
§3: THH of cochains on the circle

Telescope conjecture reading group



So far...

▶ Dan introduced THH and TC, etc. for an E1-ring spectra R
via the category NAss⊗act along with some other
constructions, e.g. Tate, Frobenius, etc.

▶ TC of E1-rings featured in Proposition 1.1 and its proof
reduces to checking a similar result for THH of S-valued
cochains.

▶ Note SBA is an E∞-ring spectrum. When R is E∞ we have a
simpler description of THH(R) as the pushout in CAlg(Sp) of
R with T:

THH(R) = R ⊗ T ,

alternatively:
THH(R) = R ⊗R⊗R R .



Proposition 1.1

Proposition 1.1

For any p-complete E1-ring R, the p-completion of TC(R) is in
the thick subcategory generated by the p-completion of the fibre of
the coassembly map:

TC(RBZ) −→ TC(R)BZ .

This will be useful in proving the following

Theorem B (Asymptotic constancy for BP⟨n⟩)
Fix a telescope T (n + 1) of a type n + 1 p-local finite spectrum.
Then for all k ≫ 0 there is a commuting square:

T (n + 1)∗TC(BP⟨n⟩hp
kZ) T (n + 1)∗TC(BP⟨n⟩)hp

kZ

T (n + 1)∗TC(BP⟨n⟩BZ) T (n + 1)∗TC(BP⟨n⟩)BZ

∼= ∼= .
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Assembly and coassembly

Coassembly

Let F be a contravariant homotopy functor, F : Spacesop → Sp,
then there is a zig-zag called the coassembly map:

F (X )→ lim
(∆p→X )∈∆op

SX

F (∆p)

∼← lim
(∆p→X )∈∆op

SX

F (∗)

∼= map(|N∆SX |+,F (∗))
∼← map(X+,F (∗)) .

Examples

Take F (−) := THH(S(−)) then the coassembly above gives a map:

THH(SBA) −→ THH(S)BA ∼= SBA .



Assembly and coassembly

Assembly

If F is a covariant homotopy functor, F : Spaces→ Sp, then there
is similarly a zig-zag called the assembly map:

X+ ∧ F (∗) −→ F (X ) .

Remarks
Assume F (∅) = ∗. The coassembly (resp. assembly) map is
characterised by the universal property that it is the universal
approximation on the right (resp. left) by a linear functor, i.e. one
that also preserves homotopy pushout squares.



Spherical Witt vectors

Recall
▶ The Witt vectors functor W takes an Fp-algebra A and

produces a characteristic 0 ring W (A). E.g. W (Fp) = Zp.

▶ An Fp-algebra is perfect if the Frobenius x 7→ xp is an
automorphism. E.g. Fp is perfect.

▶ The spherical group ring functor S[−] produces a ring
spectrum S[G ] from a group G , which is commutative if G is.

Spherical Witt vectors adjunction

There is an adjunction between perfect Fp-algebras and E∞-ring
spectra given by:

W(−) : Perf CAlg(Sp) : π♭0(−) .



Spherical Witt vectors cont.

The adjunction W(−) ⊣ π♭0(−)

W(−) : Perf CAlg(Sp) : π♭0(−) .

Definitions
▶ W(A) := S[W (A)].

▶ π♭0(R) := lim
(
. . .→ π0(R)/p

F→ π0(R)/p
F→ π0(R)/p

)
.

Example

W(Fp) = S.

Remarks
W is fully faithful and so Perf is a colocalisation of CAlg(Sp).
The essential image of W consists of those R ∈ CAlg(Sp) such
that Fp ⊗ R is a discrete perfect Fp-algebra. We then have
R ∼= W(R ⊗ Fp).
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Lattice of Zp-modules

▶ First step now is to study the commutative algebras
THH(SBpkZ).

▶ Will in fact study THH(SBM) where M is any discrete finite
projective Zp-module.

▶ This is justified since for a free finite rank Z-module M the
map BM → BMp is an equivalence on p-complete suspension
spectra since it is one on Fp-homology. Hence so too is
SBMp → SBM .

Definition
Write LattZp for the category of discrete finite projective
Zp-modules.



Identifying Witt vectors of continuous functions

▶ C 0(A) denotes Fp-valued continuous functions on the
Zp-module A.

▶ Aδ is A equipped with the discrete topology.

▶ Ωe is based loops.

Lemma 3.5
There’s a commutative diagram of commutative algebras:

WC 0(A) WC 0(Aδ)

S⊗SBA S SΩeBA

i

∼= ∼=

natural in A ∈ LattZp .



