§3: THH of cochains on the circle

Telescope conjecture reading group

So far...

- Dan introduced THH and TC, etc. for an \mathbb{E}_{1}-ring spectra R via the category $N \mathcal{A} s s_{a c t}^{\otimes}$ along with some other constructions, e.g. Tate, Frobenius, etc.
- TC of \mathbb{E}_{1}-rings featured in Proposition 1.1 and its proof reduces to checking a similar result for THH of \mathbb{S}-valued cochains.
- Note $\mathbb{S}^{B A}$ is an \mathbb{E}_{∞}-ring spectrum. When R is \mathbb{E}_{∞} we have a simpler description of $\operatorname{THH}(R)$ as the pushout in $\mathrm{CAlg}(\mathrm{Sp})$ of R with \mathbb{T} :

$$
\mathrm{THH}(R)=R \otimes \mathbb{T}
$$

alternatively:

$$
\operatorname{THH}(R)=R \otimes_{R \otimes R} R .
$$

Proposition 1.1

Proposition 1.1

For any p-complete \mathbb{E}_{1}-ring R, the p-completion of $\mathrm{TC}(R)$ is in the thick subcategory generated by the p-completion of the fibre of the coassembly map:

$$
\mathrm{TC}\left(R^{B \mathbb{Z}}\right) \longrightarrow \mathrm{TC}(R)^{B \mathbb{Z}}
$$

This will be useful in proving the following
Theorem B (Asymptotic constancy for $\mathrm{BP}\langle n\rangle$)
Fix a telescope $T(n+1)$ of a type $n+1 p$-local finite spectrum.
Then for all $k \gg 0$ there is a commuting square:

$$
\begin{array}{cc}
T(n+1)_{*} \mathrm{TC}\left(\mathrm{BP}\langle n\rangle^{h p^{k} \mathbb{Z}}\right) \longrightarrow T(n+1)_{*} \mathrm{TC}(\mathrm{BP}\langle n\rangle)^{h p^{k} \mathbb{Z}} \\
\cong \downarrow & \downarrow \\
T(n+1)_{*} \mathrm{TC}\left(\mathrm{BP}\langle n\rangle^{B \mathbb{Z}}\right) \longrightarrow \\
\cong & \longrightarrow(n+1)_{*} \mathrm{TC}(\mathrm{BP}\langle n\rangle)^{B \mathbb{Z}}
\end{array}
$$

Plan of attack

Preliminaries
§3.1: THH of cochains as a commutative algebra
§3.2: THH of cochains as a \mathbb{T}-equivariant commutative algebra
§3.3: THH of cochains as a cyclotomic spectrum
§3.4: Proof of Proposition 1.1

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra
§3.2: THH of cochains as a \mathbb{T}-equivariant commutative algebra
§3.3: THH of cochains as a cyclotomic spectrum
§3.4: Proof of Proposition 1.1

Assembly and coassembly

Coassembly

Let F be a contravariant homotopy functor, $F:$ Spaces $^{\mathrm{op}} \rightarrow \mathrm{Sp}$, then there is a zig-zag called the coassembly map:

$$
\begin{aligned}
F(X) & \rightarrow \lim _{\left(\Delta^{\rho} \rightarrow X\right) \in \Delta_{s X}^{\text {op }}} F\left(\Delta^{p}\right) \\
& \leftarrow \lim _{\left(\Delta^{\rho} \rightarrow X\right) \in \Delta_{s X}^{\text {op }}} F(*) \\
& \cong \operatorname{map}\left(\left|N \Delta_{S X}\right|_{+}, F(*)\right) \\
& \simeq \operatorname{map}\left(X_{+}, F(*)\right) .
\end{aligned}
$$

Examples
Take $F(-):=\operatorname{THH}\left(\mathbb{S}^{(-)}\right)$then the coassembly above gives a map:

$$
\mathrm{THH}\left(\mathbb{S}^{B A}\right) \longrightarrow \mathrm{THH}(\mathbb{S})^{B A} \cong \mathbb{S}^{B A} .
$$

Assembly and coassembly

Assembly

If F is a covariant homotopy functor, F : Spaces \rightarrow Sp, then there is similarly a zig-zag called the assembly map:

$$
X_{+} \wedge F(*) \longrightarrow F(X)
$$

Remarks

Assume $F(\emptyset)=*$. The coassembly (resp. assembly) map is characterised by the universal property that it is the universal approximation on the right (resp. left) by a linear functor, i.e. one that also preserves homotopy pushout squares.

