The Telescope Conjecture as Galois Theory

Neil Strickland

November 7, 2023

Classical Galois Theory

- Let $V^{-1} \mathbb{Q}_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect ${ }_{\oplus}$, because \mathbb{D} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
- For $V \in$ Vect $_{\mathbb{O}}$ we have $W=F \otimes V \in$ Vect $_{F}$.

This has a \mathbb{Q}-linear action of G with $W^{G}=V$.

- For $W \in \operatorname{Vect}_{F}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g.
\Rightarrow Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in V^{\text {ect }} \mathbb{Q}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞-category framework:
G acts on $V_{\text {ect }}^{F}$, and the map $V^{\text {ect }} \rightarrow$ Vect $_{F}^{h G}$ is an equivalence.
- This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
\Rightarrow We can define $\phi: F \otimes Q \mathcal{M a p}(G, F)$ by $\phi(a \otimes b)(g)=a g(b)$.
- This is an isomorphism (the "tensor formula").

Classical Galois Theory

- Let $\operatorname{Vect}_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect \mathbb{Q}, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$
- For $V \in$ Vecto we have $W=F \otimes V \in V_{\text {Vect }}^{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$
- For $W \in V^{\text {Vect }}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in \mathrm{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
$>\ln \infty$-category framework:
G acts on Vect_{F}, and the map $\operatorname{Vect}_{\mathbb{Q}} \rightarrow \operatorname{Vect}_{F}^{h G}$ is an equivalence.
- This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture)
\checkmark We can define $\phi: F \otimes_{\mathbb{Q}} F \rightarrow \operatorname{Map}(G, F)$ by $\phi(a \otimes b)(g)=a g(b)$.
- This is an isomorphism (the "tensor formula").

Classical Galois Theory

- Let $\operatorname{Vect}_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect ${ }_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$
- For $V \in$ Vecto we have $W=F \otimes V \in$ Vect $_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$
\Rightarrow For $W \in V^{-}$ect f and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in V^{\text {ect }} \mathbb{Q}_{\text {w }}$ with $W \simeq F \otimes V$.
- In ∞-category framework:
G acts on $V_{\text {ect }}^{F}$, and the map V ecto \rightarrow Vect $_{F}^{h G}$ is an equivalence.
\Rightarrow This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
- We can define $\phi: F \otimes \otimes \rightarrow \operatorname{Map}(G, F)$ by $\phi(a \otimes b)(g)=a g(b)$.
- This is an isomorphism (the "tensor formula").

Classical Galois Theory

- Let $\operatorname{Vect}_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect ${ }_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
\Rightarrow For $V \in$ Vecto we have $W=F \otimes V \in V^{\prime}$ ect $_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$
- For $W \in V_{\text {Vect }}^{F}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in V^{\text {ect }} \mathbb{Q}$ with $W \simeq F \otimes V$.
\rightarrow In ∞-category framework:
G acts on $V^{\text {ect }}{ }_{F}$, and the map $\operatorname{Vect}_{\mathbb{Q}} \rightarrow \operatorname{Vect}_{F}^{h G}$ is an equivalence.
- This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
- We can define $\phi: F \otimes \mathbb{Q} F \rightarrow \operatorname{Map}(G, F)$ by $\phi(a \otimes b)(g)=a g(b)$.
- This is an isomorphism (the "tensor formula").

Classical Galois Theory

- Let $\mathrm{Vect}_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect $_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
- For $V \in$ Vect $_{\mathbb{Q}}$ we have $W=F \otimes V \in$ Vect $_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$.
\Rightarrow For $W \in V^{\prime} W$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in V$ ect ${ }_{0}$ with $W \simeq F \otimes V$.
$-\ln \infty$-category framework:
G acts on Vect $_{F}$, and the map Vect \rightarrow Vect $_{F}{ }_{F}$ is an equivalence.
\rightarrow This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture)
- Me can define $\phi: F \Delta a F \rightarrow \operatorname{Map}(G, F)$ by $\phi(a \otimes b)(g)=\operatorname{ag}(b)$
$>$ This is an isomorphism (the "tensor formula").

Classical Galois Theory

- Let $\mathrm{Vect}_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect ${ }_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
- For $V \in$ Vect $_{\mathbb{Q}}$ we have $W=F \otimes V \in$ Vect $_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$.
- For $W \in \operatorname{Vect}_{F}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g.
\Rightarrow Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in V^{\text {ect }} \mathbb{Q}$ with $W \simeq F \otimes V$.
- In ∞-category framework:
G acts on $V^{\text {ect }}{ }_{F}$, and the map $\mathrm{Vecte}_{\mathbb{Q}} \rightarrow \mathrm{Vect}_{F}^{h G}$ is an equivalence.
- This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
\Rightarrow We can define $\phi: F \otimes \mathbb{Q} F \rightarrow \operatorname{Map}(G, F)$ by $\phi(a \otimes b)(g)=a g(b)$. - This is an isomorphism (the "tensor formula").

Classical Galois Theory

- Let $\operatorname{Vect}_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect ${ }_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
- For $V \in \operatorname{Vect}_{\mathbb{Q}}$ we have $W=F \otimes V \in \operatorname{Vect}_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$.
- For $W \in \operatorname{Vect}_{F}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in \operatorname{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
\rightarrow In ∞-category framework:
G acts on Vect_{F}, and the map $\operatorname{Vect}_{\mathbb{Q}} \rightarrow \operatorname{Vect}_{F}^{h G}$ is an equivalence.
\rightarrow This gives a man $K(\mathbb{O}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

Classical Galois Theory

- Let $\mathrm{Vect}_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying $\operatorname{Vect}_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
- For $V \in$ Vect $_{\mathbb{Q}}$ we have $W=F \otimes V \in$ Vect $_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$.
- For $W \in \operatorname{Vect}_{F}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in \operatorname{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞-category framework:
G acts on Vect_{F}, and the map $\operatorname{Vect}_{\mathbb{Q}} \rightarrow \operatorname{Vect}_{F}^{h G}$ is an equivalence.
\rightarrow This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).

Classical Galois Theory

- Let $V^{-1} t_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect $_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
- For $V \in$ Vect $_{\mathbb{Q}}$ we have $W=F \otimes V \in$ Vect $_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$.
- For $W \in \operatorname{Vect}_{F}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in \operatorname{Vect}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞-category framework:
G acts on Vect_{F}, and the map $\mathrm{Vect}_{\mathbb{Q}} \rightarrow \operatorname{Vect}_{F}^{h G}$ is an equivalence.
- This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
\Rightarrow We can define $\phi: F \otimes Q F \rightarrow \operatorname{Map}(G, F)$ by $\phi(a \otimes b)(g)=a g(b)$. - This is an isomorphism (the "tensor formula").

Classical Galois Theory

- Let $V^{-1} t_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect $_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
- For $V \in$ Vect $_{\mathbb{Q}}$ we have $W=F \otimes V \in$ Vect $_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$.
- For $W \in \operatorname{Vect}_{F}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in$ Vect $_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞-category framework:
G acts on Vect_{F}, and the map $\mathrm{Vect}_{\mathbb{Q}} \rightarrow \operatorname{Vect}_{F}^{h G}$ is an equivalence.
- This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
- We can define $\phi: F \otimes_{\mathbb{Q}} F \rightarrow \operatorname{Map}(G, F)$ by $\phi(a \otimes b)(g)=a g(b)$.
\rightarrow This is an isomorphism (the "tensor formula")

Classical Galois Theory

- Let $V^{-1} t_{\mathbb{Q}}$ be the category of finite-dimensional vector spaces over \mathbb{Q}.
- We have some trouble when studying Vect $_{\mathbb{Q}}$, because \mathbb{Q} is not algebraically closed, so endomorphisms need not have eigenvalues.
- Consider a finite Galois extension F / \mathbb{Q} with Galois group $G=\operatorname{Aut}(F)$.
- For $V \in$ Vect $_{\mathbb{Q}}$ we have $W=F \otimes V \in$ Vect $_{F}$. This has a \mathbb{Q}-linear action of G with $W^{G}=V$.
- For $W \in \operatorname{Vect}_{F}$ and $g \in G$ define $g^{*} W$ to be the same abelian group but with F-action twisted by g.
- Given coherent identifications $g^{*} W \simeq W$ for all $g \in G$, we can construct $V \in V^{\text {ect }} \mathbb{Q}_{\mathbb{Q}}$ with $W \simeq F \otimes V$.
- In ∞-category framework:

- This gives a map $K(\mathbb{Q}) \rightarrow K(F)^{h G}$, which is close to being an equivalence (Lichtenbaum-Quillen conjecture).
- We can define $\phi: F \otimes_{\mathbb{Q}} F \rightarrow \operatorname{Map}(G, F)$ by $\phi(a \otimes b)(g)=a g(b)$.
- This is an isomorphism (the "tensor formula").

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel
(= homotopy fibre) F, we have a short exact sequence
$\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object

$$
W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)
$$

$>$ Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$.

- The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context.
- Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is $W \Longrightarrow F \otimes W \Longrightarrow F^{\otimes 2} \otimes W \Longrightarrow F^{\otimes 3} \otimes W$
(and this is like an Adams resolution).
- For $G=\langle g\rangle \simeq \mathbb{Z}$, we just have $W^{h G}=\operatorname{fib}(g-1)\left(\right.$ as $\left.B G \simeq S^{1}\right)$.

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
\Rightarrow One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object $W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)$
- Here $\delta_{i}: M a p(G, W) \rightarrow M a p\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$.
- The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context.
\Rightarrow Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is $W \Longrightarrow F \otimes W \Longrightarrow F^{\otimes 2} \otimes W \Longrightarrow F^{\otimes 3} \otimes W$ (and this is like an Adams resolution).
\Rightarrow For $G=\langle g\rangle \simeq \mathbb{Z}$, we just have $W^{h G}=\operatorname{fib}(g-1)\left(\right.$ as $\left.B G \simeq S^{1}\right)$.

