§3: THH of cochains on the circle

Telescope conjecture reading group



So far...

» Dan introduced THH and TC, etc. for an E;-ring spectra R
via the category N.Ass%, along with some other
constructions, e.g. Tate, Frobenius, etc.

» TC of [E1-rings featured in Proposition 1.1 and its proof
reduces to checking a similar result for THH of S-valued
cochains.

» Note SBA is an E..-ring spectrum. When R is E., we have a
simpler description of THH(R) as the pushout in CAlg(Sp) of
R with T:
THH(R) = R® T,

alternatively:
THH(R) = R®grgr R.



Proposition 1.1

Proposition 1.1

For any p-complete E;-ring R, the p-completion of TC(R) is in
the thick subcategory generated by the p-completion of the fibre of
the coassembly map:

TC(RPZ) — TC(R)BZ.
This will be useful in proving the following

Theorem B (Asymptotic constancy for BP(n))

Fix a telescope T(n+ 1) of a type n+ 1 p-local finite spectrum.
Then for all k > 0 there is a commuting square:

T(n+ 1), TC(BP(n)""“Z)y — T(n+ 1), TC(BP(n))"Z

~| F

T(n+ 1), TC(BP(n)B%) ——— T(n+1),TC(BP(n))BZ
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Plan of attack

Preliminaries



Assembly and coassembly

Coassembly

Let F be a contravariant homotopy functor, F: Spaces®® — Sp,
then there is a zig-zag called the coassembly map:

F(X)— lim  F(AP)
(AP—X)eA,

& lim F(x)
(AP—=X)eAy

= map(|NAsx|+, F(*))
< map(Xy, F(%)).

Examples
Take F(—) := THH(S()) then the coassembly above gives a map:

THH(SBA) — THH(S)BA = sBA.



Assembly and coassembly

Assembly

If F is a covariant homotopy functor, F: Spaces — Sp, then there
is similarly a zig-zag called the assembly map:

X, AF() — F(X).

Remarks

Assume F()) = *. The coassembly (resp. assembly) map is
characterised by the universal property that it is the universal
approximation on the right (resp. left) by a linear functor, i.e. one
that also preserves homotopy pushout squares.



Spherical Witt vectors

Recall

» The Witt vectors functor W takes an [F,-algebra A and
produces a characteristic 0 ring W(A). E.g. W(Fp) = Zp.

» An Fj-algebra is perfect if the Frobenius x — x” is an
automorphism. E.g. F, is perfect.

» The spherical group ring functor S[—] produces a ring
spectrum S[G] from a group G, which is commutative if G is.

Spherical Witt vectors adjunction
There is an adjunction between perfect F-algebras and Eq.-ring
spectra given by:

W(—): Perf 7 CAlg(Sp): m3(—).



Spherical Witt vectors cont.
The adjunction W(—) 4 73(—)

W(—): Perf —— CAlg(Sp): m3(—).

Definitions
> W(A) = S[W(A)].
> 3(R) = lim ( o m(R)/p 5 m(R)/p 5 WO(R)/p).

Example
W(F,) =S.

Remarks

W is fully faithful and so Perf is a colocalisation of CAlg(Sp).
The essential image of W consists of those R € CAlg(Sp) such
that F, ® R is a discrete perfect F,-algebra. We then have
R=W(R&®F,).



Plan of attack

§3.1: THH of cochains as a commutative algebra



Lattice of Z,-modules

» First step now is to study the commutative algebras
THH(SBPZ).

» Will in fact study THH(SBM) where M is any discrete finite
projective Zp-module.

» This is justified since for a free finite rank Z-module M the
map BM — BM,, is an equivalence on p-complete suspension

spectra since it is one on [F,-homology. Hence so too is
SBM, _y gBM

Definition
Write Lattz, for the category of discrete finite projective
Zp-modules.



ldentifying Witt vectors of continuous functions

» CO(A) denotes F,-valued continuous functions on the
Zp-module A.
> A% is A equipped with the discrete topology.