Proof of Lemma 3.5

colimk Fp ⊗FBA/pk
p

Fp Fp ⊗FBA
p

Fp (S⊗SBA S)⊗ Fp

colimk F
ΩeBA/pk

p FΩeBA
p SΩeBA ⊗ Fp

C 0(A) C 0(Aδ)

∼=
(1)

∼= (3)

∼=
(2)

∼= (5) ∼= (6)

∼=
(4)

i

▶ (1) is an iso since H∗
c (A;Fp) ∼= H∗(A;Fp).

▶ (2) and (4) are isos since Fp ⊗− commutes with finite limits
and arbitray products that are uniformly bounded below.

▶ (3) is an iso by convergence of the Eilenberg-Moore spectral
sequence.

▶ (5) and (6) are by definition.



Proof of Lemma 3.5 cont.

So we have a square:

(S⊗SBA S)⊗ Fp SΩeBA ⊗ Fp

C 0(A) C 0(Aδ)

∼= ∼=

i

and recall the essential image of W were those R ∈ CAlg(Sp) such
that Fp ⊗ R is a discrete Fp-algebra. And so we get:

WC 0(A) WC 0(Aδ)

S⊗SBA S SΩeBA

i

∼= ∼=



THH(SBA) as an SBA-algebra

Lemma 3.6
There is a commutative diagram of commutative SBA-algebras:

SBA ⊗WC 0(A) SBA ⊗WC 0(Aδ)

THH(SBA) SLBA

∼= ∼=

natural in A ∈ LattZp .



Proof of Lemma 3.6

SBA ⊗WC 0(A) SBA ⊗WC 0(Aδ)

SBA ⊗ (S⊗SBA S) SBA ⊗ SΩeBA SBA×ΩeBA

THH(SBA) SLBA

∼= ∼=

∼=

∼=

∼=

Id

▶ The bottom left horizontal map is an assembly map for the
T-shaped colimit THH along S(−).

▶ The rightmost vertical map is an iso by the map
LG ∼= G × ΩeG for G grouplike.

▶ The top square is SBA tensored with Lemma 3.5.

▶ The bottom left vertical map is an iso because ?

▶ ??? They also claim to use π♭0(SBA ⊗ R) ∼= π♭0(R) somewhere.



THH(SBA) restricted to 0

Lemma 3.7
There is a pushout square of commutative algebras:

W(C 0(A)) W(Fp)

THH(SBA) SBA

W(ev0)

⌜

natural in A ∈ LattZp .

Proof of Lemma 3.7
▶ π♭0(SBA) = Fp since π♭0 is a right adjoint with values in a

1-category.

▶ Result follows from Lemma 3.6 and the fact that
SBA → THH(SBA)→ SBA is the identity.
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Some more preliminaries

Definition
Let w ∈ Zp and BZp(w) denote BZp with T = BZ action left via
multiplication from BZ→ BZp induced by 1 7→ w .

Examples

There is a T-equivariant decomposition of the free loop space on
the p-adic circle:

LBZp
∼=

∐
w∈Zp

BZp(w) .

On the connected component corresponding to w : BZ→ BZp the
T action is the ‘w -speed’ rotation.



Some more preliminaries

We let:

▶ η ∈ π1(S) be the Hopf element.

▶ ϵ ∈ π−1SBZ be the class corresponding to 1 ∈ H1(BZ;Z).
▶ ζ ∈ π−1THH(SBZ) be the image of ϵ under

SBZ → THH(SBZ).

▶ σ be the Connes operator: given a T-equivariant spectrum X
there is a degree 1 self map:

σ : ΣX → X

obtained by viewing X as a S[T] module then σ corresponds
to the pointed identity map S1 → T in π1S[T]. This then
induces σ : πnX → πn+1X .



Lemma 3.11

Lemma 3.11
In π0THH(SBZ) we have σ(ζ) = (1 + ηζ) · IdZp .

Proof of Lemma 3.11
▶ From Lemma 3.6 the assembly map THH(SBZp)→ SLBZp is

injective so can compute σ(ζ) in the target instead.

▶ Using LBZp
∼=

∐
w∈Zp

BZp(w) and the fact Z ↪→ Zp is dense

we reduce to computing σ(ϵ) in π0SBZ(w) where w ∈ Z.
▶ Since SBZ(w) = w∗ST for the degree w map T→ T sends
σ 7→ wσ we can instead show that:

σ(ϵ) = 1 + ηϵ ∈ π∗ST .