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
\rightarrow For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel
(= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$
\Rightarrow So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
\rightarrow Consider instead the cosimplicial object $M \Longrightarrow \operatorname{Map}(G, M) \Longrightarrow \operatorname{Map}\left(G^{2}, M\right) \sqsupseteq \operatorname{Map}\left(G^{2}, W\right)$
- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$
- The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context
- Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is $W \Longrightarrow F \otimes W=F^{\otimes 2} \otimes W \Longrightarrow F^{\otimes 3} \otimes W$
(and this is like an Adams resolution)

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel ($=$ homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
\rightarrow So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
\rightarrow Consider instead the cosimplicial object $M \longrightarrow \operatorname{Map}(G, M) \Longrightarrow \operatorname{Map}\left(G^{2}, M\right) \rightleftarrows \operatorname{Map}\left(G^{2}, W\right)$
- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$
\rightarrow The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context
\rightarrow Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is
(and this is like an Adams resolution)

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object $W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)$
- Here $\delta: \operatorname{Map}(G, W) \rightarrow M a p\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$ - The (homotopy) inverse limit is $W^{h 6}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context.
- Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is
(and this is like an Adams resolution)

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object

$$
W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)
$$

- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$
- The (homotopy) inverse limit is $W^{h 6}$, the homotopy fixed points. Here $\pi_{k}\left(W^{i c}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context
- Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is
(and this is like an Adams resolution)

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object

$$
W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)
$$

- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$.

- The (homotopy) inverse limit is $W^{h 6}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context

 - Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is (and this is like an Adams resolution)
Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object

$$
W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)
$$

- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$.
- The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points.
- Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is
(and this is like an Adams resolution)

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object

$$
W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)
$$

- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$.
- The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context.

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object

$$
W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)
$$

- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$.
- The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context.
- Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is

$$
W \Longrightarrow F \otimes W \Longrightarrow F^{\otimes 2} \otimes W \Longrightarrow F^{\otimes 3} \otimes W
$$

(and this is like an Adams resolution)

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object

$$
W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)
$$

- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$.
- The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context.
- Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is

$$
W \Longrightarrow F \otimes W \Longrightarrow F^{\otimes 2} \otimes W \Longrightarrow F^{\otimes 3} \otimes W
$$

(and this is like an Adams resolution).

Fixed points and homotopy fixed points

- Suppose that G acts on W. What is W^{G} ?
- One answer: W^{G} is the equaliser of the maps $\delta_{0}, \delta_{1}: W \rightarrow \operatorname{Map}(G, W)$ given by $\delta_{0}(w)(g)=g w$ and $\delta_{1}(w)(g)=w$, i.e. the kernel of $\delta_{0}-\delta_{1}$.
- For a map $f: X \rightarrow Y$ of spectra with ∞-categorical kernel (= homotopy fibre) F, we have a short exact sequence $\operatorname{cok}\left(\pi_{k+1}(f)\right) \rightarrow \pi_{k}(F) \rightarrow \operatorname{ker}\left(\pi_{k}(f)\right)$.
- So $\pi_{k}(F)$ mixes the kernel and cokernel: not usually what we want.
- Consider instead the cosimplicial object

$$
W \Longrightarrow \operatorname{Map}(G, W) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right) \Longrightarrow \operatorname{Map}\left(G^{2}, W\right)
$$

- Here $\delta_{i}: \operatorname{Map}(G, W) \rightarrow \operatorname{Map}\left(G^{2}, W\right)$ is given by $\left(\delta_{0} w\right)(g, h)=g w(h),\left(\delta_{1} w\right)(g, h)=w(g h),\left(\delta_{2} w\right)(g, h)=w(g)$.
- The (homotopy) inverse limit is $W^{h G}$, the homotopy fixed points. Here $\pi_{k}\left(W^{h G}\right)=H^{k}(G ; W)$, which is 0 for $k>0$ in Galois context.
- Using $F \otimes F=\operatorname{Map}(G, F)$ we see that the cosimplicial object is $W \Longrightarrow F \otimes W \Longrightarrow F^{\otimes 2} \otimes W \Longrightarrow F^{\otimes 3} \otimes W$ (and this is like an Adams resolution).
- For $G=\langle g\rangle \simeq \mathbb{Z}$, we just have $W^{h G}=\operatorname{fib}(g-1)\left(\right.$ as $\left.B G \simeq S^{1}\right)$.

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \longmapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \longleftarrow \Gamma_{2} \leftarrow \Gamma_{3} \leftarrow \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)
- Similarly, for $W \in$ Vect - we have $\overline{\mathbb{O}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$.
and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h \Gamma}=\mathbb{Q}$.
- Put $\mu_{p^{\infty}}=\left\{u \in \overline{\mathbb{Q}} \mid u^{p^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$.
- Put $L=\mathbb{Q}\left(\mu_{p} \infty\right)=$ maximal p-cyclotomic extension of \mathbb{Q}.

This is as good as \bar{Q} for studying representations of finite p-groups.

- For $a \in \mathbb{Z} \backslash p \mathbb{Z}$ there is $\psi^{a} \in \operatorname{Aut}(L)$ with $\psi^{a}(u)=u^{a}$ for all $u \in \mu_{p \infty}$. This also works for $a \in \mathbb{Z}_{p}^{\times}=\lim _{\leftarrow}\left(\mathbb{Z} / p^{k}\right)^{x}$
- We find that L is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times\left(1+p \mathbb{Z}_{p}\right) \simeq C_{p-1} \times\left(1+p \mathbb{Z}_{p}\right)$.
- A construction: $\mathbb{Q}\left(\mu_{p^{n}}\right)=(1-e) \cdot \mathbb{Q}\left[C_{p^{n}}\right]$, where $e=(p-1)^{-1} \sum_{a \in \mathbb{F}_{p} \times} \psi^{a}$.

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \leftarrow \Gamma_{2} \leftarrow \Gamma_{3}$
Then Γ is the inverse limit of the groups Γ r, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)
- Similarly, for $W \in V^{2}$ ect ${ }_{\bar{W}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h \Gamma}=\mathbb{Q}$.
- Put $\mu_{p^{\infty}}=\left\{u \in \overline{\mathbb{Q}} \mid u^{p^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$
- Put $L=\mathbb{Q}\left(\mu_{\rho} \infty\right)=$ maximal p-cyclotomic extension of \mathbb{Q}. This is as good as © for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \backslash p \mathbb{Z}$ there is $\psi^{a} \in \operatorname{Aut}(L)$ with $\psi^{a}(u)=u^{a}$ for all $u \in \mu_{p} \infty$ This also works for $a \in \mathbb{Z}_{p}^{\times}=\lim _{k}\left(\mathbb{Z} / p^{k}\right)$
- We find that L is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times\left(1+p \mathbb{Z}_{p}\right) \simeq C_{p-1} \times\left(1+p \mathbb{Z}_{p}\right)$.
- A construction: $\mathbb{Q}\left(\mu_{p^{n}}\right)=(1-e) \cdot \mathbb{Q}\left[C_{p^{n}}\right]$, where $e=(p-1)^{-1} \sum_{a \in \mathbb{F}^{\times}} \psi^{a}$

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \longmapsto K_{3} \longmapsto \cdots$ with union \mathbb{Q} and finite Galois groups $\Gamma_{1} \leftarrow \Gamma_{2} \leftarrow \Gamma_{3} \leftarrow$
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)
- Similarly for $W \in$ Vect- we have $\mathbb{(T}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$,
and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h \Gamma}=\mathbb{Q}$.
- Put $\mu_{p \infty}=\left\{u \in \overline{\mathbb{Q}} \mid u^{p^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$
- Put $L=\mathbb{Q}\left(\mu_{p} \infty\right)=$ maximal p-cyclotomic extension of \mathbb{Q}.

This is as good as $\overline{\mathbb{Q}}$ for studying representations of finite p-groups.

- For $a \in \mathbb{Z} \backslash p \mathbb{Z}$ there is $\psi^{a} \in \operatorname{Aut}(L)$ with $\psi^{a}(u)=u^{a}$ for all $u \in \mu_{p} \infty$ This also works for $a \in \mathbb{Z}_{p}^{\times}=\lim \left(\mathbb{Z} / p^{k}\right)$
- We find that L is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times\left(1+p \mathbb{Z}_{p}\right) \simeq C_{p-1} \times\left(1+p \mathbb{Z}_{p}\right)$
\checkmark A construction: $\mathbb{Q}\left(\mu_{p^{n}}\right)=(1-e) \cdot \mathbb{Q}\left[C_{p^{n}}\right]$, where $e=(p-1)^{-1} \sum$

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \leftarrow \Gamma_{2} \leftarrow \Gamma_{3} \leftarrow \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \varangle \Gamma_{2} \varangle \Gamma_{3} \varangle \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \leftarrow \Gamma_{2} \leftarrow \Gamma_{3} \nleftarrow \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous = locally constant.)
- Similarly, for $W \in$ Vect $_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h \Gamma}=\mathbb{Q}$.
\rightarrow Put $L=\mathbb{Q}\left(\mu_{p} \infty\right)=$ maximal p-cyclotomic extension of \mathbb{Q}.
This is as good as $\overline{\mathbb{Q}}$ for studying representations of finite p-groups.
\rightarrow This also works for $a \in \mathbb{Z}_{p}^{\times}=\lim \left(\mathbb{Z} / p^{k}\right)$
- We find that I is Galois with groun $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times\left(1+p \mathbb{Z}_{p}\right) \simeq C_{p-1} \times\left(1+p \mathbb{Z}_{p}\right)$
- A construction: $\mathbb{Q}\left(\mu_{p^{n}}\right)=(1-e) \cdot \mathbb{Q}\left[C_{p^{n}}\right]$, where $e=(p-1)^{-1} \sum$

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \varangle \Gamma_{2} \varangle \Gamma_{3} \varangle \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h \Gamma}=\mathbb{Q}$.
- Put $\mu_{\rho} \infty=\left\{u \in \overline{\mathbb{Q}} \mid u^{\rho^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$.

This is as good as $\overline{\mathbb{Q}}$ for studying representations of finite p-groups.

- For $a \in \mathbb{Z} \backslash p \mathbb{Z}$ there is $\psi^{a} \in \operatorname{Aut}(L)$ with $\psi^{a}(u)=u^{a}$ for all $u \in \mu_{p \infty}$ This also works for $a \in \mathbb{Z}_{p}^{\times}=\lim \left(\mathbb{Z} / p^{k}\right)$
- We find that L is Galois with group
- A construction: $\mathbb{Q}\left(\mu_{\rho^{n}}\right)=(1-e) \cdot \mathbb{Q}\left[C_{p^{n}}\right]$, where $e=(p-1)^{-1} \sum$

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \nleftarrow \Gamma_{2} \nleftarrow \Gamma_{3} \nleftarrow \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous = locally constant.)
- Similarly, for $W \in$ Vect $_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h \Gamma}=\mathbb{Q}$.
- Put $\mu_{p \infty}=\left\{u \in \overline{\mathbb{Q}} \mid u^{p^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$.
- Put $L=\mathbb{Q}\left(\mu_{p} \infty\right)=$ maximal p-cyclotomic extension of \mathbb{Q}.