» Q. is based loops.

Lemma 3.5
There's a commutative diagram of commutative algebras:

WCO(A) —— WCo(A%)

% |=

S XgBA S — - S2BA

natural in A € Lattgz,.



Proof of Lemma 3.5
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CO(A) ————— CO(A")

colim

» (1) is an iso since HX(A;Fp) = H*(A; Fp).
» (2) and (4) are isos since F, ® — commutes with finite limits
and arbitray products that are uniformly bounded below.

» (3) is an iso by convergence of the Eilenberg-Moore spectral
sequence.

» (5) and (6) are by definition.



Proof of Lemma 3.5 cont.

So we have a square:

(S®geaS) @ F, —— SEBARQTE,

q] E

CO(A) —— L CO(A?)

and recall the essential image of W were those R € CAlg(Sp) such
that F, ® R is a discrete F,-algebra. And so we get:

WCO(A) —— WCO(A%)

% B

S KgBA S — S%2BA



THH(SB4) as an SPA-algebra

Lemma 3.6

There is a commutative diagram of commutative SBA

-algebras:

SBA @ WCO(A) —— SBA@ WCO(AY)

~| E

THH(SBA) —————— S~BA

natural in A € Lattz,.



Proof of Lemma 3.6

SBA @ WCO(A) —— SBA @ WCO(AY)

~| E

SBA ® (S®gpa S) —— SBA ) SQ2eBA _ =, gBAXQBA

= F

THH(SBA) Id SLBA

» The bottom left horizontal map is an assembly map for the
T-shaped colimit THH along S(-).

P> The rightmost vertical map is an iso by the map
LG =G x Q.G for G grouplike.

The top square is SBA tensored with Lemma 3.5.

vy

The bottom left vertical map is an iso because ?
> 777 They also claim to use 73(SBA ® R) = m3(R) somewhere.



THH(SB4) restricted to 0

Lemma 3.7

There is a pushout square of commutative algebras:

w(co(a)) 2 vy (r,)

L

THH(SBA) ——— SBA
natural in A € Lattyg,.

Proof of Lemma 3.7
> 75(SBA) = F, since 7} is a right adjoint with values in a
1-category.
» Result follows from Lemma 3.6 and the fact that
SBA — THH(SBA) — SPA is the identity.



Plan of attack

§3.2: THH of cochains as a T-equivariant commutative algebra



Some more preliminaries

Definition
Let w € Zp and BZp(w) denote BZ, with T = BZ action left via
multiplication from BZ — BZ, induced by 1 — w.

Examples
There is a T-equivariant decomposition of the free loop space on
the p-adic circle:
LBZp= [] BZp(w).
WEZp
On the connected component corresponding to w: BZ — BZ, the
T action is the ‘w-speed’ rotation.



Some more preliminaries

We let:
» 1 € m1(S) be the Hopf element.
» ¢ € m_1SBZ be the class corresponding to 1 € HY(BZ;Z).
» ¢ € m_1 THH(SB?) be the image of € under
SBZ —» THH(SB?).
» o be the Connes operator: given a T-equivariant spectrum X
there is a degree 1 self map:

g2 X =X

obtained by viewing X as a S[T] module then o corresponds
to the pointed identity map S! — T in m1S[T]. This then
induces o: X — w1 X.



Lemma 3.11

Lemma 3.11
In moTHH(SB%) we have o(¢) = (1 +1¢) - Idz,.
Proof of Lemma 3.11

» From Lemma 3.6 the assembly map THH(SB%) — S£B% s
injective so can compute o(() in the target instead.

> Using LBZp = [1,,cz, BZp(w) and the fact Z < Z; is dense
we reduce to computing o(€) in moSBAW) where w € Z.

» Since SBAW) = w*ST for the degree w map T — T sends
o — wo we can instead show that:

o(€) =1+neemS".

