E(n)_0 E(n)$ with respect to the ideal $I = (p = u_0, u_1, \dots, u_{n-1})$.
- This mean that E(n) is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\Gamma(n)}$ is the K(n)-local sphere $L_{K(n)}S$.
- There is a sense in which E(n) is the algebraic closure of $L_{K(n)}S$, so $\Gamma(n)$ is the absolute Galois group.

- ▶ Over the ring E(n)₀ = W F_p [[u₁,..., u_{n-1}]] (with u₀ = p and u_n = 1) there is a formal group law F with [p]_F(x) = u_kx^{p^k} (mod u_j | j < k). Any two such are isomorphic.</p>
- ▶ There is an essentially unique even periodic ring spectrum E(n) such that $\pi_0(E(n)) = E(n)_0$ and the associated formal group $spf(E(n)^0(\mathbb{C}P^\infty))$ corresponds to F as above. This is *Morava E-theory*.
- There is an essentially unique version of E(n) that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}(F_0) \rightarrow \Gamma(n) = \operatorname{Aut}(E(n)) \twoheadrightarrow \operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}.$ We call $\Gamma(n)$ the Morava stabiliser group.
- ► It can be shown that $K(n)_0 E(n) = C(\Gamma(n), \mathbb{F}_p)$. Similarly, $C(\Gamma(n), E(n)_0)$ is the completion of $E(n)_0 E(n)$ with respect to the ideal $I = (p = u_0, u_1, \dots, u_{n-1})$.
- This mean that E(n) is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\Gamma(n)}$ is the K(n)-local sphere $L_{K(n)}S$.
- There is a sense in which E(n) is the algebraic closure of $L_{K(n)}S$, so $\Gamma(n)$ is the absolute Galois group.

- There is a canonical determinant map det: Γ(n) → Z[×]_p, which is surjective. We write Γ₁(n) for the kernel.
- We put R(n) = E(n)^{hΓ1(n)} and call this Westerland K-theory. This is a faithful Galois extension of L_{K(n)}S with Galois group Γ(n)/Γ1(n) = Z[×]_p.
- If we try to take n = 0 then there are various technical differences but morally R(0) = Q(µ_{p∞}).
- If n = 1 then R(1) is the p-adic completion of complex K-theory and the action of Z[×]_p is by Adams operations.
- If n > 1 then we cannot fully compute $\pi_* R(n)$ but still we can prove many things about R(n).
- Another construction: $R(n) = e.L_{K(n)}\Sigma^+_{\infty}B^nC_{p\infty}$, for a certain idempotent *e*. This is a kind of "higher cyclotomic extension".

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- There is a canonical determinant map det: Γ(n) → Z[×]_p, which is surjective. We write Γ₁(n) for the kernel.
- We put R(n) = E(n)^{hΓ1(n)} and call this Westerland K-theory. This is a faithful Galois extension of L_{K(n)}S with Galois group Γ(n)/Γ1(n) = Z_p[×].
- If we try to take n = 0 then there are various technical differences but morally R(0) = Q(µ_p∞).
- If n = 1 then R(1) is the p-adic completion of complex K-theory and the action of Z[×]_p is by Adams operations.
- If n > 1 then we cannot fully compute $\pi_* R(n)$ but still we can prove many things about R(n).
- Another construction: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension".

- ► There is a canonical determinant map det: $\Gamma(n) \to \mathbb{Z}_p^{\times}$, which is surjective. We write $\Gamma_1(n)$ for the kernel.
- We put R(n) = E(n)^{hΓ₁(n)} and call this Westerland K-theory. This is a faithful Galois extension of L_{K(n)}S with Galois group Γ(n)/Γ₁(n) = Z_p[×].
- If we try to take n = 0 then there are various technical differences but morally R(0) = Q(µ_p∞).
- If n = 1 then R(1) is the p-adic completion of complex K-theory and the action of Z[×]_p is by Adams operations.
- If n > 1 then we cannot fully compute $\pi_* R(n)$ but still we can prove many things about R(n).
- Another construction: $R(n) = e.L_{K(n)}\Sigma^{+}_{+}B^nC_{p^{\infty}}$, for a certain idempotent *e*. This is a kind of "higher cyclotomic extension".