Spherical Witt vectors

Recall

- The Witt vectors functor W takes an \mathbb{F}_{p}-algebra A and produces a characteristic 0 ring $W(A)$. E.g. $W\left(\mathbb{F}_{p}\right)=\mathbb{Z}_{p}$.
- An \mathbb{F}_{p}-algebra is perfect if the Frobenius $x \mapsto x^{p}$ is an automorphism. E.g. \mathbb{F}_{p} is perfect.
- The spherical group ring functor $\mathbb{S}[-]$ produces a ring spectrum $\mathbb{S}[G]$ from a group G, which is commutative if G is.

Spherical Witt vectors adjunction

There is an adjunction between perfect $\mathbb{F}_{p^{\prime}}$-algebras and $\mathbb{E}_{\infty^{-}}$-ring spectra given by:

$$
\mathbb{W}(-): \operatorname{Perf} \rightleftarrows \mathrm{CAlg}(\mathrm{Sp}): \pi_{0}^{b}(-)
$$

Spherical Witt vectors cont.

The adjunction $\mathbb{W}(-) \dashv \pi_{0}^{b}(-)$

$$
\mathbb{W}(-): \operatorname{Perf} \rightleftarrows \mathrm{CAlg}(\mathrm{Sp}): \pi_{0}^{b}(-)
$$

Definitions

- $\mathbb{W}(A):=\mathbb{S}[W(A)]$.
- $\pi_{0}^{b}(R):=\lim \left(\ldots \rightarrow \pi_{0}(R) / p \xrightarrow{F} \pi_{0}(R) / p \xrightarrow{F_{\rightarrow}} \pi_{0}(R) / p\right)$.

Example
$\mathbb{W}\left(\mathbb{F}_{p}\right)=\mathbb{S}$.
Remarks
\mathbb{W} is fully faithful and so Perf is a colocalisation of $\mathrm{CAlg}(\mathrm{Sp})$.
The essential image of \mathbb{W} consists of those $R \in \mathrm{CAlg}(\mathrm{Sp})$ such that $\mathbb{F}_{p} \otimes R$ is a discrete perfect \mathbb{F}_{p}-algebra. We then have $R \cong \mathbb{W}\left(R \otimes \mathbb{F}_{p}\right)$.

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra
§3.2: THH of cochains as a \mathbb{T}-equivariant commutative algebra
§3.3: THH of cochains as a cyclotomic spectrum
§3.4: Proof of Proposition 1.1

Lattice of $\mathbb{Z}_{p^{-}}$-modules

- First step now is to study the commutative algebras $\mathrm{THH}\left(\mathbb{S}^{B p^{k} \mathbb{Z}}\right)$.
- Will in fact study $\operatorname{THH}\left(\mathbb{S}^{B M}\right)$ where M is any discrete finite projective \mathbb{Z}_{p}-module.
- This is justified since for a free finite rank \mathbb{Z}-module M the map $B M \rightarrow B M_{p}$ is an equivalence on p-complete suspension spectra since it is one on \mathbb{F}_{p}-homology. Hence so too is $\mathbb{S}^{B M_{p}} \rightarrow \mathbb{S}^{B M}$.

Definition

Write $\operatorname{Latt}_{\mathbb{Z}_{p}}$ for the category of discrete finite projective \mathbb{Z}_{p}-modules.

Identifying Witt vectors of continuous functions

- $C^{0}(A)$ denotes \mathbb{F}_{p}-valued continuous functions on the \mathbb{Z}_{p}-module A.
- A^{δ} is A equipped with the discrete topology.
- Ω_{e} is based loops.

Lemma 3.5
There's a commutative diagram of commutative algebras:

$$
\begin{gathered}
\mathbb{W} C^{0}(A) \xrightarrow{i} \mathbb{W} C^{0}\left(A^{\delta}\right) \\
\quad \cong \downarrow^{\downarrow} \underset{\mathbb{S}}{ } \\
\mathbb{S} \otimes_{\mathbb{S} B A} \mathbb{S} \longrightarrow \mathbb{S}^{\Omega_{e} B A}
\end{gathered}
$$

natural in $A \in \operatorname{Latt}_{\mathbb{Z}_{p}}$.