» They then claim after rationalization this is straightforward
and the general case follows from o o 0 = 70o.



p-speed action on THH equivalent to base changed THH

Construction 3.12
For R € CAlg(Sp) tensoring by the p-fold cover p: T — T/C, = T
yields a map of T-equivariant commutative algebras:

Yp: THH(R) — p*THH(R)
where p*: SpBT/C s SpBT.

Lemma 3.13
The map 1, refines to a T-equivariant map:

p: THH(SP?) 5, — p*THH(SP?)

inducing res,: C%(pZ,) — C°(Z,) on . In particular the C,
action on THH(SB%)| 5 is trivialisable.



Proof of Lemma 3.13

Lemma 3.13
The map 1), refines to a T-equivariant map:

p: THH(SP?) pz, — p* THH(SP?)

inducing res,: C%(pZ,) — C%(Z,) on . In particular the C,
action on THH(SBZ)|pZP is trivialisable.

Proof of Lemma 3.13

» The assembly map THH(SB%) — S£BZ are injective on
homotopy we can prove the claim in S£BZ,
» Precomposition by the degree p map S' — S sends the circle

at component a € Z,, to the circle at component pa € Z,
isomorphically. O



THH(SP?) restricted to p*Z>

Lemma 3.14
For each k > 0 there is an iso of WCO(ka; )-modules in SpBT

THH(S%%),, s = WCO(p*Z)) @ T IS[T/Cor] -

Proof of Lemma 3.14
» By Lemma 3.13 we can reduce to k = 0.

» Restricting ¢ € my THH(SB%) down to a class in
WlTHH(SBZP)lzx we can construct a T-equivariant map of
P

WCO(Z))-modules:
z:=WC%Z})® T 'S[T] — THH(SBZP)W .

» On homotopy this is:

z: (mWC(Zy)) {[+]. [T]} — C°(Z5) {1.¢} .



Proof of Lemma 3.14 cont.

» On homotopy this is:
z: (mWCZy)) {4, [T]} — C(Z5){1.¢}

with z([*]) = (.

» To compute z([T]) we have by Lemma 3.11:
z([T]) = z(o([+])) = a(z([+])) = o(¢) = (1 + () - 1dg,

» The WCO(ka; )-module iso follows since Idz, is a unit when
restricted to Z .



Lemma 3.15
Let R € CAlg(Sp)B be bounded below. In the span diagram:

WBR — ﬂ'thCP —_ W%th"

the left arrow is an iso if the Cp-action on mR is trivial, e.g. when
the Cp-action extends to a T action. The right arrow is an iso if
the Cp-action is trivial.

Proof of Lemma 3.15
» The left arrow being iso, under the assumption, follows since
7r'5 is a right adjoint factoring through 7 and taking values in
a 1-category.



Proof of Lemma 3.15 cont.

v

TR — mRCe

The Postnikov tower refines the map S — Z, to a tower of
square-free extensions.

(—)"C and (=) are exact and commute with uniformly
bounded below limits.

73 sends square-zero extensions to isos.

These reduce us to check for R replaced with Z, ® R.

The map is then just
m(Fp ® R)[t] = m(Fp @ R)(t))

with |t| = —2.
Since R is bounded below, |t| < 0 this is a nil-extension in
degree 0 so we're done.



Plan of attack

§3.3: THH of cochains as a cyclotomic spectrum



A diagram and the Cyclotomic Frobenius

We can patch together Lemmas 3.13, 3.14, and 3.15 to get a
diagram:

my THH(SBZ) +—— w3 THH(SBZ)hC% —— moTHH(SPZ)tC

~| E E

CO(Z,) 11— CO(z,) — s CO(p,)

Cyclotomic Frobenius

Recall for R € CAlg(Sp) there's a unique T-equivariant map of
commutative algebras:

¢: THH(R) — THH(R)! .



The cyclotomic Frobenius is an iso

Proposition 3.18
The cyclotomic Frobenius ¢: THH(SB%) — THH(SB%)t% is an
iso and () = res;/, where 1/p: pZ, — Zp.

