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> Let Vectg be the category of finite-dimensional vector spaces over Q.

» We have some trouble when studying Vectg, because Q is not
algebraically closed, so endomorphisms need not have eigenvalues.

» Consider a finite Galois extension F/Q with Galois group G = Aut(F).

» For V € Vectg we have W = F ® V € Vectr.
This has a Q-linear action of G with W°¢ = V.

» For W € Vectr and g € G define g*W to be the same abelian group but
with F-action twisted by g.

» Given coherent identifications g*W ~ W for all g € G,
we can construct V' € Vectg with W~ F® V.

» In oo-category framework:
G acts on Vectr, and the map Vectg — VectC is an equivalence.

> This gives a map K(Q) — K(F)"®, which is close to being an equivalence
(Lichtenbaum-Quillen conjecture).

> We can define ¢: F ®g F — Map(G, F) by ¢(a® b)(g) = ag(b).

» This is an isomorphism (the “tensor formula™).
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> Suppose that G acts on W. What is W°?

> One answer: W€ is the equaliser of the maps &, d1: W — Map(G, W)
given by do(w)(g) = gw and §1(w)(g) = w, i.e. the kernel of dp — d1.

» For a map f: X — Y of spectra with co-categorical kernel
(= homotopy fibre) F, we have a short exact sequence
cok(mi+1(F)) = m(F) — ker(mk(f)).

» So mi(F) mixes the kernel and cokernel: not usually what we want.
» Consider instead the cosimplicial object

W == Map(G, W) =3 Map(G?, W) == Map(G>, W)
> Here 6;: Map(G, W) — Map(G?, W) is given by

(dow)(g, h) = g w(h), (d1w)(g, h) = w(gh), (32w)(g, h) = w(g).

> The (homotopy) inverse limit is W"®, the homotopy fixed points.
Here m(W"®) = H*(G; W), which is 0 for k > 0 in Galois context.

» Using F ® F = Map(G, F) we see that the cosimplicial object is
W= FeW == F2gw — F¥gWw

(and this is like an Adams resolution).
> For G = (g) ~ 7, we just have W"® = fib(g — 1) (as BG ~ S').
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Often we want infinite Galois extensions, like Q = algebraic closure of Q.
The Galois group I = Aut(Q) is large and hard to understand directly.

We can find finite Galois extensions K; — K, ~— K3 »— - -+ with union Q
and finite Galois groups 'y «— Iy «— '3 « -
Then T is the inverse limit of the groups I',, which is a profinite group.

Now Q ® Q is the ring C(I', Q) of continuous maps from I to Q.

(Here Q is discrete so continuous = locally constant.)

Similarly, for W € Vectg we have @®r QW =C(", W),

and these form a cosimplicial object from which we get @hr =Q.

Put pipee = {u € Q| u? =1 for k> 0} = {exp(2wim/p*) | m, k € N}.
Put L = Q(ppe=) = maximal p-cyclotomic extension of Q.

This is as good as QQ for studying representations of finite p-groups.

For a € Z\ pZ there is ¢ € Aut(L) with ¥?(u) = v? for all u € ppeo.
This also works for a € ZY = lim (Z/p*)*.
—k
We find that L is Galois with group
Zy ~TFy x (1+ pZp) ~ Co1 X (1 + pZp).
A construction: Q(ppr) = (1 — €).Q[Cpr], where e = (p — 1)7* Dery V-
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This is like a Galois extension, in that B ®a B = C(I, B).

However, for V = (Vo, V1) € Moda we have B®a V = (Q® V,0) and
(B®a V)™ = (W,0). This is a localization of V, not V itself.

We say that B is a non-faithful Galois extension of A.

Take A= Z[p~'] and B = Q(pp=).

This is like a Galois extension, with B ®a B = C(Z,, B).

However, for finitely generated A-modules V we have

(B®a V)™ =Q® V, which is a localization of V, not V itself.

The disproof of the Telescope Conjecture rests on showing that a certain
Galois extension of ring spectra is not faithful.
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[Plr(x) = x +r, - - +F, x = xP . Any two such are isomorphic.

There is an even periodic ring spectrum K(n) such that K(n)o = F,, and
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commutative versions.

We say that a finite spectrum has type n if
K(m)«(X) =0 for m < n and K(m).(X) # 0 for m > n.

Let F be a finite field of order p" (so F ~ F; additively). Then there is a
ring WF, isomorphic to Z, additively, with WF/p ~ F as rings.

This is the Witt ring of F; it is unique up to canonical isomorphism.

One construction: express £ as Fp[x]/f(x) for some polynomial f over IFp,
choose a lift f over Zp, put WF = Z,[x]/f(x).
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» Over the ring E(n)o = WF,[u1, ..., us—1] (with up = p and u, = 1) there
is a formal group law F with [p]r(x) = uix?” (mod uj | j < k).