Proof of Lemma 3.5

$$
\begin{aligned}
& \operatorname{colim}_{k} \mathbb{F}_{p} \otimes_{\mathbb{F}_{p}^{B A / p^{k}}} \mathbb{F}_{p} \xrightarrow[(1)]{\cong} \mathbb{F}_{p} \otimes_{\mathbb{F}_{p}^{B A}} \mathbb{F}_{p} \underset{(2)}{\cong}\left(\mathbb{S} \otimes_{\mathbb{S} B A} \mathbb{S}\right) \otimes \mathbb{F}_{p}
\end{aligned}
$$

- (1) is an iso since $H_{c}^{*}\left(A ; \mathbb{F}_{p}\right) \cong H^{*}\left(A ; \mathbb{F}_{p}\right)$.
- (2) and (4) are isos since $\mathbb{F}_{p} \otimes-$ commutes with finite limits and arbitray products that are uniformly bounded below.
- (3) is an iso by convergence of the Eilenberg-Moore spectral sequence.
- (5) and (6) are by definition.

Proof of Lemma 3.5 cont.

So we have a square:

$$
\begin{aligned}
& \left(\mathbb{S} \otimes_{\mathbb{S} B A} \mathbb{S}\right) \otimes \mathbb{F}_{p} \longrightarrow \mathbb{S}^{\Omega_{e} B A} \otimes \mathbb{F}_{p} \\
& \cong \downarrow \cong \\
& C^{0}(A) \xrightarrow{i} C^{0}\left(A^{\delta}\right)
\end{aligned}
$$

and recall the essential image of \mathbb{W} were those $R \in \mathrm{CAlg}(\mathrm{Sp})$ such that $\mathbb{F}_{p} \otimes R$ is a discrete \mathbb{F}_{p}-algebra. And so we get:

$$
\begin{aligned}
& \mathbb{W} C^{0}(A) \xrightarrow{i} \mathbb{W} C^{0}\left(A^{\delta}\right) \\
& \cong \downarrow \cong \\
& \mathbb{S} \otimes_{\mathbb{S} B A} \mathbb{S} \longrightarrow \mathbb{S}^{\Omega_{e} B A}
\end{aligned}
$$

$\mathrm{THH}\left(\mathbb{S}^{B A}\right)$ as an $\mathbb{S}^{B A}$-algebra

Lemma 3.6
There is a commutative diagram of commutative $\mathbb{S}^{B A}$-algebras:

$$
\begin{gathered}
\mathbb{S}^{B A} \otimes \mathbb{W} C^{0}(A) \longrightarrow \mathbb{S}^{B A} \otimes \mathbb{W} C^{0}\left(A^{\delta}\right) \\
\cong \underset{\downarrow}{\downarrow} \underset{\substack{\mathcal{L} B A}}{\downarrow} \quad .
\end{gathered}
$$

natural in $A \in \operatorname{Latt}_{\mathbb{Z}_{p}}$.

Proof of Lemma 3.6

$$
\begin{aligned}
& \mathbb{S}^{B A} \otimes \mathbb{W} C^{0}(A) \longrightarrow \mathbb{S}^{B A} \otimes \mathbb{W} C^{0}\left(A^{\delta}\right) \\
& \cong \downarrow \preceq \\
& \mathbb{S}^{B A} \otimes\left(\mathbb{S} \otimes_{\mathbb{S} B A} \mathbb{S}\right) \longrightarrow \mathbb{S}^{B A} \otimes \mathbb{S}^{\Omega_{e} B A} \cong \mathbb{S}^{B A \times \Omega_{e} B A} \\
& \cong \downarrow \\
& \mathrm{THH}\left(\mathbb{S}^{B A}\right) \longrightarrow \mathbb{S}^{\mathcal{L} B A}
\end{aligned}
$$

- The bottom left horizontal map is an assembly map for the \mathbb{T}-shaped colimit THH along $\mathbb{S}^{(-)}$.
- The rightmost vertical map is an iso by the map $\mathcal{L} G \cong G \times \Omega_{e} G$ for G grouplike.
- The top square is $\mathbb{S}^{B A}$ tensored with Lemma 3.5.
- The bottom left vertical map is an iso because ?
- ??? They also claim to use $\pi_{0}^{b}\left(\mathbb{S}^{B A} \otimes R\right) \cong \pi_{0}^{b}(R)$ somewhere.

