
The Telescope Conjecture as Galois Theory

Neil Strickland

November 7, 2023



Classical Galois Theory

▶ Let VectQ be the category of finite-dimensional vector spaces over Q.

▶ We have some trouble when studying VectQ, because Q is not
algebraically closed, so endomorphisms need not have eigenvalues.

▶ Consider a finite Galois extension F/Q with Galois group G = Aut(F ).

▶ For V ∈ VectQ we have W = F ⊗ V ∈ VectF .
This has a Q-linear action of G with W G = V .

▶ For W ∈ VectF and g ∈ G define g∗W to be the same abelian group but
with F -action twisted by g .

▶ Given coherent identifications g∗W ≃W for all g ∈ G ,
we can construct V ∈ VectQ with W ≃ F ⊗ V .

▶ In ∞-category framework:
G acts on VectF , and the map VectQ → VecthGF is an equivalence.

▶ This gives a map K(Q)→ K(F )hG , which is close to being an equivalence
(Lichtenbaum-Quillen conjecture).

▶ We can define ϕ : F ⊗Q F → Map(G ,F ) by ϕ(a⊗ b)(g) = a g(b).

▶ This is an isomorphism (the “tensor formula”).
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Fixed points and homotopy fixed points

▶ Suppose that G acts on W . What is W G?

▶ One answer: W G is the equaliser of the maps δ0, δ1 : W → Map(G ,W )
given by δ0(w)(g) = gw and δ1(w)(g) = w , i.e. the kernel of δ0 − δ1.

▶ For a map f : X → Y of spectra with ∞-categorical kernel
(= homotopy fibre) F , we have a short exact sequence
cok(πk+1(f ))→ πk(F )→ ker(πk(f )).

▶ So πk(F ) mixes the kernel and cokernel: not usually what we want.

▶ Consider instead the cosimplicial object

W Map(G ,W ) Map(G 2,W ) Map(G 2,W ) · · ·

▶ Here δi : Map(G ,W )→ Map(G 2,W ) is given by
(δ0w)(g , h) = g w(h), (δ1w)(g , h) = w(gh), (δ2w)(g , h) = w(g).

▶ The (homotopy) inverse limit is W hG , the homotopy fixed points.
Here πk(W

hG ) = Hk(G ;W ), which is 0 for k > 0 in Galois context.

▶ Using F ⊗ F = Map(G ,F ) we see that the cosimplicial object is

W F ⊗W F⊗2 ⊗W F⊗3 ⊗W · · ·

(and this is like an Adams resolution).

▶ For G = ⟨g⟩ ≃ Z, we just have W hG = fib(g − 1) (as BG ≃ S1).
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▶ For a map f : X → Y of spectra with ∞-categorical kernel
(= homotopy fibre) F , we have a short exact sequence
cok(πk+1(f ))→ πk(F )→ ker(πk(f )).

▶ So πk(F ) mixes the kernel and cokernel: not usually what we want.
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Infinite Galois extensions

▶ Often we want infinite Galois extensions, like Q = algebraic closure of Q.

▶ The Galois group Γ = Aut(Q) is large and hard to understand directly.

▶ We can find finite Galois extensions K1 ↣ K2 ↣ K3 ↣ · · · with union Q
and finite Galois groups Γ1 ↞ Γ2 ↞ Γ3 ↞ · · · .
Then Γ is the inverse limit of the groups Γr , which is a profinite group.

▶ Now Q⊗Q is the ring C(Γ,Q) of continuous maps from Γ to Q.
(Here Q is discrete so continuous = locally constant.)

▶ Similarly, for W ∈ VectQ we have Q⊗r ⊗W = C(Γr ,W ),

and these form a cosimplicial object from which we get QhΓ
= Q.

▶ Put µp∞ = {u ∈ Q | upk = 1 for k ≫ 0} = {exp(2πim/pk) | m, k ∈ N}.
▶ Put L = Q(µp∞) = maximal p-cyclotomic extension of Q.

This is as good as Q for studying representations of finite p-groups.

▶ For a ∈ Z \ pZ there is ψa ∈ Aut(L) with ψa(u) = ua for all u ∈ µp∞ .
This also works for a ∈ Z×p = lim

←−k
(Z/pk)×.