Proof of Proposition 3.18

Bz, Br BZ C m BZ,\tC, =~ BZ
SB% — ((SP%e)®P)tCr T (SP%e)ICr o — SP%

l |wpye . | l

THH(SB%) % THH(SB%)!G " (p*THH(SB%))!% & THH(SB%)

> Left square is definition of the cyclotomic Frobenius. Middle
square is tensoring SB%» with the ses Cp —» T —T/Cp and
applying (—)f¢. Right square is constructed using a
trivialization of the C, action on * — T/C,.



Proof of Proposition 3.18 cont.

o

sBzZ, _Br ((SBZr)EPYtCr M, (SBZp )G = B

| o ] |

THH(SB%) % THH(SB%)!% "% (p* THH(SB%))!% & THH(SB%)

» Allen Yuan showed the indicated isos. By Lemmas 3.13 and

3.14 1/}sz is an iso.

» The composite mo A, is the Tate valued Frobenius.

1

» The composite can™* o mo A, is the identity on S.

» Naturality of the limit over BZ, now implies that

can"tomo A, is the identity on SBZr too.

» The universal property of THH: R — THH(R) being initial
amongst E..-maps from R to T-equivariant E..-rings shows ¢
is iso.



Definition of TR as a corepresentable
Lemma /Definition of TR

Let Lp)S be the cyclotomic spectrum with underlying
T-equivariant spectrum given by:

@ siT/C,.

j=0

The Frobenius ¢: Li,00)S — L<poo>Sth is the iso (by the Segal
conjecture) given by the sum of the composites:

S[T/Cy] — (S[T/Cpisa])" — (S[T/ Cpiia])t..

L(pyS then corepresents TR(—) in CycSp, .

Proposition 3.19
There is a fibre sequence of cyclotomic spectra:

WCYZX) ® £ L S — THH(SP?) — THH(S)??



Proof of Proposition 3.19
Write F for the fibre:

F — THH(SB%) — THH(S)BZ.

» F is the fibre of commutative algebras in CycSp so it is a
non-unital algebra in CycSp.

» By Lemma 3.7 F is iso to @, ~, F pkzx as T-equivariant
= P
non-unital commutative algebras.

> By Lemma 3.14 we identified an iso of WC°(Z))-modules:
Floez, = WC(Zy) © TS[T/Cpel -
» By Proposition 3.18 the cyclotomic Frobenius on F breaks up
as a sum of isos Florzy = (F‘pkﬂzs)tcp :

» The splitting of the Frobenius gives the result (by Lemma 2.7
we haven't seent).



Plan of attack

§3.4: Proof of Proposition 1.1



Main result

Corollary 3.21

Let R € Alg(Sp) be connective. Then WC(Z)Y) ® TC(R) is in the
thick subcategory generated by the fibre of the coassembly map:

TC(RB%) — TC(R)BZ.

Proof of Corollary 3.21

» There's a fibre sequence:

TC s TR -=F5 TR

(also another way to define TC) from which we get a fibre
sequence on corepresenting objects:

L<poo>S — L<poo>S — S.



Proof of Corollary 3.21

» Tensor this with WCO(Z;) to get:
WCZZ) ® LipeyS — WCHZY) ® LipoeyS — WCO(Z)) .

» The first two terms are the (suspension) of the fibre of the
THH(S®%) coassembly map, hence WCO(Z) is in the thick
subcategory generated by the fibre of the THH(S5%)
coassembly map.



Proof of Corollary 3.21

» Tensoring by THH(R) the fibre sequence
F — THH(SB?) — THH(S)8% and use THH is monoidal
along with SB%Z @ R = RBZ to get the following cofibre
sequence:

F ® THH(R) — THH(R?%) — THH(R)BZ

» Since TC preserves colimits and WC%(Z),) is a p-adic sum of
spheres after applying TC we get the sequence:

F ® TC(R) — TC(RB%) — TC(R)B%

from which the result follows.
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