$\mathrm{THH}\left(\mathbb{S}^{B A}\right)$ restricted to 0

Lemma 3.7
There is a pushout square of commutative algebras:

$$
\begin{array}{cll}
\mathbb{W}\left(C^{0}(A)\right) & \xrightarrow{\mathbb{W}\left(e v_{0}\right)} \mathbb{W}\left(\mathbb{F}_{p}\right) \\
\downarrow \\
& & \\
\mathrm{THH}\left(\mathbb{S}^{B A}\right) & & \ulcorner \\
\mathbb{S}^{B A}
\end{array}
$$

natural in $A \in \mathrm{Latt}_{\mathbb{Z}_{p}}$.
Proof of Lemma 3.7
$-\pi_{0}^{b}\left(\mathbb{S}^{B A}\right)=\mathbb{F}_{p}$ since π_{0}^{b} is a right adjoint with values in a 1-category.

- Result follows from Lemma 3.6 and the fact that $\mathbb{S}^{B A} \rightarrow \mathrm{THH}\left(\mathbb{S}^{B A}\right) \rightarrow \mathbb{S}^{B A}$ is the identity.

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra
§3.2: THH of cochains as a \mathbb{T}-equivariant commutative algebra
§3.3: THH of cochains as a cyclotomic spectrum
§3.4: Proof of Proposition 1.1

Some more preliminaries

Definition

Let $w \in \mathbb{Z}_{p}$ and $B \mathbb{Z}_{p}(w)$ denote $B \mathbb{Z}_{p}$ with $\mathbb{T}=B \mathbb{Z}$ action left via multiplication from $B \mathbb{Z} \rightarrow B \mathbb{Z}_{p}$ induced by $1 \mapsto w$.

Examples

There is a \mathbb{T}-equivariant decomposition of the free loop space on the p-adic circle:

$$
\mathcal{L} B \mathbb{Z}_{p} \cong \coprod_{w \in \mathbb{Z}_{p}} B \mathbb{Z}_{p}(w)
$$

On the connected component corresponding to $w: B \mathbb{Z} \rightarrow B \mathbb{Z}_{p}$ the \mathbb{T} action is the ' w-speed' rotation.

Some more preliminaries

We let:

- $\eta \in \pi_{1}(\mathbb{S})$ be the Hopf element.
- $\epsilon \in \pi_{-1} \mathbb{S}^{B \mathbb{Z}}$ be the class corresponding to $1 \in H^{1}(B \mathbb{Z} ; \mathbb{Z})$.
- $\zeta \in \pi_{-1} \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)$ be the image of ϵ under $\mathbb{S}^{B \mathbb{Z}} \rightarrow \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)$.
- σ be the Connes operator: given a \mathbb{T}-equivariant spectrum X there is a degree 1 self map:

$$
\sigma: \Sigma X \rightarrow X
$$

obtained by viewing X as a $\mathbb{S}[\mathbb{T}]$ module then σ corresponds to the pointed identity map $S^{1} \rightarrow \mathbb{T}$ in $\pi_{1} \mathbb{S}[\mathbb{T}]$. This then induces $\sigma: \pi_{n} X \rightarrow \pi_{n+1} X$.

Lemma 3.11

Lemma 3.11

$\ln \pi_{0} \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)$ we have $\sigma(\zeta)=(1+\eta \zeta) \cdot \operatorname{Id}_{\mathbb{Z}_{p}}$.

Proof of Lemma 3.11

- From Lemma 3.6 the assembly map $\operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}_{p}}\right) \rightarrow \mathbb{S}^{\mathcal{L B} \mathbb{Z}_{p}}$ is injective so can compute $\sigma(\zeta)$ in the target instead.
- Using $\mathcal{L} B \mathbb{Z}_{p} \cong \coprod_{w \in \mathbb{Z}_{p}} B \mathbb{Z}_{p}(w)$ and the fact $\mathbb{Z} \hookrightarrow \mathbb{Z}_{p}$ is dense we reduce to computing $\sigma(\epsilon)$ in $\pi_{0} \mathbb{S}^{B \mathbb{Z}(w)}$ where $w \in \mathbb{Z}$.
- Since $\mathbb{S}^{B \mathbb{Z}(w)}=w^{*} \mathbb{S}^{\mathbb{T}}$ for the degree w map $\mathbb{T} \rightarrow \mathbb{T}$ sends $\sigma \mapsto w \sigma$ we can instead show that:

$$
\sigma(\epsilon)=1+\eta \epsilon \in \pi_{*} \mathbb{S}^{\mathbb{T}}
$$

- They then claim after rationalization this is straightforward and the general case follows from $\sigma \circ \sigma=\eta \sigma$.