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \varangle \Gamma_{2} \varangle \Gamma_{3} \varangle \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\ulcorner }=\mathbb{Q}$.
- Put $\mu_{p^{\infty}}=\left\{u \in \overline{\mathbb{Q}} \mid u^{\rho^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$.
- Put $L=\mathbb{Q}\left(\mu_{\rho^{\infty}}\right)=$ maximal p-cyclotomic extension of \mathbb{Q}. This is as good as $\overline{\mathbb{Q}}$ for studying representations of finite p-groups.
- We find that L is Galois with group
\rightarrow A construction: \square

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \varangle \Gamma_{2} \varangle \Gamma_{3} \varangle \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\ulcorner }=\mathbb{Q}$.
- Put $\mu_{p^{\infty}}=\left\{u \in \overline{\mathbb{Q}} \mid u^{\rho^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$.
- Put $L=\mathbb{Q}\left(\mu_{\rho^{\infty}}\right)=$ maximal p-cyclotomic extension of \mathbb{Q}. This is as good as $\overline{\mathbb{Q}}$ for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \backslash p \mathbb{Z}$ there is $\psi^{a} \in \operatorname{Aut}(L)$ with $\psi^{a}(u)=u^{a}$ for all $u \in \mu_{p^{\infty}}$.

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \leftarrow \Gamma_{2} \varangle \Gamma_{3} \varangle \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\ulcorner }=\mathbb{Q}$.
- Put $\mu_{p^{\infty}}=\left\{u \in \overline{\mathbb{Q}} \mid u^{\rho^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$.
- Put $L=\mathbb{Q}\left(\mu_{\rho^{\infty}}\right)=$ maximal p-cyclotomic extension of \mathbb{Q}. This is as good as $\overline{\mathbb{Q}}$ for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \backslash p \mathbb{Z}$ there is $\psi^{a} \in \operatorname{Aut}(L)$ with $\psi^{a}(u)=u^{a}$ for all $u \in \mu_{p^{\infty}}$. This also works for $a \in \mathbb{Z}_{p}^{\times}=\lim _{\leftarrow_{k}}\left(\mathbb{Z} / p^{k}\right)^{\times}$.
\rightarrow We find that L is Galois with group
- A construction: \square

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \varangle \Gamma_{2} \varangle \Gamma_{3} \varangle \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous $=$ locally constant.)
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h\ulcorner }=\mathbb{Q}$.
- Put $\mu_{p^{\infty}}=\left\{u \in \overline{\mathbb{Q}} \mid u^{\rho^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$.
- Put $L=\mathbb{Q}\left(\mu_{\rho} \infty\right)=$ maximal p-cyclotomic extension of \mathbb{Q}. This is as good as $\overline{\mathbb{Q}}$ for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \backslash p \mathbb{Z}$ there is $\psi^{a} \in \operatorname{Aut}(L)$ with $\psi^{a}(u)=u^{a}$ for all $u \in \mu_{p^{\infty}}$. This also works for $a \in \mathbb{Z}_{p}^{\times}=\lim _{\leftarrow_{k}}\left(\mathbb{Z} / p^{k}\right)^{\times}$.
- We find that L is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times\left(1+p \mathbb{Z}_{p}\right) \simeq C_{p-1} \times\left(1+p \mathbb{Z}_{p}\right)$.

Infinite Galois extensions

- Often we want infinite Galois extensions, like $\overline{\mathbb{Q}}=$ algebraic closure of \mathbb{Q}.
- The Galois group $\Gamma=\operatorname{Aut}(\overline{\mathbb{Q}})$ is large and hard to understand directly.
- We can find finite Galois extensions $K_{1} \mapsto K_{2} \mapsto K_{3} \mapsto \cdots$ with union $\overline{\mathbb{Q}}$ and finite Galois groups $\Gamma_{1} \varangle \Gamma_{2} \varangle \Gamma_{3} \varangle \cdots$.
Then Γ is the inverse limit of the groups Γ_{r}, which is a profinite group.
- Now $\overline{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ is the ring $C(\Gamma, \overline{\mathbb{Q}})$ of continuous maps from Γ to $\overline{\mathbb{Q}}$. (Here $\overline{\mathbb{Q}}$ is discrete so continuous = locally constant.)
- Similarly, for $W \in \operatorname{Vect}_{\overline{\mathbb{Q}}}$ we have $\overline{\mathbb{Q}}^{\otimes r} \otimes W=C\left(\Gamma^{r}, W\right)$, and these form a cosimplicial object from which we get $\overline{\mathbb{Q}}^{h \Gamma}=\mathbb{Q}$.
- Put $\mu_{p^{\infty}}=\left\{u \in \overline{\mathbb{Q}} \mid u^{\rho^{k}}=1\right.$ for $\left.k \gg 0\right\}=\left\{\exp \left(2 \pi i m / p^{k}\right) \mid m, k \in \mathbb{N}\right\}$.
- Put $L=\mathbb{Q}\left(\mu_{\rho} \infty\right)=$ maximal p-cyclotomic extension of \mathbb{Q}. This is as good as $\overline{\mathbb{Q}}$ for studying representations of finite p-groups.
- For $a \in \mathbb{Z} \backslash p \mathbb{Z}$ there is $\psi^{a} \in \operatorname{Aut}(L)$ with $\psi^{a}(u)=u^{a}$ for all $u \in \mu_{p^{\infty}}$. This also works for $a \in \mathbb{Z}_{p}^{\times}=\lim _{\leftarrow k}\left(\mathbb{Z} / p^{k}\right)^{\times}$.
- We find that L is Galois with group $\mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times\left(1+p \mathbb{Z}_{p}\right) \simeq C_{p-1} \times\left(1+p \mathbb{Z}_{p}\right)$.
- A construction: $\mathbb{Q}\left(\mu_{\rho^{n}}\right)=(1-e) \cdot \mathbb{Q}\left[C_{p^{n}}\right]$, where $e=(p-1)^{-1} \sum_{a \in \mathbb{F}_{p}^{×}} \psi^{a}$.

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
\Rightarrow This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
\Rightarrow We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{Q}\left(\mu_{p} \infty\right)$.

This is like a Galois extension, with $B Q_{A} B=C\left(\mathbb{Z}_{P}^{\times}, B\right)$.
However, for finitely generated A-modules V we have
$\left(B \otimes_{A} V\right)^{h \mathbb{Z}_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.

- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
\Rightarrow Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{O}\left(\mu_{n} \infty\right)$.

This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$. However, for finitely generated A-modules V we have $\left(B \otimes_{A} V\right)^{h \mathbb{Z}_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.

- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
\Rightarrow This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
\Rightarrow We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{Q}\left(\mu_{p} \infty\right)$.

This is like a Galois extension, with $B Q_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$
However, for finitely generated A-modules V we have
$\left(B \otimes_{A} V\right)^{h \mathbb{Z}_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.

- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
\Rightarrow However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
\checkmark We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{Q}\left(\mu_{p} \infty\right)$.

This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$
However, for finitely generated A-modules V we have
$\left(B \otimes_{A} V\right)^{h Z_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.

- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$.
\Rightarrow We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{Q}\left(\mu_{p} \infty\right)$ This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$ However, for finitely generated A-modules V we have $\left(B \otimes_{A} V\right)^{h \mathbb{Z}_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.
- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.

This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$. However, for finitely generated A-modules V we have $\left(B \otimes_{A} V\right)^{h Z_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.

- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.

This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$
However, for finitely generated A-modules V we have
$(B \otimes A V)^{h \mathbb{Z}_{p}^{X}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.
\rightarrow The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{Q}\left(\mu_{p} \infty\right)$.

> This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$. However, for finitely generated A-modules V we have $\left(B \otimes_{A} V\right)^{h \mathbb{Z}_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.

- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{Q}\left(\mu_{p \infty}\right)$.

This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$.
However, for finitely generated A-modules V we have
$\left(B \otimes_{A} V\right)^{h \mathbb{Z}_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.
\rightarrow The disproof of the Telescone Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{Q}\left(\mu_{p \infty}\right)$.

This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$. However, for finitely generated A-modules V we have $\left(B \otimes_{A} V\right)^{h \mathbb{Z}_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.
$>$ The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

Non-faithful Galois extensions

- We can try to do Galois theory with rings instead of fields.
- Take $A=\mathbb{Q} \times \mathbb{Q}$ and $B=\overline{\mathbb{Q}} \times 0$. Then $\operatorname{Aut}_{A}(B)=\operatorname{Aut}(\overline{\mathbb{Q}})=\Gamma$.
- This is like a Galois extension, in that $B \otimes_{A} B=C(\Gamma, B)$.
- However, for $V=\left(V_{0}, V_{1}\right) \in \operatorname{Mod}_{A}$ we have $B \otimes_{A} V=\left(\overline{\mathbb{Q}} \otimes V_{0}, 0\right)$ and $\left(B \otimes_{A} V\right)^{h \Gamma}=\left(V_{0}, 0\right)$. This is a localization of V, not V itself.
- We say that B is a non-faithful Galois extension of A.
- Take $A=\mathbb{Z}\left[p^{-1}\right]$ and $B=\mathbb{Q}\left(\mu_{p \infty}\right)$.

This is like a Galois extension, with $B \otimes_{A} B=C\left(\mathbb{Z}_{p}^{\times}, B\right)$. However, for finitely generated A-modules V we have $\left(B \otimes_{A} V\right)^{h \mathbb{Z}_{p}^{\times}}=\mathbb{Q} \otimes V$, which is a localization of V, not V itself.