- ► There is a canonical determinant map det: $\Gamma(n) \to \mathbb{Z}_p^{\times}$, which is surjective. We write $\Gamma_1(n)$ for the kernel.
- We put R(n) = E(n)^{hΓ₁(n)} and call this Westerland K-theory. This is a faithful Galois extension of L_{K(n)}S with Galois group Γ(n)/Γ₁(n) = Z_p[×].
- If we try to take n = 0 then there are various technical differences but morally R(0) = Q(µ_{p∞}).
- If n = 1 then R(1) is the p-adic completion of complex K-theory and the action of Z[×]_p is by Adams operations.
- If n > 1 then we cannot fully compute $\pi_* R(n)$ but still we can prove many things about R(n).
- Another construction: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension".

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► There is a canonical determinant map det: $\Gamma(n) \to \mathbb{Z}_p^{\times}$, which is surjective. We write $\Gamma_1(n)$ for the kernel.
- We put R(n) = E(n)^{hΓ₁(n)} and call this Westerland K-theory. This is a faithful Galois extension of L_{K(n)}S with Galois group Γ(n)/Γ₁(n) = Z_p[×].
- If we try to take n = 0 then there are various technical differences but morally R(0) = Q(µ_{p∞}).
- If n = 1 then R(1) is the p-adic completion of complex K-theory and the action of Z[×]_p is by Adams operations.
- If n > 1 then we cannot fully compute $\pi_* R(n)$ but still we can prove many things about R(n).
- Another construction: $R(n) = e.L_{K(n)}\Sigma^{\infty}_{+}B^nC_{p^{\infty}}$, for a certain idempotent *e*. This is a kind of "higher cyclotomic extension".

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- There is a canonical determinant map det: Γ(n) → Z[×]_p, which is surjective. We write Γ₁(n) for the kernel.
- We put R(n) = E(n)^{hΓ₁(n)} and call this Westerland K-theory. This is a faithful Galois extension of L_{K(n)}S with Galois group Γ(n)/Γ₁(n) = Z_p[×].
- If we try to take n = 0 then there are various technical differences but morally R(0) = Q(µ_{p∞}).
- If n = 1 then R(1) is the p-adic completion of complex K-theory and the action of Z[×]_p is by Adams operations.
- If n > 1 then we cannot fully compute π_∗R(n) but still we can prove many things about R(n).
- Another construction: $R(n) = e.L_{K(n)}\Sigma^{\infty}_{+}B^nC_{\rho^{\infty}}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension".

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
Westerland K-theory

- ► There is a canonical determinant map det: $\Gamma(n) \to \mathbb{Z}_p^{\times}$, which is surjective. We write $\Gamma_1(n)$ for the kernel.
- We put R(n) = E(n)^{hΓ₁(n)} and call this Westerland K-theory. This is a faithful Galois extension of L_{K(n)}S with Galois group Γ(n)/Γ₁(n) = Z_p[×].
- If we try to take n = 0 then there are various technical differences but morally R(0) = Q(µ_{p∞}).
- If n = 1 then R(1) is the p-adic completion of complex K-theory and the action of Z[×]_p is by Adams operations.
- If n > 1 then we cannot fully compute $\pi_* R(n)$ but still we can prove many things about R(n).
- Another construction: $R(n) = e.L_{K(n)}\Sigma^{+}_{+}B^{n}C_{\rho^{\infty}}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension".

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ We can choose $a \in \mathbb{Z}_p^{\times}$ that generates a dense subgroup iso to \mathbb{Z} ; then $L_{K(n)}S = R(n)^{h\mathbb{Z}_p^{\times}} \simeq R(n)^{h\mathbb{Z}} = \operatorname{fib}(\psi^a - 1: R(n) \to R(n)).$

Westerland K-theory

- There is a canonical determinant map det: Γ(n) → Z[×]_p, which is surjective. We write Γ₁(n) for the kernel.
- We put R(n) = E(n)^{hΓ₁(n)} and call this Westerland K-theory. This is a faithful Galois extension of L_{K(n)}S with Galois group Γ(n)/Γ₁(n) = Z_p[×].
- If we try to take n = 0 then there are various technical differences but morally R(0) = Q(µ_{p∞}).
- If n = 1 then R(1) is the p-adic completion of complex K-theory and the action of Z[×]_p is by Adams operations.
- If n > 1 then we cannot fully compute $\pi_* R(n)$ but still we can prove many things about R(n).
- Another construction: $R(n) = e.L_{K(n)}\Sigma^{+}_{+}B^{n}C_{\rho^{\infty}}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension".