p-speed action on THH equivalent to base changed THH

Construction 3.12
For $R \in \mathrm{CAlg}(\mathrm{Sp})$ tensoring by the p-fold cover $p: \mathbb{T} \rightarrow \mathbb{T} / C_{p} \cong \mathbb{T}$ yields a map of \mathbb{T}-equivariant commutative algebras:

$$
\psi_{p}: \operatorname{THH}(R) \rightarrow p^{*} \mathrm{THH}(R)
$$

where $p^{*}: \mathrm{Sp}^{B T / C_{P}} \rightarrow \mathrm{Sp}^{B \mathbb{T}}$.
Lemma 3.13
The map ψ_{p} refines to a \mathbb{T}-equivariant map:

$$
\psi_{p}: \operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)_{\mid p \mathbb{Z}_{p}} \xlongequal{\cong} p^{*} \operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)
$$

inducing res ${ }_{p}: C^{0}\left(p \mathbb{Z}_{p}\right) \rightarrow C^{0}\left(\mathbb{Z}_{p}\right)$ on π_{0}^{b}. In particular the C_{p} action on $\operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)_{\mid p \mathbb{Z}_{p}}$ is trivialisable.

Proof of Lemma 3.13

Lemma 3.13

The map ψ_{p} refines to a \mathbb{T}-equivariant map:

$$
\psi_{p}: \operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)_{\mid p \mathbb{Z}_{p}} \xrightarrow{\cong} p^{*} \operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)
$$

inducing $\operatorname{res}_{p}: C^{0}\left(p \mathbb{Z}_{p}\right) \rightarrow C^{0}\left(\mathbb{Z}_{p}\right)$ on π_{0}^{b}. In particular the C_{p} action on $\operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)_{\mid p \mathbb{Z}_{p}}$ is trivialisable.

Proof of Lemma 3.13

- The assembly map $\operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right) \rightarrow \mathbb{S}^{\mathcal{L} B \mathbb{Z}}$ are injective on homotopy we can prove the claim in $\mathbb{S}^{\mathcal{L} B \mathbb{Z}}$.
- Precomposition by the degree p map $S^{1} \rightarrow S^{1}$ sends the circle at component $a \in \mathbb{Z}_{p}$ to the circle at component $p a \in \mathbb{Z}_{p}$ isomorphically.

$\operatorname{THH}\left(\mathbb{S}^{B A}\right)$ restricted to $p^{k} \mathbb{Z}_{p}^{\times}$

Lemma 3.14
For each $k \geq 0$ there is an iso of $\mathbb{W} C^{0}\left(p^{k} \mathbb{Z}_{p}^{\times}\right)$-modules in $\mathrm{Sp}^{B T}$:

$$
\operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}_{p}}\right)_{\mid p^{k} \mathbb{Z}_{\rho}^{\times}} \cong \mathbb{W} C^{0}\left(p^{k} \mathbb{Z}_{p}^{\times}\right) \otimes \Sigma^{-1} \mathbb{S}\left[\mathbb{T} / C_{\rho^{k}}\right] .
$$

Proof of Lemma 3.14

- By Lemma 3.13 we can reduce to $k=0$.
- Restricting $\zeta \in \pi_{1} \mathrm{THH}\left(\mathbb{S}^{B Z_{p}}\right)$ down to a class in $\pi_{1} \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}_{\rho}}\right)_{\mathbb{Z}_{\rho}^{\times}}$we can construct a \mathbb{T}-equivariant map of $\mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right)$-modules:

$$
z:=\mathbb{W} C^{0}\left(\mathbb{Z}_{\rho}^{\times}\right) \otimes \Sigma^{-1} \mathbb{S}[\mathbb{T}] \longrightarrow \operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}_{\rho}}\right)_{\mathbb{Z}_{\rho}^{\times}} .
$$

- On homotopy this is:

$$
z:\left(\pi_{*} \mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right)\right)\{[*],[\mathbb{T}]\} \longrightarrow C^{0}\left(\mathbb{Z}_{p}^{\times}\right)\{1, \zeta\}
$$

Proof of Lemma 3.14 cont.