- The disproof of the Telescope Conjecture rests on showing that a certain Galois extension of ring spectra is not faithful.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.
\Rightarrow There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
- Let F be a finite field of order p^{n} (so $F \simeq \mathbb{F}_{o}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
- This is the Witt ring of F; it is unique up to canonical isomorphism.
- One construction: express F as $\mathbb{F}_{n}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$.
- This can be done very explicitly for small p and n.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}}_{p}$.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.
- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}}_{p}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
- Let F be a finite field of order p^{n} (so $F \simeq \mathbb{F}_{p}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
\checkmark This is the Witt ring of F; it is unique up to canonical isomorphism.
- One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift f over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / f(x)$
- This can be done very explicitly for small p and n.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_{p}}$.

Morava K-theory

$-\operatorname{Fix} n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.

- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
\rightarrow We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
- Let F be a finite field of order p^{n} (so $F \sim \mathbb{F}_{p}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
$>$ This is the Witt ring of F; it is unique up to canonical isomorphism.
\rightarrow One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$
\rightarrow This can be done very explicitly for small p and n.
- By passing to the limit, there is also a Witt ring for \mathbb{F}_{p}.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.
- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
\Rightarrow We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
\rightarrow Let F be a finite field of order p^{n} (so $F \simeq \mathbb{F}_{p}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
- This is the Witt ring of F; it is unique up to canonical isomorphism.
- One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$
- This can be done very explicitly for small p and n.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{I}}_{p}$.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{F_{0}} x=x^{p^{n}}$. Any two such are isomorphic.
- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
\rightarrow Let F be a finite field of order $p^{n}\left(\right.$ so $F \simeq \mathbb{F}_{p}^{n}$ additively $)$. Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
\rightarrow This is the Witt ring of F. it is uniaue un to canonical isomornhism.
\rightarrow One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$
- This can be done very explicitly for small p and n.
\Rightarrow By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_{p}}$.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.
- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
- Let F be a finite field of order p^{n} (so $F \simeq \mathbb{F}_{p}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
\rightarrow This is the Witt ring of F; it is unique up to canonical isomorphism
\rightarrow One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$
\rightarrow This can be done very explicitly for small p and n.
\rightarrow By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_{p}}$.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.
- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
- Let F be a finite field of order p^{n} (so $F \simeq \mathbb{F}_{p}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
- This is the Witt ring of F; it is unique up to canonical isomorphism.
\rightarrow One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$.
- This can be done very explicitly for small p and r.
\rightarrow By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_{p}}$.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.
- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
- Let F be a finite field of order p^{n} (so $F \simeq \mathbb{F}_{p}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
- This is the Witt ring of F; it is unique up to canonical isomorphism.
- One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$.
\rightarrow This can be done very explicitly for small p and n.
\checkmark By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_{p}}$.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.
- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
- Let F be a finite field of order p^{n} (so $F \simeq \mathbb{F}_{p}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
- This is the Witt ring of F; it is unique up to canonical isomorphism.
- One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$.
- This can be done very explicitly for small p and n.

Morava K-theory

- Fix $n>0$. Over $\overline{\mathbb{F}_{p}}$, there is a formal group law F_{0} with $[p]_{F_{0}}(x)=x+F_{0} \cdots+F_{0} x=x^{p^{n}}$. Any two such are isomorphic.
- There is an even periodic ring spectrum $K(n)$ such that $K(n)_{0}=\overline{\mathbb{F}_{p}}$, and the associated formal group $\operatorname{spf}\left(K(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F_{0} as above. This is Morava K-theory.
- This works up to homotopy but cannot be well rigidified: there are strictly associative versions but they are not canonical, and there are no strictly commutative versions.
- We say that a finite spectrum has type n if $K(m)_{*}(X)=0$ for $m<n$ and $K(m)_{*}(X) \neq 0$ for $m \geq n$.
- Let F be a finite field of order p^{n} (so $F \simeq \mathbb{F}_{p}^{n}$ additively). Then there is a ring $W F$, isomorphic to \mathbb{Z}_{p}^{n} additively, with $W F / p \simeq F$ as rings.
- This is the Witt ring of F; it is unique up to canonical isomorphism.
- One construction: express F as $\mathbb{F}_{p}[x] / f(x)$ for some polynomial f over \mathbb{F}_{p}, choose a lift \widetilde{f} over \mathbb{Z}_{p}, put $W F=\mathbb{Z}_{p}[x] / \widetilde{f}(x)$.
- This can be done very explicitly for small p and n.
- By passing to the limit, there is also a Witt ring for $\overline{\mathbb{F}_{p}}$.

Morava E-theory

- Over the ring $E(n)_{0}=W \overline{\mathbb{F}_{p}} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ (with $u_{0}=p$ and $u_{n}=1$) there is a formal group law F with $[p]_{F}(x)=u_{k} x^{p^{k}}\left(\bmod u_{j} \mid j<k\right)$. Any two such are isomorphic.
- There is an essentially unique even periodic ring spectrum $E(n)$ such that $\pi_{0}(E(n))=E(n)_{0}$ and the associated formal group $\operatorname{spf}\left(E(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F as above. This is Morava E-theory.
- There is an essentially unique version of $E(n)$ that is both strictly associative and strictly commutative.
\Rightarrow There is a short exact sequence
$\operatorname{Aut}\left(F_{0}\right) \mapsto \Gamma(n)=\operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$.
We call $\Gamma(n)$ the Morava stabiliser group.
\Rightarrow It can be shown that $K(n)_{0} E(n)=C\left(\Gamma(n), \overline{\mathbb{F}_{p}}\right)$. Similarly, $C\left(\Gamma(n), E(n)_{0}\right)$ is the completion of $E(n)_{0} E(n)$ with respect to the ideal $I=\left(p=u_{0}, u_{1}, \ldots, u_{n-1}\right)$.
- This mean that $E(n)$ is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h \Gamma(n)}$ is the $K(n)$-local sphere $L_{K(n)} S$.
- There is a sense in which $E(n)$ is the algebraic closure of $L_{K(n)} S$, so $\Gamma(n)$ is the absolute Galois group.

Morava E-theory

- Over the ring $E(n)_{0}=W \overline{\mathbb{F}_{p}} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ (with $u_{0}=p$ and $u_{n}=1$) there is a formal group law F with $[p]_{F}(x)=u_{k} x^{p^{k}}\left(\bmod u_{j} \mid j<k\right)$. Any two such are isomorphic.
- There is an essentially unique even periodic ring spectrum $E(n)$ such that $\pi_{0}(E(n))=E(n)_{0}$ and the associated formal group $\operatorname{spf}\left(E(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F as above. This is Morava E-theory.
- There is an essentially unique version of $E(n)$ that is both strictly associative and strictly commutative.
- There is a short exact sequence
$\operatorname{Aut}\left(F_{0}\right) \multimap \Gamma(n)=\operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$.
We call Г(n) the Morava stabiliser group.
- It can be shown that $K(n){ }_{0} E(n)=C\left(\Gamma(n), \overline{\mathbb{F}_{p}}\right)$. Similarly, $C\left(\Gamma(n), E(n)_{0}\right)$ is the completion of $E(n){ }_{0} E(n)$ with respect to the ideal
$\prime=\left(p=u_{0}, u_{1}, \ldots, u_{n-1}\right)$
- This mean that $E(n)$ is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h \Gamma(n)}$ is the $K(n)$-local sphere $L_{K(n)} S$.
- There is a sense in which $E(n)$ is the algebraic closure of $L_{K(n)} S$, so $\Gamma(n)$ is the absolute Galois group.

Morava E-theory

- Over the ring $E(n)_{0}=W \overline{\mathbb{F}_{p}} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ (with $u_{0}=p$ and $u_{n}=1$) there is a formal group law F with $[p]_{F}(x)=u_{k} x^{p^{k}}\left(\bmod u_{j} \mid j<k\right)$. Any two such are isomorphic.
- There is an essentially unique even periodic ring spectrum $E(n)$ such that $\pi_{0}(E(n))=E(n)_{0}$ and the associated formal group $\operatorname{spf}\left(E(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F as above. This is Morava E-theory.
- There is an essentially unique version of $E(n)$ that is both strictly associative and strictly commutative.
- There is a short exact sequence $\operatorname{Aut}\left(F_{0}\right) \mapsto \Gamma(n)=\operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$. We call $\Gamma(n)$ the Morava stabiliser group.
- It can be shown that $K(n)_{0} E(n)=C\left(\Gamma(n), \overline{\mathbb{F}_{p}}\right)$. Similarly, $C\left(\Gamma(n), E(n)_{0}\right)$ is the completion of $E(n)_{0} E(n)$ with respect to the ideal l = $\left(p=u_{0}, u_{1}\right.$.
- This mean that $E(n)$ is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h \Gamma(n)}$ is the $K(n)$-local sphere $L_{K(n)} S$.
- There is a sense in which $E(n)$ is the algebraic closure of $L_{K(n)} S$, so $\Gamma(n)$ is the absolute Galois group.

Morava E-theory

- Over the ring $E(n)_{0}=W \overline{\mathbb{F}_{p}} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ (with $u_{0}=p$ and $u_{n}=1$) there is a formal group law F with $[p]_{F}(x)=u_{k} x^{p^{k}}\left(\bmod u_{j} \mid j<k\right)$. Any two such are isomorphic.
- There is an essentially unique even periodic ring spectrum $E(n)$ such that $\pi_{0}(E(n))=E(n)_{0}$ and the associated formal group $\operatorname{spf}\left(E(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F as above. This is Morava E-theory.
- There is an essentially unique version of $E(n)$ that is both strictly associative and strictly commutative.
\rightarrow There is a short exact sequence $\operatorname{Aut}\left(F_{0}\right) \mapsto \Gamma(n)=\operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$. We call $\Gamma(n)$ the Morava stabiliser group.
- It can be shown that $K(n){ }_{0} E(n)=C\left(\Gamma(n), \overline{\mathbb{F}}_{p}\right)$. Similarly, $\left.C(\Gamma(n), E(n))_{0}\right)$ is the completion of $E(n)_{0} E(n)$ with respect to the ideal $I=\left(p=u_{0}, u_{1}, \ldots, u_{n-1}\right)$
- This mean that $E(n)$ is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h\lceil(n)}$ is the $K(n)$-local sphere $L_{K(n)} S$.
- There is a sense in which $E(n)$ is the algebraic closure of $L_{K(n)} S$, so $\Gamma(n)$ is the absolute Galois group.