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ We can choose $a \in \mathbb{Z}_p^{\times}$ that generates a dense subgroup iso to \mathbb{Z} ; then $L_{K(n)}S = R(n)^{h\mathbb{Z}_p^{\times}} \simeq R(n)^{h\mathbb{Z}} = \operatorname{fib}(\psi^a - 1: R(n) \to R(n)).$

- ► Recall: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}} =$ higher cyclotomic extension of $L_{K(n)}S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar *e* and define $TR(n) = e.L_{T(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ with $L_{K(n)} TR(n) = R(n)$. This is a higher cyclotomic extension of $L_{T(n)}S$ with Galois group \mathbb{Z}_{p}^{\times} .
- For the finite stages $TR(n, k) = e.L_{T(n)}\Sigma^{\infty}_{+}B^{n}C_{p^{k}}$ it can be shown that $TR(n, k)^{h(\mathbb{Z}/p^{k})^{\times}} = L_{T(n)}S$, i.e. the extension is faithful.
- However, it does not follow that $TR(n)^{h\mathbb{Z}_p^{\times}} = L_{T(n)}S$, and this will eventually turn out to be false.
- ▶ Choose a finite spectrum F(n) of type n, and put $P(n) = TR(n)^{h\mathbb{Z}_p^{\times}}$ and $Q(n) = F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)}X = L_{T(n)}(P(n) \wedge X) = (L_{T(n)}(R(n) \wedge X))^{h\mathbb{Z}_p^{\times}}$.
- One can show that $L_{K(n)}(TR(n)) = R(n)$, and using this that any K(n)-local spectrum is Q(n)-local.
- Burklund, Hahn, Levy and Schlank construct a T(n + 1)-local spectrum that is not Q(n + 1)-local and therefore not K(n + 1)-local. This disproves TC at height n.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Recall: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ = higher cyclotomic extension of $L_{K(n)} S$.

- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar *e* and define $TR(n) = e.L_{T(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ with $L_{K(n)} TR(n) = R(n)$. This is a higher cyclotomic extension of $L_{T(n)}S$ with Galois group \mathbb{Z}_{p}^{\times} .
- For the finite stages $TR(n, k) = e L_{T(n)} \Sigma^{\infty}_{+} B^{n} C_{p^{k}}$ it can be shown that $TR(n, k)^{h(\mathbb{Z}/p^{k})^{\times}} = L_{T(n)}S$, i.e. the extension is faithful.
- However, it does not follow that $TR(n)^{h\mathbb{Z}_p^{\times}} = L_{T(n)}S$, and this will eventually turn out to be false.
- ▶ Choose a finite spectrum F(n) of type n, and put $P(n) = TR(n)^{h\mathbb{Z}_p^{\times}}$ and $Q(n) = F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)}X = L_{T(n)}(P(n) \wedge X) = (L_{T(n)}(R(n) \wedge X))^{h\mathbb{Z}_p^{\times}}$.
- One can show that $L_{K(n)}(TR(n)) = R(n)$, and using this that any K(n)-local spectrum is Q(n)-local.
- Burklund, Hahn, Levy and Schlank construct a T(n + 1)-local spectrum that is not Q(n + 1)-local and therefore not K(n + 1)-local. This disproves TC at height n.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► Recall: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ = higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar *e* and define $TR(n) = e.L_{T(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ with $L_{K(n)} TR(n) = R(n)$. This is a higher cyclotomic extension of $L_{T(n)}S$ with Galois group \mathbb{Z}_{p}^{\times} .
- For the finite stages $TR(n,k) = e.L_{T(n)}\Sigma^{\infty}_{+}B^{n}C_{p^{k}}$ it can be shown that $TR(n,k)^{h(\mathbb{Z}/p^{k})^{\times}} = L_{T(n)}S$, i.e. the extension is faithful.
- However, it does not follow that $TR(n)^{h\mathbb{Z}_p^{\times}} = L_{T(n)}S$, and this will eventually turn out to be false.
- ▶ Choose a finite spectrum F(n) of type n, and put $P(n) = TR(n)^{h\mathbb{Z}_p^{\times}}$ and $Q(n) = F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)}X = L_{T(n)}(P(n) \wedge X) = (L_{T(n)}(R(n) \wedge X))^{h\mathbb{Z}_p^{\times}}$.
- One can show that $L_{K(n)}(TR(n)) = R(n)$, and using this that any K(n)-local spectrum is Q(n)-local.
- Burklund, Hahn, Levy and Schlank construct a T(n + 1)-local spectrum that is not Q(n + 1)-local and therefore not K(n + 1)-local. This disproves TC at height n.