▶ We find that L is Galois with group
Z×p ≃ F×p × (1 + pZp) ≃ Cp−1 × (1 + pZp).

▶ A construction: Q(µpn ) = (1− e).Q[Cpn ], where e = (p − 1)−1 ∑
a∈F×p

ψa.
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Non-faithful Galois extensions

▶ We can try to do Galois theory with rings instead of fields.

▶ Take A = Q×Q and B = Q× 0. Then AutA(B) = Aut(Q) = Γ.

▶ This is like a Galois extension, in that B ⊗A B = C(Γ,B).

▶ However, for V = (V0,V1) ∈ ModA we have B ⊗A V = (Q⊗ V0, 0) and
(B ⊗A V )hΓ = (V0, 0). This is a localization of V , not V itself.

▶ We say that B is a non-faithful Galois extension of A.

▶ Take A = Z[p−1] and B = Q(µp∞).
This is like a Galois extension, with B ⊗A B = C(Z×p ,B).
However, for finitely generated A-modules V we have

(B ⊗A V )hZ
×
p = Q⊗ V , which is a localization of V , not V itself.

▶ The disproof of the Telescope Conjecture rests on showing that a certain
Galois extension of ring spectra is not faithful.
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Morava K -theory

▶ Fix n > 0. Over Fp, there is a formal group law F0 with
[p]F0(x) = x +F0 · · ·+F0 x = xpn . Any two such are isomorphic.

▶ There is an even periodic ring spectrum K(n) such that K(n)0 = Fp, and
the associated formal group spf(K(n)0(CP∞)) corresponds to F0 as
above. This is Morava K-theory.

▶ This works up to homotopy but cannot be well rigidified: there are strictly
associative versions but they are not canonical, and there are no strictly
commutative versions.

▶ We say that a finite spectrum has type n if
K(m)∗(X ) = 0 for m < n and K(m)∗(X ) ̸= 0 for m ≥ n.

▶ Let F be a finite field of order pn (so F ≃ Fn
p additively). Then there is a

ring WF , isomorphic to Zn
p additively, with WF/p ≃ F as rings.

▶ This is the Witt ring of F ; it is unique up to canonical isomorphism.

▶ One construction: express F as Fp[x ]/f (x) for some polynomial f over Fp,

choose a lift f̃ over Zp, put WF = Zp[x ]/f̃ (x).

▶ This can be done very explicitly for small p and n.

▶ By passing to the limit, there is also a Witt ring for Fp.
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Morava E -theory

▶ Over the ring E(n)0 = WFp[[u1, . . . , un−1]] (with u0 = p and un = 1) there

is a formal group law F with [p]F (x) = ukx
pk (mod uj | j < k).

Any two such are isomorphic.

▶ There is an essentially unique even periodic ring spectrum E(n) such that
π0(E(n)) = E(n)0 and the associated formal group spf(E(n)0(CP∞))
corresponds to F as above. This is Morava E-theory.

▶ There is an essentially unique version of E(n) that is both strictly
associative and strictly commutative.

▶ There is a short exact sequence
Aut(F0) ↣ Γ(n) = Aut(E(n)) ↠ Gal(Fp/Fp) ≃ Ẑ.
We call Γ(n) the Morava stabiliser group.

▶ It can be shown that K(n)0E(n) = C(Γ(n),Fp). Similarly, C(Γ(n),E(n)0)
is the completion of E(n)0E(n) with respect to the ideal
I = (p = u0, u1, . . . , un−1).

▶ This mean that E(n) is a kind of Galois extension of S , but it is not
faithful. Instead E(n)hΓ(n) is the K(n)-local sphere LK(n)S .

▶ There is a sense in which E(n) is the algebraic closure of LK(n)S , so Γ(n)
is the absolute Galois group.
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Westerland K -theory

▶ There is a canonical determinant map det : Γ(n)→ Z×p , which is
surjective. We write Γ1(n) for the kernel.

▶ We put R(n) = E(n)hΓ1(n) and call this Westerland K-theory. This is a
faithful Galois extension of LK(n)S with Galois group Γ(n)/Γ1(n) = Z×p .

▶ If we try to take n = 0 then there are various technical differences but
morally R(0) = Q(µp∞).

▶ If n = 1 then R(1) is the p-adic completion of complex K -theory and the
action of Z×p is by Adams operations.