Any two such are isomorphic.

» There is an essentially unique even periodic ring spectrum E(n) such that
7o(E(n)) = E(n)o and the associated formal group spf(E(n)°(CP>))
corresponds to F as above. This is Morava E-theory.

> There is an essentially unique version of E(n) that is both strictly
associative and strictly commutative.

» There is a short exact sequence o N
Aut(Fo) — T'(n) = Aut(E(n)) — Gal(F,/Fp) ~ Z.

We call I'(n) the Morava stabiliser group.

> It can be shown that K(n)oE(n) = C(I'(n),F,). Similarly, C(F'(n), E(n)o)
is the completion of E(n)oE(n) with respect to the ideal
I =(p=uo,ur,...,Un—1).

» This mean that E(n) is a kind of Galois extension of S, but it is not
faithful. Instead E(n)""(" is the K(n)-local sphere LS.

» There is a sense in which E(n) is the algebraic closure of Lk, S, so ['(n)
is the absolute Galois group.
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Westerland K-theory

» There is a canonical determinant map det: ['(n) — Z), which is
surjective. We write I'1(n) for the kernel.

> We put R(n) = E(n)"(" and call this Westerland K-theory. This is a
faithful Galois extension of Lk, S with Galois group I'(n)/I1(n) = Z,'.

» If we try to take n = 0 then there are various technical differences but
morally R(0) = Q(ppe).

» If n =1 then R(1) is the p-adic completion of complex K-theory and the
action of Z, is by Adams operations.

» If n > 1 then we cannot fully compute 7. R(n) but still we can prove many
things about R(n).

> Another construction: R(n) = e.Lx(mX 3 B"Cpeo, for a certain idempotent
e. This is a kind of “higher cyclotomic extension”.

> We can choose a € Z that generates a dense subgroup iso to Z; then
Li(mS = R(n)"™" ~ R(n)" = fib(y* — 1: R(n) — R(n)).
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Telescopic version

> Recall: R(n) = e.Ly(nX3 B"Cps = higher cyclotomic extension of LS.

» Carmeli, Schlank and Yanovski used ambidexterity theory to construct a
similar e and define TR(n) = e.L1(,)X53°B" Cpoe with Lk, TR(n) = R(n).
This is a higher cyclotomic extension of L7(,S with Galois group Z;.

> For the finite stages TR(n, k) = e.L7(,)X5° B"Cy« it can be shown that
TR(n, k)h(Z/"k)X = Ly(nS, i.e. the extension is faithful.

» However, it does not follow that TR(n)thX = LS,
and this will eventually turn out to be false.

» Choose a finite spectrum F(n) of type n, and put P(n) = TR(n)thX and
Q(n) = F(n) A P(n). For any spectrum X we then have
LamX = Lrm(P(n) A X) = (Ly(n(R(n) A X)) .

» One can show that Lg(,)(TR(n)) = R(n), and using this that any
K(n)-local spectrum is Q(n)-local.

» Burklund, Hahn, Levy and Schlank construct a T(n + 1)-local spectrum
that is not Q(n + 1)-local and therefore not K(n+ 1)-local.
This disproves TC at height n.
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For a commutative ring spectrum A, we have a K-theory spectrum K(A).

If F(A) is the category of finitely generated free A-modules and isos,
then there is a canonical map X°BF(A) — K(A).

By restricting to the subcategory {A} C F(A) we get a ring map
Y BGL1(A) — K(A) or a map BGL1(A) — GL1(K(A)) of spaces.

By the construction of TR(n) we have X°B"Cy« — TR(n) giving
K(TR(n)) < 3B Cpoo — TR(n + 1).
Theorem: We have a commutative diagram:
. L(ns1)(K(=)) .
{T(n)-local rings} ————— {T(n+ 1)-local rings}
LT(n)(f/\TR(n))l lLT(nJrl)(f/\TR(nJrl))
{T(n)-local rings} m {T(n+ 1)-local rings}

We discussed commutative ring spectra, but parts work more generally.
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There is a spectrum BP(n) with

7 (BP(n)) = Z(p)[vi, ..., va] and |v| = 2(p* — 1).

(If we invert v, and complete with respect to (v, ..., Va—1)

we get something closely related to E(n).)

There is an action of Z; on BP(n),

closely related to higher cyclotomic extensions.

Compare A = L(pi1)(K(BP(n)"™ )) with B = (Lr(ns1)(K(BP(n))))" .
Using previous slide:

We can deduce that B is cyclotomically complete i.e. Q(n + 1)-local.

By completely different methods:
BHLS show that A — B is not an equivalence.

They deduce that:

Ais not Q(n+ 1)-local (and thus not K(n + 1)-local).

But Ais T(n+ 1)-local by definition,

so T(n+ 1)-localisation is different from K(n + 1)-localisation,
so TC is false.