Morava E-theory

- Over the ring $E(n)_{0}=W \overline{\mathbb{F}_{p}} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ (with $u_{0}=p$ and $u_{n}=1$) there is a formal group law F with $[p]_{F}(x)=u_{k} x^{p^{k}}\left(\bmod u_{j} \mid j<k\right)$. Any two such are isomorphic.
- There is an essentially unique even periodic ring spectrum $E(n)$ such that $\pi_{0}(E(n))=E(n)_{0}$ and the associated formal group $\operatorname{spf}\left(E(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F as above. This is Morava E-theory.
- There is an essentially unique version of $E(n)$ that is both strictly associative and strictly commutative.
- There is a short exact sequence
$\operatorname{Aut}\left(F_{0}\right) \hookrightarrow \Gamma(n)=\operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$.
We call $\Gamma(n)$ the Morava stabiliser group.
is the completion of $E(n)_{0} E(n)$ with respect to the ideal
- This mean that $E(n)$ is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h r(n)}$ is the $K(n)$-local sphere $L_{K(n)} S$.
- There is a sense in which $E(n)$ is the algebraic closure of $L_{K(n)} S$, so $\Gamma(n)$ is the absolute Galois group.

Morava E-theory

- Over the ring $E(n)_{0}=W \overline{\mathbb{F}_{p}} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ (with $u_{0}=p$ and $u_{n}=1$) there is a formal group law F with $[p]_{F}(x)=u_{k} x^{p^{k}}\left(\bmod u_{j} \mid j<k\right)$. Any two such are isomorphic.
- There is an essentially unique even periodic ring spectrum $E(n)$ such that $\pi_{0}(E(n))=E(n)_{0}$ and the associated formal group $\operatorname{spf}\left(E(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F as above. This is Morava E-theory.
- There is an essentially unique version of $E(n)$ that is both strictly associative and strictly commutative.
- There is a short exact sequence
$\operatorname{Aut}\left(F_{0}\right) \mapsto \Gamma(n)=\operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$.
We call $\Gamma(n)$ the Morava stabiliser group.
- It can be shown that $K(n)_{0} E(n)=C\left(\Gamma(n), \overline{\mathbb{F}_{p}}\right)$. Similarly, $C\left(\Gamma(n), E(n)_{0}\right)$ is the completion of $E(n)_{0} E(n)$ with respect to the ideal $I=\left(p=u_{0}, u_{1}, \ldots, u_{n-1}\right)$.
\rightarrow This mean that $E(n)$ is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h \Gamma(n)}$ is the $K(n)$-local sphere $L_{K(n)} S$.
- There is a sense in which $F(n)$ is the algehraic closure of $I_{K(n)} S$, so $\Gamma(n)$ is the absolute Galois group.

Morava E-theory

- Over the ring $E(n)_{0}=W \overline{\mathbb{F}_{p}} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ (with $u_{0}=p$ and $u_{n}=1$) there is a formal group law F with $[p]_{F}(x)=u_{k} x^{p^{k}}\left(\bmod u_{j} \mid j<k\right)$. Any two such are isomorphic.
- There is an essentially unique even periodic ring spectrum $E(n)$ such that $\pi_{0}(E(n))=E(n)_{0}$ and the associated formal group $\operatorname{spf}\left(E(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F as above. This is Morava E-theory.
- There is an essentially unique version of $E(n)$ that is both strictly associative and strictly commutative.
- There is a short exact sequence
$\operatorname{Aut}\left(F_{0}\right) \mapsto \Gamma(n)=\operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$.
We call $\Gamma(n)$ the Morava stabiliser group.
- It can be shown that $K(n)_{0} E(n)=C\left(\Gamma(n), \overline{\mathbb{F}_{p}}\right)$. Similarly, $C\left(\Gamma(n), E(n)_{0}\right)$ is the completion of $E(n)_{0} E(n)$ with respect to the ideal $I=\left(p=u_{0}, u_{1}, \ldots, u_{n-1}\right)$.
- This mean that $E(n)$ is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{h \Gamma(n)}$ is the $K(n)$-local sphere $L_{K(n)} S$.
\rightarrow There is a sense in which $E(n)$ is the algebraic closure of $L_{K(n)} S$, so $\Gamma(n)$ is the absolute Galois group.

Morava E-theory

- Over the ring $E(n)_{0}=W \overline{\mathbb{F}_{p}} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$ (with $u_{0}=p$ and $u_{n}=1$) there is a formal group law F with $[p]_{F}(x)=u_{k} x^{p^{k}}\left(\bmod u_{j} \mid j<k\right)$. Any two such are isomorphic.
- There is an essentially unique even periodic ring spectrum $E(n)$ such that $\pi_{0}(E(n))=E(n)_{0}$ and the associated formal group $\operatorname{spf}\left(E(n)^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ corresponds to F as above. This is Morava E-theory.
- There is an essentially unique version of $E(n)$ that is both strictly associative and strictly commutative.
- There is a short exact sequence
$\operatorname{Aut}\left(F_{0}\right) \mapsto \Gamma(n)=\operatorname{Aut}(E(n)) \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$.
We call $\Gamma(n)$ the Morava stabiliser group.
- It can be shown that $K(n)_{0} E(n)=C\left(\Gamma(n), \overline{\mathbb{F}_{p}}\right)$. Similarly, $C\left(\Gamma(n), E(n)_{0}\right)$ is the completion of $E(n)_{0} E(n)$ with respect to the ideal $I=\left(p=u_{0}, u_{1}, \ldots, u_{n-1}\right)$.
- This mean that $E(n)$ is a kind of Galois extension of S, but it is not faithful. Instead $E(n)^{\hbar \Gamma(n)}$ is the $K(n)$-local sphere $L_{K(n)} S$.
- There is a sense in which $E(n)$ is the algebraic closure of $L_{K(n)} S$, so $\Gamma(n)$ is the absolute Galois group.

Westerland K-theory

- There is a canonical determinant map det: $\Gamma(n) \rightarrow \mathbb{Z}_{p}^{\times}$, which is surjective. We write $\Gamma_{1}(n)$ for the kernel.
\Rightarrow We put $R(n)=E(n)^{h \Gamma_{1}(n)}$ and call this Westerland K-theory. This is a faithful Galois extension of $L_{K(n)} S$ with Galois group $\Gamma(n) / \Gamma_{1}(n)=\mathbb{Z}_{p}^{\times}$.
- If we try to take $n=0$ then there are various technical differences but morally $R(0)=\mathbb{Q}\left(\mu_{p} \infty\right)$.
\checkmark If $n=1$ then $R(1)$ is the p-adic completion of complex K-theory and the action of \mathbb{Z}_{p}^{\times}is by Adams operations.
- If $n>1$ then we cannot fully compute $\pi_{*} R(n)$ but still we can prove many things about $R(n)$.
- Another construction: $R(n)=e \cdot L_{K(n)} \sum^{\infty} B^{n} C_{p \infty}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension".
- We can choose $a \in \mathbb{Z}_{p}^{\times}$that generates a dense subgroup iso to \mathbb{Z}; then $L_{K(n)} S=R(n)^{h \mathbb{Z}_{p}^{\times}} \simeq R(n)^{h \mathbb{Z}}=\operatorname{fib}\left(\psi^{a}-1: R(n) \rightarrow R(n)\right)$.

Westerland K-theory

- There is a canonical determinant map det: $\Gamma(n) \rightarrow \mathbb{Z}_{p}^{\times}$, which is surjective. We write $\Gamma_{1}(n)$ for the kernel.
\Rightarrow We put $R(n)=E(n)^{n_{1}(n)}$ and call this Westerland K-theory. This is a faithful Galois extension of $L_{K(n)} S$ with Galois group $\Gamma(n) / \Gamma_{1}(n)=\mathbb{Z}_{p}^{\times}$
- If we try to take $n=0$ then there are various technical differences but morally $R(0)=\mathbb{Q}\left(\mu_{p} \infty\right)$.
- If $n=1$ then $R(1)$ is the p-adic completion of complex K-theory and the action of \mathbb{Z}_{p}^{\times}is by Adams operations.
- If $n>1$ then we cannot fully compute $\pi_{*} R(n)$ but still we can prove many things about $R(n)$.
- Another construction: $R(n)=e \cdot L_{k(n)} \sum^{\infty} B^{n} C_{p \infty}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension"
- We can choose $a \in \mathbb{Z}_{p}^{\times}$that generates a dense subgroup iso to \mathbb{Z}; then $L_{K(n)} S=R(n)^{h \mathbb{Z}_{p}^{\times}} \simeq R(n)^{h \mathbb{Z}}=\operatorname{fib}\left(\psi^{a}-1: R(n) \rightarrow R(n)\right)$.

Westerland K-theory

- There is a canonical determinant map det: $\Gamma(n) \rightarrow \mathbb{Z}_{p}^{\times}$, which is surjective. We write $\Gamma_{1}(n)$ for the kernel.
- We put $R(n)=E(n)^{h \Gamma_{1}(n)}$ and call this Westerland K-theory. This is a faithful Galois extension of $L_{K(n)} S$ with Galois group $\Gamma(n) / \Gamma_{1}(n)=\mathbb{Z}_{p}^{\times}$.
- If we try to take $n=0$ then there are various technical differences but morally $R(0)=\mathbb{Q}\left(\mu_{p \infty}\right)$
- If $n=1$ then $R(1)$ is the p-adic completion of complex K-theory and the action of \mathbb{Z}_{P}^{\times}is by Adams operations.
- If $n>1$ then we cannot fully compute $\pi_{*} R(n)$ but still we can prove many things about $R(n)$
- Another construction: $R(n)=e \cdot L_{k(n)} \sum_{+}^{\infty} B^{n} C_{p \infty}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension"
- We can choose $a \in \mathbb{Z}_{p}^{\times}$that generates a dense subgroup iso to \mathbb{Z}; then $L_{K(n)} S=R(n)^{h \mathbb{Z}}{ }^{\mathrm{X}} \simeq R(n)^{h \mathbb{Z}}=\operatorname{fib}\left(\psi^{a}-1: R(n) \rightarrow R(n)\right)$.