▶ If n > 1 then we cannot fully compute π∗R(n) but still we can prove many
things about R(n).

▶ Another construction: R(n) = e.LK(n)Σ
∞
+ BnCp∞ , for a certain idempotent

e. This is a kind of “higher cyclotomic extension”.

▶ We can choose a ∈ Z×p that generates a dense subgroup iso to Z; then
LK(n)S = R(n)hZ

×
p ≃ R(n)hZ = fib(ψa − 1: R(n)→ R(n)).
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Telescopic version

▶ Recall: R(n) = e.LK(n)Σ
∞
+ BnCp∞ = higher cyclotomic extension of LK(n)S .

▶ Carmeli, Schlank and Yanovski used ambidexterity theory to construct a
similar e and define TR(n) = e.LT (n)Σ

∞
+ BnCp∞ with LK(n)TR(n) = R(n).

This is a higher cyclotomic extension of LT (n)S with Galois group Z×p .
▶ For the finite stages TR(n, k) = e.LT (n)Σ

∞
+ BnCpk it can be shown that

TR(n, k)h(Z/p
k )× = LT (n)S , i.e. the extension is faithful.

▶ However, it does not follow that TR(n)hZ
×
p = LT (n)S ,

and this will eventually turn out to be false.

▶ Choose a finite spectrum F (n) of type n, and put P(n) = TR(n)hZ
×
p and

Q(n) = F (n) ∧ P(n). For any spectrum X we then have

LQ(n)X = LT (n)(P(n) ∧ X ) = (LT (n)(R(n) ∧ X ))hZ
×
p .

▶ One can show that LK(n)(TR(n)) = R(n), and using this that any
K(n)-local spectrum is Q(n)-local.

▶ Burklund, Hahn, Levy and Schlank construct a T (n + 1)-local spectrum
that is not Q(n + 1)-local and therefore not K(n + 1)-local.
This disproves TC at height n.
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Interaction with K -theory

▶ For a commutative group U and a commutative ring A, there is an easy
adjunction CommRings(Z[U],A) ≃ CommGrp(U,GL1(A)).

▶ For a commutative topological group U and a commutative ring spectrum
A, there is a similar adjunction between morphisms Σ∞+ U → A of
commutative ring spectra and morphisms U → GL1(A) of E∞-spaces.

▶ For a commutative ring spectrum A, we have a K -theory spectrum K(A).

▶ If F(A) is the category of finitely generated free A-modules and isos,
then there is a canonical map Σ∞+ BF(A)→ K(A).

▶ By restricting to the subcategory {A} ⊆ F(A) we get a ring map
Σ∞+ BGL1(A)→ K(A) or a map BGL1(A)→ GL1(K(A)) of spaces.

▶ By the construction of TR(n) we have Σ∞+ BnCp∞ → TR(n) giving
K(TR(n))←− Σ∞+ Bn+1Cp∞ → TR(n + 1).

▶ Theorem: We have a commutative diagram:

{T (n)-local rings} {T (n + 1)-local rings}

{T (n)-local rings} {T (n + 1)-local rings}

LT (n+1)(K(−))

LT (n)(−∧TR(n)) LT (n+1)(−∧TR(n+1))

LT (n+1)(K(−))

▶ We discussed commutative ring spectra, but parts work more generally.
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Connection with the main theorem

▶ There is a spectrum BP⟨n⟩ with
π∗(BP⟨n⟩) = Z(p)[v1, . . . , vn] and |vk | = 2(pk − 1).

▶ (If we invert vn and complete with respect to (v0, . . . , vn−1)
we get something closely related to E(n).)

▶ There is an action of Z×p on BP⟨n⟩,
closely related to higher cyclotomic extensions.

▶ Compare A = LT (n+1)(K(BP⟨n⟩hZ
×
p )) with B = (LT (n+1)(K(BP⟨n⟩)))hZ

×
p .

▶ Using previous slide:
We can deduce that B is cyclotomically complete i.e. Q(n + 1)-local.

▶ By completely different methods:
BHLS show that A→ B is not an equivalence.

▶ They deduce that:
A is not Q(n + 1)-local (and thus not K(n + 1)-local).

▶ But A is T (n + 1)-local by definition,
so T (n + 1)-localisation is different from K(n + 1)-localisation,
so TC is false.
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