(日)<

- ► Recall: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ = higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define TR(n) = e.L_{T(n)}Σ[∞]₊ BⁿC_{p[∞]} with L_{K(n)}TR(n) = R(n). This is a higher cyclotomic extension of L_{T(n)}S with Galois group Z[∞]_p.
- For the finite stages $TR(n, k) = e L_{T(n)} \Sigma^{\infty}_{+} B^{n} C_{p^{k}}$ it can be shown that $TR(n, k)^{h(\mathbb{Z}/p^{k})^{\times}} = L_{T(n)}S$, i.e. the extension is faithful.
- However, it does not follow that $TR(n)^{h\mathbb{Z}_p^{\times}} = L_{T(n)}S$, and this will eventually turn out to be false.
- ▶ Choose a finite spectrum F(n) of type n, and put $P(n) = TR(n)^{h\mathbb{Z}_p^{\times}}$ and $Q(n) = F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)}X = L_{T(n)}(P(n) \wedge X) = (L_{T(n)}(R(n) \wedge X))^{h\mathbb{Z}_p^{\times}}$.
- One can show that $L_{K(n)}(TR(n)) = R(n)$, and using this that any K(n)-local spectrum is Q(n)-local.
- Burklund, Hahn, Levy and Schlank construct a T(n + 1)-local spectrum that is not Q(n + 1)-local and therefore not K(n + 1)-local. This disproves TC at height n.

(日)<

- ► Recall: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ = higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define TR(n) = e.L_{T(n)}Σ[∞]₊ BⁿC_{p[∞]} with L_{K(n)}TR(n) = R(n). This is a higher cyclotomic extension of L_{T(n)}S with Galois group Z[∞]_p.
- For the finite stages $TR(n,k) = e.L_{T(n)}\Sigma^{\infty}_{+}B^{n}C_{p^{k}}$ it can be shown that $TR(n,k)^{h(\mathbb{Z}/p^{k})^{\times}} = L_{T(n)}S$, i.e. the extension is faithful.
- ▶ However, it does not follow that TR(n)^{hZ[×]}_p = L_{T(n)}S, and this will eventually turn out to be false.
- ▶ Choose a finite spectrum F(n) of type n, and put $P(n) = TR(n)^{h\mathbb{Z}_p^{\times}}$ and $Q(n) = F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)}X = L_{T(n)}(P(n) \wedge X) = (L_{T(n)}(R(n) \wedge X))^{h\mathbb{Z}_p^{\times}}$.
- One can show that $L_{K(n)}(TR(n)) = R(n)$, and using this that any K(n)-local spectrum is Q(n)-local.
- Burklund, Hahn, Levy and Schlank construct a T(n + 1)-local spectrum that is not Q(n + 1)-local and therefore not K(n + 1)-local. This disproves TC at height n.