Westerland K-theory

- There is a canonical determinant map det: $\Gamma(n) \rightarrow \mathbb{Z}_{\rho}^{\times}$, which is surjective. We write $\Gamma_{1}(n)$ for the kernel.
- We put $R(n)=E(n)^{h \Gamma_{1}(n)}$ and call this Westerland K-theory. This is a faithful Galois extension of $L_{K(n)} S$ with Galois group $\Gamma(n) / \Gamma_{1}(n)=\mathbb{Z}_{p}^{\times}$.
- If we try to take $n=0$ then there are various technical differences but morally $R(0)=\mathbb{Q}\left(\mu_{\rho} \infty\right)$.
- If $n=1$ then $R(1)$ is the p-adic completion of complex K-theory and the action of \mathbb{Z}_{P}^{\times}is by Adams operations.
- If $n>1$ then we cannot fully compute $\pi_{*} R(n)$ but still we can prove many things about $R(n)$
- Another construction: $R(n)=e \cdot L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p^{\infty}}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension"
- We can choose $a \in \mathbb{Z}_{p}^{\times}$that generates a dense subgroup iso to \mathbb{Z}; then $L_{K(n)} S=R(n)^{h \mathbb{Z} \times} \simeq R(n)^{h \mathbb{Z}}=\operatorname{fib}\left(\psi^{a}-1: R(n) \rightarrow R(n)\right)$.

Westerland K-theory

- There is a canonical determinant map det: $\Gamma(n) \rightarrow \mathbb{Z}_{p}^{\times}$, which is surjective. We write $\Gamma_{1}(n)$ for the kernel.
- We put $R(n)=E(n)^{h \Gamma_{1}(n)}$ and call this Westerland K-theory. This is a faithful Galois extension of $L_{K(n)} S$ with Galois group $\Gamma(n) / \Gamma_{1}(n)=\mathbb{Z}_{p}^{\times}$.
- If we try to take $n=0$ then there are various technical differences but morally $R(0)=\mathbb{Q}\left(\mu_{p} \infty\right)$.
- If $n=1$ then $R(1)$ is the p-adic completion of complex K-theory and the action of \mathbb{Z}_{p}^{\times}is by Adams operations.
- If $n>1$ then we cannot fully compute $\pi_{*} R(n)$ but still we can prove many things about $R(n)$
- Another construction: $R(n)=e \cdot L_{k(n)} \sum_{\infty}^{\infty} B^{n} C_{p \infty}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension"
- We can choose $a \in \mathbb{Z}_{p}^{\times}$that generates a dense subgroup iso to \mathbb{Z}; then $L_{K(n)} S=R(n)^{h \mathbb{Z}_{p}^{\times}} \simeq R(n)^{h \mathbb{Z}}=\operatorname{fib}\left(\psi^{a}-1: R(n) \rightarrow R(n)\right)$.

Westerland K-theory

- There is a canonical determinant map det: $\Gamma(n) \rightarrow \mathbb{Z}_{p}^{\times}$, which is surjective. We write $\Gamma_{1}(n)$ for the kernel.
- We put $R(n)=E(n)^{n \Gamma_{1}(n)}$ and call this Westerland K-theory. This is a faithful Galois extension of $L_{K(n)} S$ with Galois group $\Gamma(n) / \Gamma_{1}(n)=\mathbb{Z}_{p}^{\times}$.
- If we try to take $n=0$ then there are various technical differences but morally $R(0)=\mathbb{Q}\left(\mu_{\rho} \infty\right)$.
- If $n=1$ then $R(1)$ is the p-adic completion of complex K-theory and the action of \mathbb{Z}_{p}^{\times}is by Adams operations.
- If $n>1$ then we cannot fully compute $\pi_{*} R(n)$ but still we can prove many things about $R(n)$.
- Another construction: $R(n)=e \cdot L_{K(n)} \sum_{+}^{\infty} B^{n} C_{p \infty}$, for a certain idempotent e. This is a kind of "higher cyclotomic extension"
- We can choose $a \in \mathbb{Z}_{p}^{\times}$that generates a dense subgroup iso to \mathbb{Z}; then $L_{K(n)} S=R(n)^{h \mathbb{Z} X} \simeq R(n)^{h \mathbb{Z}}=\operatorname{fib}\left(\psi^{a}-1: R(n) \rightarrow R(n)\right)$.

Westerland K-theory

- There is a canonical determinant map det: $\Gamma(n) \rightarrow \mathbb{Z}_{p}^{\times}$, which is surjective. We write $\Gamma_{1}(n)$ for the kernel.
- We put $R(n)=E(n)^{h \Gamma_{1}(n)}$ and call this Westerland K-theory. This is a faithful Galois extension of $L_{K(n)} S$ with Galois group $\Gamma(n) / \Gamma_{1}(n)=\mathbb{Z}_{p}^{\times}$.
- If we try to take $n=0$ then there are various technical differences but morally $R(0)=\mathbb{Q}\left(\mu_{p} \infty\right)$.
- If $n=1$ then $R(1)$ is the p-adic completion of complex K-theory and the action of \mathbb{Z}_{p}^{\times}is by Adams operations.
- If $n>1$ then we cannot fully compute $\pi_{*} R(n)$ but still we can prove many things about $R(n)$.
- Another construction: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty$, for a certain idempotent e. This is a kind of "higher cyclotomic extension".
\rightarrow We can choose $a \in \mathbb{Z}_{p}^{\times}$that generates a dense subgroup iso to \mathbb{Z}; then $L_{K(n)} S=R(n)^{h \mathbb{Z}_{p}^{\times}} \simeq R(n)^{h \mathbb{Z}}=\mathrm{fib}\left(\psi^{a}-1: R(n) \rightarrow R(n)\right)$.

Westerland K-theory

- There is a canonical determinant map det: $\Gamma(n) \rightarrow \mathbb{Z}_{p}^{\times}$, which is surjective. We write $\Gamma_{1}(n)$ for the kernel.
- We put $R(n)=E(n)^{h \Gamma_{1}(n)}$ and call this Westerland K-theory. This is a faithful Galois extension of $L_{K(n)} S$ with Galois group $\Gamma(n) / \Gamma_{1}(n)=\mathbb{Z}_{p}^{\times}$.
- If we try to take $n=0$ then there are various technical differences but morally $R(0)=\mathbb{Q}\left(\mu_{p} \infty\right)$.
- If $n=1$ then $R(1)$ is the p-adic completion of complex K-theory and the action of \mathbb{Z}_{p}^{\times}is by Adams operations.
- If $n>1$ then we cannot fully compute $\pi_{*} R(n)$ but still we can prove many things about $R(n)$.
- Another construction: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty$, for a certain idempotent e. This is a kind of "higher cyclotomic extension".
- We can choose $a \in \mathbb{Z}_{p}^{\times}$that generates a dense subgroup iso to \mathbb{Z}; then $L_{K(n)} S=R(n)^{h \mathbb{Z}_{p}^{\times}} \simeq R(n)^{h \mathbb{Z}}=\operatorname{fib}\left(\psi^{a}-1: R(n) \rightarrow R(n)\right)$.

Telescopic version

- Recall: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty=$ higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define $T R(n)=e \cdot L_{T(n)} \sum_{+}^{\infty} B^{n} C_{p} \infty$ with $L_{K(n)} T R(n)=R(n)$. This is a higher cyclotomic extension of $L_{T(n)} S$ with Galois group \mathbb{Z}_{p}^{\times}
- For the finite stages $\operatorname{TR}(n, k)=e \cdot L_{T(n)} \sum_{+}^{\infty} B^{n} C_{p^{k}}$ it can be shown that $T R(n, k)^{h\left(\mathbb{Z} / p^{k}\right)^{\times}}=L_{T(n)} S$, i.e. the extension is faithful.
- However, it does not follow that $T R(n)^{h \mathbb{Z}_{p}^{\times}}=L_{T(n)} S$, and this will eventually turn out to be false.
- Choose a finite spectrum $F(n)$ of type n, and put $P(n)=T R(n)^{h Z_{p}^{\times}}$and $Q(n)=F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)} X=L_{T(n)}(P(n) \wedge X)=\left(L_{T(n)}(R(n) \wedge X)\right)^{h \mathbb{Z}_{p}^{\times}}$.
- One can show that $L_{K(n)}(T R(n))=R(n)$, and using this that any $K(n)$-local spectrum is $Q(n)$-local.
- Burklund, Hahn, Levy and Schlank construct a $T(n+1)$-local spectrum that is not $Q(n+1)$-local and therefore not $K(n+1)$-local.
This disproves TC at height n.

Telescopic version

- Recall: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty=$ higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define $T R(n)=e \cdot L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty$ with $L_{K(n)} T R(n)=R(n)$ This is a higher cyclotomic extension of $L_{T(n)} S$ with Galois group \mathbb{Z}_{p}^{\times}
- For the finite stages $\operatorname{TR}(n, k)=e \cdot L_{T(n)} \sum_{+}^{\infty} B^{n} C_{p^{k}}$ it can be shown that $T R(n, k)^{h\left(\mathbb{Z} / p^{k}\right)^{\times}}=L_{T(n)} S$, i.e. the extension is faithful.
- However it does not follow that $T R(n)^{h Z_{p}^{\times}}=I_{T(n)} S$ and this will eventually turn out to be false.
- Choose a finite spectrum $F(n)$ of type n, and put $P(n)=T R(n)^{h \mathbb{Z}_{p}^{\times}}$and $Q(n)=F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)} X=L_{T(n)}(P(n) \wedge X)=\left(L_{T(n)}(R(n) \wedge X)\right)^{h \mathbb{Z}_{D}^{X}}$
- One can show that $L_{K(n)}(T R(n))=R(n)$, and using this that any $K(n)$-local spectrum is $Q(n)$-local.
- Burklund, Hahn, Levy and Schlank construct a $T(n+1)$-local spectrum that is not $Q(n+1)$-local and therefore not $K(n+1)$-local.
This disproves TC at height n.