▶ They then claim after rationalization this is straightforward
and the general case follows from σ ◦ σ = ησ.



p-speed action on THH equivalent to base changed THH

Construction 3.12
For R ∈ CAlg(Sp) tensoring by the p-fold cover p : T→ T/Cp

∼= T
yields a map of T-equivariant commutative algebras:

ψp : THH(R)→ p∗THH(R)

where p∗ : SpBT/Cp → SpBT.

Lemma 3.13
The map ψp refines to a T-equivariant map:

ψp : THH(SBZ)|pZp

∼=−→ p∗THH(SBZ)

inducing resp : C
0(pZp)→ C 0(Zp) on π

♭
0. In particular the Cp

action on THH(SBZ)|pZp
is trivialisable.



Proof of Lemma 3.13

Lemma 3.13
The map ψp refines to a T-equivariant map:

ψp : THH(SBZ)|pZp

∼=−→ p∗THH(SBZ)

inducing resp : C
0(pZp)→ C 0(Zp) on π

♭
0. In particular the Cp

action on THH(SBZ)|pZp
is trivialisable.

Proof of Lemma 3.13
▶ The assembly map THH(SBZ)→ SLBZ are injective on

homotopy we can prove the claim in SLBZ.

▶ Precomposition by the degree p map S1 → S1 sends the circle
at component a ∈ Zp to the circle at component pa ∈ Zp

isomorphically.



THH(SBA) restricted to pkZ×p
Lemma 3.14
For each k ≥ 0 there is an iso of WC 0(pkZ×

p )-modules in SpBT:

THH(SBZp)|pkZ×
p

∼= WC 0(pkZ×
p )⊗ Σ−1S[T/Cpk ] .

Proof of Lemma 3.14
▶ By Lemma 3.13 we can reduce to k = 0.

▶ Restricting ζ ∈ π1THH(SBZp) down to a class in
π1THH(SBZp)|Z×

p
we can construct a T-equivariant map of

WC 0(Z×
p )-modules:

z := WC 0(Z×
p )⊗ Σ−1S[T] −→ THH(SBZp)|Z×

p
.

▶ On homotopy this is:

z :
(
π∗WC 0(Z×

p )
)
{[∗], [T]} −→ C 0(Z×

p ) {1, ζ} .



Proof of Lemma 3.14 cont.

▶ On homotopy this is:

z :
(
π∗WC 0(Z×

p )
)
{[∗], [T]} −→ C 0(Z×

p ) {1, ζ}

with z([∗]) = ζ.

▶ To compute z([T]) we have by Lemma 3.11:

z([T]) = z(σ([∗])) = σ(z([∗])) = σ(ζ) = (1 + ηζ) · IdZp

▶ The WC 0(pkZ×
p )-module iso follows since IdZp is a unit when

restricted to Z×
p .



Lemma 3.15
Let R ∈ CAlg(Sp)BCp be bounded below. In the span diagram:

π♭0R π♭0R
hCp π♭0R

tCp

the left arrow is an iso if the Cp-action on π0R is trivial, e.g. when
the Cp-action extends to a T action. The right arrow is an iso if
the Cp-action is trivial.

Proof of Lemma 3.15
▶ The left arrow being iso, under the assumption, follows since
π♭0 is a right adjoint factoring through π0 and taking values in
a 1-category.



Proof of Lemma 3.15 cont.

π♭0R
hCp π♭0R

tCp

▶ The Postnikov tower refines the map S→ Zp to a tower of
square-free extensions.

▶ (−)hCp and (−)tCp are exact and commute with uniformly
bounded below limits.

▶ π♭0 sends square-zero extensions to isos.

▶ These reduce us to check for R replaced with Zp ⊗ R.

▶ The map is then just

π∗(Fp ⊗ R)JtK→ π∗(Fp ⊗ R)((t))

with |t| = −2.
▶ Since R is bounded below, |t| < 0 this is a nil-extension in

degree 0 so we’re done.
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A diagram and the Cyclotomic Frobenius

We can patch together Lemmas 3.13, 3.14, and 3.15 to get a
diagram:

π♭0THH(SBZ) π♭0THH(SBZ)hCp π0THH(SbZ)tCp

C 0(Zp) C 0(Zp) C 0(pZp)

∼= ∼= ∼=

Id (−)|pZp

Cyclotomic Frobenius

Recall for R ∈ CAlg(Sp) there’s a unique T-equivariant map of
commutative algebras:

φ : THH(R)→ THH(R)tCp .



The cyclotomic Frobenius is an iso

Proposition 3.18

The cyclotomic Frobenius φ : THH(SBZp)→ THH(SBZp)tCp is an
iso and π♭0(φ) = res1/p where 1/p : pZp → Zp.