- ► Recall: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ = higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define TR(n) = e.L_{T(n)}Σ[∞]₊ BⁿC_{p[∞]} with L_{K(n)}TR(n) = R(n). This is a higher cyclotomic extension of L_{T(n)}S with Galois group Z[∞]_p.
- For the finite stages $TR(n,k) = e.L_{T(n)}\Sigma^{\infty}_{+}B^{n}C_{p^{k}}$ it can be shown that $TR(n,k)^{h(\mathbb{Z}/p^{k})^{\times}} = L_{T(n)}S$, i.e. the extension is faithful.
- ► However, it does not follow that TR(n)^{hZ[×]}_p = L_{T(n)}S, and this will eventually turn out to be false.
- ▶ Choose a finite spectrum F(n) of type n, and put $P(n) = TR(n)^{h\mathbb{Z}_p^{\times}}$ and $Q(n) = F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)}X = L_{T(n)}(P(n) \wedge X) = (L_{T(n)}(R(n) \wedge X))^{h\mathbb{Z}_p^{\times}}$.
- One can show that $L_{K(n)}(TR(n)) = R(n)$, and using this that any K(n)-local spectrum is Q(n)-local.
- Burklund, Hahn, Levy and Schlank construct a T(n + 1)-local spectrum that is not Q(n + 1)-local and therefore not K(n + 1)-local. This disproves TC at height n.

- ► Recall: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ = higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define TR(n) = e.L_{T(n)}Σ[∞]₊ BⁿC_{p[∞]} with L_{K(n)}TR(n) = R(n). This is a higher cyclotomic extension of L_{T(n)}S with Galois group Z[∞]_p.
- For the finite stages $TR(n,k) = e.L_{T(n)}\Sigma^{\infty}_{+}B^{n}C_{p^{k}}$ it can be shown that $TR(n,k)^{h(\mathbb{Z}/p^{k})^{\times}} = L_{T(n)}S$, i.e. the extension is faithful.
- ► However, it does not follow that TR(n)^{hZ[×]_p} = L_{T(n)}S, and this will eventually turn out to be false.
- ▶ Choose a finite spectrum F(n) of type n, and put $P(n) = TR(n)^{h\mathbb{Z}_p^{\times}}$ and $Q(n) = F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)}X = L_{T(n)}(P(n) \wedge X) = (L_{T(n)}(R(n) \wedge X))^{h\mathbb{Z}_p^{\times}}$.
- One can show that L_{K(n)}(TR(n)) = R(n), and using this that any K(n)-local spectrum is Q(n)-local.
- Burklund, Hahn, Levy and Schlank construct a T(n + 1)-local spectrum that is not Q(n + 1)-local and therefore not K(n + 1)-local. This disproves TC at height n.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► Recall: $R(n) = e.L_{K(n)} \Sigma^{\infty}_{+} B^n C_{p^{\infty}}$ = higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define TR(n) = e.L_{T(n)}Σ[∞]₊ BⁿC_{p[∞]} with L_{K(n)}TR(n) = R(n). This is a higher cyclotomic extension of L_{T(n)}S with Galois group Z[∞]_p.
- For the finite stages $TR(n,k) = e L_{T(n)} \Sigma^{\infty}_{+} B^n C_{p^k}$ it can be shown that $TR(n,k)^{h(\mathbb{Z}/p^k)^{\times}} = L_{T(n)}S$, i.e. the extension is faithful.
- ► However, it does not follow that TR(n)^{hZ[×]_p} = L_{T(n)}S, and this will eventually turn out to be false.
- ▶ Choose a finite spectrum F(n) of type n, and put $P(n) = TR(n)^{h\mathbb{Z}_p^{\times}}$ and $Q(n) = F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)}X = L_{T(n)}(P(n) \wedge X) = (L_{T(n)}(R(n) \wedge X))^{h\mathbb{Z}_p^{\times}}$.
- One can show that $L_{K(n)}(TR(n)) = R(n)$, and using this that any K(n)-local spectrum is Q(n)-local.
- Burklund, Hahn, Levy and Schlank construct a T(n+1)-local spectrum that is not Q(n+1)-local and therefore not K(n+1)-local. This disproves TC at height n.

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings(ℤ[U], A) ≃ CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma^{\infty}_{+}U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow GL_1(A)$ of E_{∞} -spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum K(A).
- If F(A) is the category of finitely generated free A-modules and isos, then there is a canonical map Σ[∞]₊ BF(A) → K(A).
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+}BGL_1(A) \rightarrow K(A)$ or a map $BGL_1(A) \rightarrow GL_1(K(A))$ of spaces.
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$
- **Theorem:** We have a commutative diagram:

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A$) \simeq CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma^{\infty}_{+}U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow GL_1(A)$ of E_{∞} -spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum K(A).
- ▶ If $\mathcal{F}(A)$ is the category of finitely generated free *A*-modules and isos, then there is a canonical map $\Sigma^{\infty}_{+}B\mathcal{F}(A) \rightarrow K(A)$.
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+}BGL_1(A) \rightarrow K(A)$ or a map $BGL_1(A) \rightarrow GL_1(K(A))$ of spaces.
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$
- **Theorem:** We have a commutative diagram:

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A$) \simeq CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms Σ[∞]₊ U → A of commutative ring spectra and morphisms U → GL₁(A) of E_∞-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum K(A).
- ▶ If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma^{\infty}_{+}B\mathcal{F}(A) \rightarrow K(A)$.
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+}BGL_1(A) \rightarrow K(A)$ or a map $BGL_1(A) \rightarrow GL_1(K(A))$ of spaces.
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$
- **Theorem:** We have a commutative diagram:

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A$) \simeq CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms Σ[∞]₊ U → A of commutative ring spectra and morphisms U → GL₁(A) of E_∞-spaces.

For a commutative ring spectrum A, we have a K-theory spectrum K(A).

- ▶ If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma^{\infty}_{+}B\mathcal{F}(A) \rightarrow K(A)$.
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+}BGL_1(A) \rightarrow K(A)$ or a map $BGL_1(A) \rightarrow GL_1(K(A))$ of spaces.
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$
- **Theorem:** We have a commutative diagram:

$$\{T(n)\text{-local rings}\} \xrightarrow{L_{T(n+1)}(K(-))} \{T(n+1)\text{-local rings}\}$$

$$L_{T(n)}(-\wedge TR(n)) \downarrow \qquad \qquad \qquad \downarrow L_{T(n+1)}(-\wedge TR(n+1))$$

$$\{T(n)\text{-local rings}\} \xrightarrow{L_{T(n+1)}(K(-))} \{T(n+1)\text{-local rings}\}$$

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A$) \simeq CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms Σ[∞]₊U → A of commutative ring spectra and morphisms U → GL₁(A) of E_∞-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum K(A).
- ▶ If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma^{\infty}_{+}B\mathcal{F}(A) \rightarrow K(A)$.
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+}BGL_1(A) \rightarrow K(A)$ or a map $BGL_1(A) \rightarrow GL_1(K(A))$ of spaces
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$
- **Theorem:** We have a commutative diagram:

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A$) \simeq CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms Σ[∞]₊U → A of commutative ring spectra and morphisms U → GL₁(A) of E_∞-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum K(A).
- ▶ If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma^{\infty}_{+}B\mathcal{F}(A) \rightarrow K(A)$.
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+}BGL_1(A) \rightarrow K(A)$ or a map $BGL_1(A) \rightarrow GL_1(K(A))$ of spaces.
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$
- **Theorem:** We have a commutative diagram:

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A$) \simeq CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms Σ[∞]₊U → A of commutative ring spectra and morphisms U → GL₁(A) of E_∞-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum K(A).
- ▶ If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma^{\infty}_{+}B\mathcal{F}(A) \rightarrow K(A)$.
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+}BGL_1(A) \rightarrow K(A)$ or a map $BGL_1(A) \rightarrow GL_1(K(A))$ of spaces.
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$

Theorem: We have a commutative diagram:

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A$) \simeq CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms Σ[∞]₊U → A of commutative ring spectra and morphisms U → GL₁(A) of E_∞-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum K(A).
- ▶ If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma^{\infty}_{+}B\mathcal{F}(A) \rightarrow K(A)$.
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+}BGL_1(A) \rightarrow \mathcal{K}(A)$ or a map $BGL_1(A) \rightarrow GL_1(\mathcal{K}(A))$ of spaces.
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$
- **Theorem:** We have a commutative diagram:

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A$) \simeq CommGrp(U, GL₁(A)).
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms Σ[∞]₊U → A of commutative ring spectra and morphisms U → GL₁(A) of E_∞-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum K(A).
- ▶ If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma^{\infty}_{+}B\mathcal{F}(A) \rightarrow K(A)$.
- ▶ By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma^{\infty}_{+} BGL_1(A) \rightarrow \mathcal{K}(A)$ or a map $BGL_1(A) \rightarrow GL_1(\mathcal{K}(A))$ of spaces.
- ▶ By the construction of TR(n) we have $\Sigma^{\infty}_{+}B^{n}C_{p^{\infty}} \rightarrow TR(n)$ giving $K(TR(n)) \leftarrow \Sigma^{\infty}_{+}B^{n+1}C_{p^{\infty}} \rightarrow TR(n+1).$
- **Theorem:** We have a commutative diagram:

$$\{T(n)\text{-local rings}\} \xrightarrow{\mathcal{L}_{T(n+1)}(K(-))} \{T(n+1)\text{-local rings}\}$$

$$L_{T(n)}(-\wedge TR(n)) \downarrow \qquad \qquad \qquad \downarrow \mathcal{L}_{T(n+1)}(-\wedge TR(n+1))$$

$$\{T(n)\text{-local rings}\} \xrightarrow{\mathcal{L}_{T(n+1)}(K(-))} \{T(n+1)\text{-local rings}\}$$

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- There is an action of Z[∞]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide:
 We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).
- But A is T(n + 1)-local by definition,
 so T(n + 1)-localisation is different from K(n + 1)-localisation,
 so TC is false.

A D N A 目 N A E N A E N A B N A C N

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- There is an action of Z[∞]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide: We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).
- But A is T(n + 1)-local by definition,
 so T(n + 1)-localisation is different from K(n + 1)-localisation,
 so TC is false.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- There is an action of Z[∞]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide: We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).
- But A is T(n + 1)-local by definition,
 so T(n + 1)-localisation is different from K(n + 1)-localisation,
 so TC is false.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- ► There is an action of Z[×]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide: We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).
- But A is T(n + 1)-local by definition,
 so T(n + 1)-localisation is different from K(n + 1)-localisation,
 so TC is false.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- ► There is an action of Z[×]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.

► Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.

Using previous slide:
 We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.

By completely different methods: BHLS show that A → B is not an equivalence.

They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).

But A is T(n + 1)-local by definition,
 so T(n + 1)-localisation is different from K(n + 1)-localisation,
 so TC is false.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- ► There is an action of Z[×]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- ► Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide:
 We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.

By completely different methods: BHLS show that A → B is not an equivalence.

They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).

But A is T(n + 1)-local by definition,
 so T(n + 1)-localisation is different from K(n + 1)-localisation,
 so TC is false.

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- ► There is an action of Z[×]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- ► Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide:
 We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).

But A is T(n + 1)-local by definition,
 so T(n + 1)-localisation is different from K(n + 1)-localisation,
 so TC is false.

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- ► There is an action of Z[×]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide:
 We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- ► They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).
- ▶ But A is T(n + 1)-local by definition, so T(n + 1)-localisation is different from K(n + 1)-localisation, so TC is false.

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- ► There is an action of Z[×]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- ► Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide:
 We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).
- But A is T(n+1)-local by definition,

so T(n + 1)-localisation is different from K(n + 1)-localisation, so TC is false.

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- ► There is an action of Z[×]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide:
 We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).
- But A is T(n + 1)-local by definition, so T(n + 1)-localisation is different from K(n + 1)-localisation so TC is false.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- There is a spectrum $BP\langle n \rangle$ with $\pi_*(BP\langle n \rangle) = \mathbb{Z}_{(p)}[v_1, \ldots, v_n]$ and $|v_k| = 2(p^k 1)$.
- (If we invert v_n and complete with respect to (v_0, \ldots, v_{n-1}) we get something closely related to E(n).)
- ► There is an action of Z[×]_p on BP⟨n⟩, closely related to higher cyclotomic extensions.
- Compare $A = L_{T(n+1)}(K(BP\langle n \rangle^{h\mathbb{Z}_p^{\times}}))$ with $B = (L_{T(n+1)}(K(BP\langle n \rangle)))^{h\mathbb{Z}_p^{\times}}$.
- Using previous slide:
 We can deduce that B is cyclotomically complete i.e. Q(n+1)-local.
- By completely different methods: BHLS show that A → B is not an equivalence.
- They deduce that: A is not Q(n+1)-local (and thus not K(n+1)-local).
- But A is T(n+1)-local by definition,
 so T(n+1)-localisation is different from K(n+1)-localisation,
 so TC is false.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・