Telescopic version

- Recall: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty=$ higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define $T R(n)=e \cdot L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p \infty}$ with $L_{K(n)} T R(n)=R(n)$. This is a higher cyclotomic extension of $L_{T(n)} S$ with Galois group \mathbb{Z}_{p}^{\times}.
\Rightarrow For the finite stages $T R(n, k)=e \cdot L_{T(n)} \sum_{+}^{\infty} B^{n} C_{p^{k}}$ it can be shown that $T R(n, k)^{h\left(\mathbb{Z} / p^{k}\right)^{\times}}=L_{T(n)} S$, i.e. the extension is faithful
- However, it does not follow that $\operatorname{TR}(n)^{h Z_{b}^{\times}}=I_{T(n)} S$, and this will eventually turn out to be false
- Choose a finite spectrum $F(n)$ of type n, and put $P(n)=T R(n)^{h \mathbb{Z}_{p}^{\times}}$and $Q(n)=F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)} X=L_{T(n)}(P(n) \wedge X)=\left(L_{T(n)}(R(n) \wedge X)\right)^{h Z_{p}}$
- One can show that $L_{K(n)}(T R(n))=R(n)$, and using this that any $K(n)$-local spectrum is $Q(n)$-local
- Burklund, Hahn, Levy and Schlank construct a $T(n+1)$-local spectrum that is not $Q(n+1)$-local and therefore not $K(n+1)$-local This disproves TC at height n.

Telescopic version

- Recall: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty=$ higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define $T R(n)=e . L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty$ with $L_{K(n)} T R(n)=R(n)$. This is a higher cyclotomic extension of $L_{T(n)} S$ with Galois group \mathbb{Z}_{p}^{\times}.
- For the finite stages $T R(n, k)=e \cdot L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p^{k}}$ it can be shown that $T R(n, k)^{h\left(\mathbb{Z} / p^{k}\right)^{\times}}=L_{T(n)} S$, i.e. the extension is faithful.
\Rightarrow However, it does not follow that $\operatorname{TR}(n)^{h 2 \widehat{p}}=L_{T(n)} S$, and this will eventually turn out to be false.
- Choose a finite snectrum $F(n)$ of type n, and put $P(n)=T R(n)^{n t}{ }_{p}$ and $Q(n)=F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)} X=L_{T(n)}(P(n) \wedge X)=\left(L_{T(n)}(R(n) \wedge X)\right)^{h \mathbb{Z}_{p}^{\times}}$
- One can show that $L_{K(n)}(T R(n))=R(n)$, and using this that any $K(n)$-local spectrum is $Q(n)$-local.
- Burklund, Hahn, Levy and Schlank construct a $T(n+1)$-local spectrum that is not $Q(n+1)$-local and therefore not $K(n+1)$-local This disproves TC at height n.

Telescopic version

- Recall: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty=$ higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define $T R(n)=e . L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p \infty}$ with $L_{K(n)} T R(n)=R(n)$. This is a higher cyclotomic extension of $L_{T(n)} S$ with Galois group \mathbb{Z}_{p}^{\times}.
- For the finite stages $\operatorname{TR}(n, k)=e \cdot L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p^{k}}$ it can be shown that $T R(n, k)^{h\left(\mathbb{Z} / p^{k}\right)^{\times}}=L_{T(n)} S$, i.e. the extension is faithful.
- However, it does not follow that $\operatorname{TR}(n)^{h Z_{p}^{\times}}=L_{T(n)} S$, and this will eventually turn out to be false.
\rightarrow Choose a finite spectrum $F(n)$ of type n, and put $P(n)=T R(n)^{n \mathbb{Z}_{p}^{x}}$ and $Q(n)=F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)} X=L_{T(n)}(P(n) \wedge X)=\left(L_{T(n)}(R(n) \wedge X)\right)^{i \mathbb{Z}_{p}^{X}}$
$>$ One can show that $L_{K(n)}(T R(n))=R(n)$, and using this that any $K(n)$-local spectrum is $Q(n)$-local.
- Burklund Hahn, Levy and Schlank construct a $T(n+1)$-local spectrum that is not $Q(n+1)$-local and therefore not $K(n+1)$-local This disproves TC at height n.
- Recall: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty=$ higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define $T R(n)=e . L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty$ with $L_{K(n)} T R(n)=R(n)$. This is a higher cyclotomic extension of $L_{T(n)} S$ with Galois group \mathbb{Z}_{p}^{\times}.
- For the finite stages $T R(n, k)=e \cdot L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p^{k}}$ it can be shown that $T R(n, k)^{h\left(\mathbb{Z} / p^{k}\right)^{\times}}=L_{T(n)} S$, i.e. the extension is faithful.
- However, it does not follow that $\operatorname{TR}(n)^{h Z_{p}^{\times}}=L_{T(n)} S$, and this will eventually turn out to be false.
- Choose a finite spectrum $F(n)$ of type n, and put $P(n)=T R(n)^{h \mathbb{Z}_{p}^{\times}}$and $Q(n)=F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)} X=L_{T(n)}(P(n) \wedge X)=\left(L_{T(n)}(R(n) \wedge X)\right)^{h \mathbb{Z}_{p}^{\times}}$.
- Burklund, Hahn, Levy and Schlank construct a $T(n+1)$-local spectrum that is not $Q(n+1)$-local and therefore not $K(n+1)$-local This disproves TC at height n.

Telescopic version

- Recall: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty=$ higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define $T R(n)=e \cdot L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty$ with $L_{K(n)} T R(n)=R(n)$. This is a higher cyclotomic extension of $L_{T(n)} S$ with Galois group \mathbb{Z}_{p}^{\times}.
- For the finite stages $\operatorname{TR}(n, k)=e \cdot L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p^{k}}$ it can be shown that $T R(n, k)^{h\left(\mathbb{Z} / p^{k}\right)^{\times}}=L_{T(n)} S$, i.e. the extension is faithful.
- However, it does not follow that $\operatorname{TR}(n)^{h Z_{p}^{\times}}=L_{T(n)} S$, and this will eventually turn out to be false.
- Choose a finite spectrum $F(n)$ of type n, and put $P(n)=T R(n)^{h \mathbb{Z}_{p}^{\times}}$and $Q(n)=F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)} X=L_{T(n)}(P(n) \wedge X)=\left(L_{T(n)}(R(n) \wedge X)\right)^{h \mathbb{Z}_{p}^{\times}}$.
- One can show that $L_{K(n)}(T R(n))=R(n)$, and using this that any $K(n)$-local spectrum is $Q(n)$-local.
\rightarrow Burklund, Hahn, Levy and Schlank construct a $T(n+1)$-local spectrum that is not $Q(n+1)$-local and therefore not $K(n+1)$-local. This disproves TC at height n.

Telescopic version

- Recall: $R(n)=e . L_{K(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty=$ higher cyclotomic extension of $L_{K(n)} S$.
- Carmeli, Schlank and Yanovski used ambidexterity theory to construct a similar e and define $T R(n)=e . L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p} \infty$ with $L_{K(n)} T R(n)=R(n)$. This is a higher cyclotomic extension of $L_{T(n)} S$ with Galois group \mathbb{Z}_{p}^{\times}.
- For the finite stages $T R(n, k)=e \cdot L_{T(n)} \Sigma_{+}^{\infty} B^{n} C_{p^{k}}$ it can be shown that $T R(n, k)^{h\left(\mathbb{Z} / p^{k}\right)^{\times}}=L_{T(n)} S$, i.e. the extension is faithful.
- However, it does not follow that $\operatorname{TR}(n)^{h Z_{p}^{\times}}=L_{T(n)} S$, and this will eventually turn out to be false.
- Choose a finite spectrum $F(n)$ of type n, and put $P(n)=T R(n)^{h \mathbb{Z}_{p}^{\times}}$and $Q(n)=F(n) \wedge P(n)$. For any spectrum X we then have $L_{Q(n)} X=L_{T(n)}(P(n) \wedge X)=\left(L_{T(n)}(R(n) \wedge X)\right)^{h \mathbb{Z}_{p}^{\times}}$.
- One can show that $L_{K(n)}(T R(n))=R(n)$, and using this that any $K(n)$-local spectrum is $Q(n)$-local.
- Burklund, Hahn, Levy and Schlank construct a $T(n+1)$-local spectrum that is not $Q(n+1)$-local and therefore not $K(n+1)$-local.
This disproves TC at height n.

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings $(\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum $K(A)$.
- If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and iss, then there is a canonical map $\Sigma_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$.
\Rightarrow By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A)$ or a map $B G L_{1}(A) \rightarrow G L_{1}(K(A))$ of spaces.
- By the construction of $\operatorname{TR}(n)$ we have $\Sigma_{+}^{\infty} B^{n} C_{p \infty} \rightarrow T R(n)$ giving $K(T R(n)) \leftarrow \Sigma_{+}^{\infty} B^{n+1} C_{p \infty} \rightarrow T R(n+1)$.
- Theorem: We have a commutative diagram:

$$
\begin{aligned}
&\{T(n) \text {-local rings }\} \stackrel{L_{T(n+1)}(K(-))}{ }\{T(n+1) \text {-local rings }\} \\
& L_{T(n)}(-\wedge T R(n)) \mid \\
&\{T(n) \text {-local rings }\} \frac{L_{T(n+1)}(-\wedge T R(n+1))}{L_{T(n+1)}(K(-))}\{T(n+1) \text {-local rings }\}
\end{aligned}
$$

- We discussed commutative ring spectra, but parts work more generally.

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings $(\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces
\Rightarrow For a commutative ring spectrum A, we have a K-theory spectrum $K(A)$
- If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\sum_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$
\Rightarrow By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A)$ or a map $B G L_{1}(A) \rightarrow G L_{1}(K(A))$ of spaces.
- By the construction of $\operatorname{TR}(n)$ we have $\Sigma_{+}^{\infty} B^{n} C_{D} \infty \rightarrow T R(n)$ giving $K(T R(n)) \leftarrow \Sigma_{+}^{\infty} B^{n+1} C_{p \infty} \rightarrow T R(n+1)$
- Theorem: We have a commutative diagram:

\triangleright We discussed commutative ring spectra, but parts work more generally.

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings $(\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\sum_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces.
- If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\sum_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$.
- By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A)$ or a map $B G L_{1}(A) \rightarrow G L_{1}(K(A))$ of spaces.
- By the construction of $\operatorname{TR}(n)$ we have $\sum_{+}^{\infty} B^{n} C_{p} \infty \rightarrow T R(n)$ giving $K(T R(n)) \leftarrow \sum^{\infty} B^{n+1} C_{p} \infty \rightarrow T R(n+1)$
- Theorem: We have a commutative diagram:
$\{T(n)$-local rings $\} \xrightarrow{L_{T(n+1)}(K(-))}\{T(n+1)$-local rings $\}$ $L_{T(n)}(-\wedge T R(n))|\quad| L_{T(n+1)}(-\wedge T R(n+1))$ $\{T(n)$-local rings $\} \overline{L_{T(n+1)}(K(-)\}}\{T(n+1)$-local rings $\}$
- We discussed commutative ring spectra, but parts work more generally.