Proof of Proposition 3.18

SBZp ((SBZp)⊗p)tCp (SBZp)tCp SBZp

THH(SBZp) THH(SBZp)tCp (p∗THH(SBZp))tCp THH(SBZp)

∆p m

(µ∗p )
tCp

can

∼=

φ ψ
tCp
p ∼=

▶ Left square is definition of the cyclotomic Frobenius. Middle
square is tensoring SBZp with the ses Cp → T→ T/Cp and
applying (−)tCp . Right square is constructed using a
trivialization of the Cp action on ∗ → T/Cp.



Proof of Proposition 3.18 cont.

SBZp ((SBZp)⊗p)tCp (SBZp)tCp SBZp

THH(SBZp) THH(SBZp)tCp (p∗THH(SBZp))tCp THH(SBZp)

∆p m

(µ∗p )
tCp

can

∼=

φ ψ
tCp
p ∼=

▶ Allen Yuan showed the indicated isos. By Lemmas 3.13 and

3.14 ψ
tCp
p is an iso.

▶ The composite m ◦∆p is the Tate valued Frobenius.

▶ The composite can−1 ◦m ◦∆p is the identity on S.
▶ Naturality of the limit over BZp now implies that

can−1 ◦m ◦∆p is the identity on SBZp too.

▶ The universal property of THH: R → THH(R) being initial
amongst E∞-maps from R to T-equivariant E∞-rings shows φ
is iso.



Definition of TR as a corepresentable

Lemma/Definition of TR

Let L⟨p∞⟩S be the cyclotomic spectrum with underlying
T-equivariant spectrum given by:⊕

j≥0

S[T/Cpj ] .

The Frobenius φ : L⟨p∞⟩S −→ L⟨p∞⟩StCp is the iso (by the Segal
conjecture) given by the sum of the composites:

S[T/Cpj ]→ (S[T/Cpj+1 ])hCp → (S[T/Cpj+1 ])tCp .

L⟨p∞⟩S then corepresents TR(−) in CycSp+.

Proposition 3.19

There is a fibre sequence of cyclotomic spectra:

WC 0(Z×
p )⊗ Σ−1L⟨p∞⟩S→ THH(SBZ)→ THH(S)BZ

where the second map is the coassembly map.



Proof of Proposition 3.19
Write F for the fibre:

F → THH(SBZ)→ THH(S)BZ .

▶ F is the fibre of commutative algebras in CycSp so it is a
non-unital algebra in CycSp.

▶ By Lemma 3.7 F is iso to
⊕

k≥0 F|pkZ×
p
as T-equivariant

non-unital commutative algebras.

▶ By Lemma 3.14 we identified an iso of WC 0(Z×
p )-modules:

F|pkZp
∼= WC 0(Z×

p )⊗ Σ−1S[T/Cpk ] .

▶ By Proposition 3.18 the cyclotomic Frobenius on F breaks up
as a sum of isos F|pkZ×

p

∼= (F|pk+1Z×
p
)tCp .

▶ The splitting of the Frobenius gives the result (by Lemma 2.7
we haven’t seent).
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Main result

Corollary 3.21

Let R ∈ Alg(Sp) be connective. Then WC 0(Z×
p )⊗TC (R) is in the

thick subcategory generated by the fibre of the coassembly map:

TC (RBZ) −→ TC (R)BZ .

Proof of Corollary 3.21

▶ There’s a fibre sequence:

TC TR TR
1−F

(also another way to define TC) from which we get a fibre
sequence on corepresenting objects:

L⟨p∞⟩S −→ L⟨p∞⟩S −→ S .



Proof of Corollary 3.21

▶ Tensor this with WC 0(Z×
p ) to get:

WC 0(Z×
p )⊗ L⟨p∞⟩S −→WC 0(Z×

p )⊗ L⟨p∞⟩S −→WC 0(Z×
p ) .

▶ The first two terms are the (suspension) of the fibre of the
THH(SBZ) coassembly map, hence WC 0(Z×

p ) is in the thick

subcategory generated by the fibre of the THH(SBZ)
coassembly map.



Proof of Corollary 3.21

▶ Tensoring by THH(R) the fibre sequence
F → THH(SBZ)→ THH(S)BZ and use THH is monoidal
along with SBZ ⊗ R ∼= RBZ to get the following cofibre
sequence:

F ⊗ THH(R)→ THH(RBZ)→ THH(R)BZ

▶ Since TC preserves colimits and WC 0(Zp) is a p-adic sum of
spheres after applying TC we get the sequence:

F ⊗ TC (R)→ TC(RBZ)→ TC(R)BZ

from which the result follows.
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