- On homotopy this is:

$$
z:\left(\pi_{*} \mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right)\right)\{[*],[\mathbb{T}]\} \longrightarrow C^{0}\left(\mathbb{Z}_{p}^{\times}\right)\{1, \zeta\}
$$

with $z([*])=\zeta$.

- To compute $z([\mathbb{T}])$ we have by Lemma 3.11:

$$
z([\mathbb{T}])=z(\sigma([*]))=\sigma(z([*]))=\sigma(\zeta)=(1+\eta \zeta) \cdot \operatorname{Id}_{\mathbb{Z}_{p}}
$$

- The $\mathbb{W} C^{0}\left(p^{k} \mathbb{Z}_{p}^{\times}\right)$-module iso follows since $\mathrm{Id}_{\mathbb{Z}_{p}}$ is a unit when restricted to \mathbb{Z}_{p}^{\times}.

Lemma 3.15

Let $R \in \mathrm{CAlg}(\mathrm{Sp})^{B C_{p}}$ be bounded below. In the span diagram:

$$
\pi_{0}^{b} R \longleftarrow \pi_{0}^{b} R^{h C_{p}} \longrightarrow \pi_{0}^{b} R^{t C_{p}}
$$

the left arrow is an iso if the C_{p}-action on $\pi_{0} R$ is trivial, e.g. when the C_{p}-action extends to a \mathbb{T} action. The right arrow is an iso if the C_{p}-action is trivial.

Proof of Lemma 3.15

- The left arrow being iso, under the assumption, follows since π_{0}^{b} is a right adjoint factoring through π_{0} and taking values in a 1-category.

Proof of Lemma 3.15 cont.

$$
\pi_{0}^{b} R^{h C_{p}} \longrightarrow \pi_{0}^{b} R^{t C_{p}}
$$

- The Postnikov tower refines the map $\mathbb{S} \rightarrow \mathbb{Z}_{p}$ to a tower of square-free extensions.
- $(-)^{h C_{p}}$ and $(-)^{t C_{p}}$ are exact and commute with uniformly bounded below limits.
- π_{0}^{b} sends square-zero extensions to isos.
- These reduce us to check for R replaced with $\mathbb{Z}_{p} \otimes R$.
- The map is then just

$$
\pi_{*}\left(F_{p} \otimes R\right) \llbracket t \rrbracket \rightarrow \pi_{*}\left(\mathbb{F}_{p} \otimes R\right)((t))
$$

with $|t|=-2$.

- Since R is bounded below, $|t|<0$ this is a nil-extension in degree 0 so we're done.

Plan of attack

Preliminaries
§3.1: THH of cochains as a commutative algebra
§3.2: THH of cochains as a \mathbb{T}-equivariant commutative algebra
§3.3: THH of cochains as a cyclotomic spectrum
§3.4: Proof of Proposition 1.1

A diagram and the Cyclotomic Frobenius

We can patch together Lemmas 3.13, 3.14, and 3.15 to get a diagram:

$$
\begin{aligned}
& \pi_{0}^{b} \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right) \longleftarrow \pi_{0}^{b} \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)^{h C_{p}} \longrightarrow \pi_{0} \mathrm{THH}\left(\mathbb{S}^{b \mathbb{Z}}\right)^{t C_{p}}
\end{aligned}
$$

Cyclotomic Frobenius
Recall for $R \in \mathrm{CAlg}(\mathrm{Sp})$ there's a unique \mathbb{T}-equivariant map of commutative algebras:

$$
\varphi: \mathrm{THH}(R) \rightarrow \mathrm{THH}(R)^{t C_{p}} .
$$

The cyclotomic Frobenius is an iso

Proposition 3.18

The cyclotomic Frobenius $\varphi: \operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}_{p}}\right) \rightarrow \operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}_{p}}\right)^{t C_{p}}$ is an iso and $\pi_{0}^{b}(\varphi)=\operatorname{res}_{1 / p}$ where $1 / p: p \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$.