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings $(\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\sum_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum $K(A)$.

If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$.

- By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A)$ or a map $B G L_{1}(A) \rightarrow G L_{1}(K(A))$ of spaces.
\rightarrow By the construction of $T R(n)$ we have $\Sigma_{+}^{\infty} B^{n} C_{p} \infty \rightarrow T R(n)$ giving $K(T R(n)) \leftarrow \sum_{+}^{\infty} B^{n+1} C_{p} \rightarrow \rightarrow T R(n+1)$

\rightarrow Theorem: We have a commutative diagram:

$$
\{T(n) \text {-local rings }\} \xrightarrow{L_{T(n+1)}(K(-))}\{T(n+1) \text {-local rings }\}
$$

\square

- We discussed commutative ring spectra, but parts work more generally.

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings $(\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum $K(A)$.
- If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$.
$\begin{aligned}> & \text { By restricting to the subcategory }\{A\} \subseteq \mathcal{F}(A) \text { we get a ring map } \\ & \Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A) \text { or a map } B G L_{1}(A) \rightarrow G L_{1}(K(A)) \text { of spaces. }\end{aligned}$
\rightarrow By the construction of $T R(n)$ we have $\Sigma_{+}^{\infty} B^{n} C_{p} \infty \rightarrow T R(n)$ giving $K(T R(n)) \leftarrow \sum_{+}^{\infty} B^{n+1} C_{p} \rightarrow \rightarrow T R(n+1)$.

- Theorem: We have a commutative diagram

$$
\{T(n) \text {-local rings }\} \xrightarrow{L_{T(n+1)}(K(-))}\{T(n+1) \text {-local rings }\}
$$

\rightarrow We discussed commutative ring spectra, but parts work more generally.

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings $(\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum $K(A)$.
- If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$.
- By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A)$ or a map $B G L_{1}(A) \rightarrow G L_{1}(K(A))$ of spaces.
- Theorem: We have a commutative diagram:
$\{T(n)$-local rings $\} \xrightarrow{L_{T(n+1)}(K(-))}\{T(n+1)$-local rings $\}$ $L_{T(n)}(-\wedge T R(n)) \quad L_{T(n+1)}(-\wedge T R(n+1))$ $\{T(n)$-local rings $\} \longrightarrow(K(-))\{T(n+1)$-local rings $\}$

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings $(\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum $K(A)$.
- If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$.
- By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A)$ or a map $B G L_{1}(A) \rightarrow G L_{1}(K(A))$ of spaces.
- By the construction of $\operatorname{TR}(n)$ we have $\Sigma_{+}^{\infty} B^{n} C_{p \infty} \rightarrow T R(n)$ giving $K(T R(n)) \leftarrow \Sigma_{+}^{\infty} B^{n+1} C_{p \infty} \rightarrow T R(n+1)$.
\rightarrow Theorem: We have a commutative diagram:
$\{T(n)$-local rings $\} \xrightarrow{L_{T(n+1)}(K(-))}\{T(n+1)$-local rings $\}$
$\{T(n)$-local rings $\} \underset{L_{T(n+1)}(K(-))}{ }\{T(n+1)$-local rings $\}$
$>$ We discussed commutative ring spectra, but parts work more generally.

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum $K(A)$.
- If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$.
- By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A)$ or a map $B G L_{1}(A) \rightarrow G L_{1}(K(A))$ of spaces.
- By the construction of $\operatorname{TR}(n)$ we have $\Sigma_{+}^{\infty} B^{n} C_{p \infty} \rightarrow T R(n)$ giving $K(T R(n)) \leftarrow \Sigma_{+}^{\infty} B^{n+1} C_{p} \infty \rightarrow T R(n+1)$.
- Theorem: We have a commutative diagram:

$$
\begin{gathered}
\{T(n) \text {-local rings }\} \xrightarrow{L_{T(n+1)}(K(-))}\{T(n+1) \text {-local rings }\} \\
L_{T(n)}(-\wedge T R(n)) \downarrow \\
\quad\{T(n) \text {-local rings }\} \xrightarrow[L_{T(n+1)}(K(-))]{ }\{T(n+1) \text {-local rings }\}
\end{gathered}
$$

Interaction with K-theory

- For a commutative group U and a commutative ring A, there is an easy adjunction CommRings($\mathbb{Z}[U], A) \simeq \operatorname{CommGrp}\left(U, G L_{1}(A)\right)$.
- For a commutative topological group U and a commutative ring spectrum A, there is a similar adjunction between morphisms $\Sigma_{+}^{\infty} U \rightarrow A$ of commutative ring spectra and morphisms $U \rightarrow G L_{1}(A)$ of E_{∞}-spaces.
- For a commutative ring spectrum A, we have a K-theory spectrum $K(A)$.
- If $\mathcal{F}(A)$ is the category of finitely generated free A-modules and isos, then there is a canonical map $\Sigma_{+}^{\infty} B \mathcal{F}(A) \rightarrow K(A)$.
- By restricting to the subcategory $\{A\} \subseteq \mathcal{F}(A)$ we get a ring map $\Sigma_{+}^{\infty} B G L_{1}(A) \rightarrow K(A)$ or a map $B G L_{1}(A) \rightarrow G L_{1}(K(A))$ of spaces.
- By the construction of $\operatorname{TR}(n)$ we have $\Sigma_{+}^{\infty} B^{n} C_{p \infty} \rightarrow T R(n)$ giving $K(T R(n)) \leftarrow \Sigma_{+}^{\infty} B^{n+1} C_{p} \infty \rightarrow T R(n+1)$.
- Theorem: We have a commutative diagram:

$$
\begin{gathered}
\quad\{T(n) \text {-local rings }\} \xrightarrow{L_{T(n+1)}(K(-))}\{T(n+1) \text {-local rings }\} \\
L_{T(n)}(-\wedge T R(n)) \downarrow \\
\quad\{T(n) \text {-local rings }\} \xrightarrow[L_{T(n+1)}(K(-))]{ }\{T(n+1) \text {-local rings }\}
\end{gathered}
$$

- We discussed commutative ring spectra, but parts work more generally.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with
$\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
\Rightarrow (If we invert v_{n} and complete with respect to $\left(v_{0}, \ldots, v_{n-1}\right)$ we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{0}^{\times}on $B P\langle n\rangle$,
closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods:

BHLS show that $A \rightarrow B$ is not an equivalence.

- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
\rightarrow But A is $T(n+1)$-local by definition,
so $T(n+1)$-localisation is different from $K(n+1)$-localisation,
so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
\rightarrow (If we invert v_{n} and complete with respect to $\left(v_{0}, \ldots, v_{n-1}\right)$ we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{o}^{\times}on $B P\langle n\rangle$,
closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods:

BHLS show that $A \rightarrow B$ is not an equivalence.

- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
\rightarrow But A is $T(n+1)$-local by definition,
so $T(n+1)$-localisation is different from $K(n+1)$-localisation,
so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$,
closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h Z_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h Z_{p} \times}$
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods:

BHLS show that $A \rightarrow B$ is not an equivalence.

- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
- But A is $T(n+1)$-local by definition,
so $T(n+1)$-localisation is different from $K(n+1)$-localisation,
so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$, closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}}\right)\right)$ with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}}$
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local

- By completely different methods:

BHLS show that $A \rightarrow B$ is not an equivalence.

- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local)
B But A is $T(n+1)$-local by definition,
so $T(n+1)$-localisation is different from $K(n+1)$-localisation,
so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$, closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$.
- Using previous slide: We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local
- By completely different methods: BHLS show that $A \rightarrow B$ is not an equivalence.
- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
\Rightarrow But A is $T(n+1)$-local by definition,
so $T(n+1)$-localisation is different from $K(n+1)$-localisation,
so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$, closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$.
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods: BHLS show that $A \rightarrow B$ is not an equivalence
- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
But A is $T(n+1)$-local by definition,
so $T(n+1)$-localisation is different from $K(n+1)$-localisation,
so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$, closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$.
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods: BHLS show that $A \rightarrow B$ is not an equivalence.
- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
\Rightarrow But A is $T(n+1)$-local by definition,
so $T(n+1)$-localisation is different from $K(n+1)$-localisation, so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$, closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$.
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods: BHLS show that $A \rightarrow B$ is not an equivalence.
- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
\Rightarrow But A is $T(n+1)$-local by definition,
so $T(n+1)$-localisation is different from $K(n+1)$-localisation,
so $T C$ is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$, closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$.
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods: BHLS show that $A \rightarrow B$ is not an equivalence.
- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
- But A is $T(n+1)$-local by definition, so $T(n+1)$-localisation is different from $K(n+1)$-localisation, so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$, closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$.
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods: BHLS show that $A \rightarrow B$ is not an equivalence.
- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
- But A is $T(n+1)$-local by definition, so $T(n+1)$-localisation is different from $K(n+1)$-localisation so TC is false.

Connection with the main theorem

- There is a spectrum $B P\langle n\rangle$ with $\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ and $\left|v_{k}\right|=2\left(p^{k}-1\right)$.
- (If we invert v_{n} and complete with respect to (v_{0}, \ldots, v_{n-1}) we get something closely related to $E(n)$.)
- There is an action of \mathbb{Z}_{p}^{\times}on $B P\langle n\rangle$, closely related to higher cyclotomic extensions.
- Compare $A=L_{T(n+1)}\left(K\left(B P\langle n\rangle^{h \mathbb{Z}_{p}^{\times}}\right)\right)$with $B=\left(L_{T(n+1)}(K(B P\langle n\rangle))\right)^{h \mathbb{Z}_{p}^{\times}}$.
- Using previous slide:

We can deduce that B is cyclotomically complete i.e. $Q(n+1)$-local.

- By completely different methods: BHLS show that $A \rightarrow B$ is not an equivalence.
- They deduce that:
A is not $Q(n+1)$-local (and thus not $K(n+1)$-local).
- But A is $T(n+1)$-local by definition, so $T(n+1)$-localisation is different from $K(n+1)$-localisation, so TC is false.