Proof of Proposition 3.18

- Left square is definition of the cyclotomic Frobenius. Middle square is tensoring $\mathbb{S}^{B \mathbb{Z}_{p}}$ with the ses $C_{p} \rightarrow \mathbb{T} \rightarrow \mathbb{T} / C_{p}$ and applying $(-)^{t C_{p}}$. Right square is constructed using a trivialization of the C_{p} action on $* \rightarrow \mathbb{T} / C_{p}$.

Proof of Proposition 3.18 cont.

- Allen Yuan showed the indicated isos. By Lemmas 3.13 and $3.14 \psi_{p}^{t C_{p}}$ is an iso.
- The composite $m \circ \Delta_{p}$ is the Tate valued Frobenius.
- The composite can ${ }^{-1} \circ m \circ \Delta_{p}$ is the identity on \mathbb{S}.
- Naturality of the limit over $B \mathbb{Z}_{p}$ now implies that $\mathrm{can}^{-1} \circ m \circ \Delta_{p}$ is the identity on $\mathbb{S}^{B \mathbb{Z}_{p}}$ too.
- The universal property of THH: $R \rightarrow \operatorname{THH}(R)$ being initial amongst \mathbb{E}_{∞}-maps from R to \mathbb{T}-equivariant \mathbb{E}_{∞}-rings shows φ is iso.

Definition of TR as a corepresentable

Lemma/Definition of TR
Let $L_{\left\langle p p^{\infty}\right\rangle \mathbb{S}}$ be the cyclotomic spectrum with underlying \mathbb{T}-equivariant spectrum given by:

$$
\bigoplus_{j \geq 0} \mathbb{S}\left[\mathbb{T} / C_{p^{\prime}}\right] .
$$

The Frobenius $\varphi: L_{\left\langle p^{\infty}\right\rangle} \mathbb{S} \longrightarrow L_{\left\langle p^{\infty}\right\rangle} \mathbb{S}^{t} C_{p}$ is the iso (by the Segal conjecture) given by the sum of the composites:

$$
\mathbb{S}\left[\mathbb{T} / C_{p^{j}}\right] \rightarrow\left(\mathbb{S}\left[\mathbb{T} / C_{p^{j+1}}\right]\right)^{h C_{p}} \rightarrow\left(\mathbb{S}\left[\mathbb{T} / C_{p^{j+1}}\right]\right)^{t C_{p}} .
$$

$L_{\left\langle p^{\infty}\right\rangle} \mathbb{S}$ then corepresents $T R(-)$ in CycSp_{+}.
Proposition 3.19
There is a fibre sequence of cyclotomic spectra:

$$
\mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right) \otimes \Sigma^{-1} L_{\left\langle p^{\infty}\right\rangle} \mathbb{S} \rightarrow \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right) \rightarrow \mathrm{THH}(\mathbb{S})^{B \mathbb{Z}}
$$

Proof of Proposition 3.19

Write F for the fibre:

$$
F \rightarrow \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right) \rightarrow \mathrm{THH}(\mathbb{S})^{B \mathbb{Z}}
$$

- F is the fibre of commutative algebras in CycSp so it is a non-unital algebra in CycSp.
- By Lemma 3.7 F is iso to $\bigoplus_{k \geq 0} F_{\mid p^{k} \mathbb{Z}_{p}^{\times}}$as \mathbb{T}-equivariant non-unital commutative algebras.
- By Lemma 3.14 we identified an iso of $\mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right)$-modules:

$$
F_{\mid p^{k} \mathbb{Z}_{p}} \cong \mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right) \otimes \Sigma^{-1} \mathbb{S}\left[\mathbb{T} / C_{p^{k}}\right]
$$

- By Proposition 3.18 the cyclotomic Frobenius on F breaks up as a sum of isos $F_{\mid p^{k} \mathbb{Z}_{p}^{\times}} \cong\left(F_{\mid p^{k+1} \mathbb{Z}_{p}^{\times}}\right)^{t C_{p}}$.
- The splitting of the Frobenius gives the result (by Lemma 2.7 we haven't seent).

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra
§3.2: THH of cochains as a \mathbb{T}-equivariant commutative algebra
§3.3: THH of cochains as a cyclotomic spectrum
§3.4: Proof of Proposition 1.1

Main result

Corollary 3.21
Let $R \in \operatorname{Alg}(\mathrm{Sp})$ be connective. Then $\mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right) \otimes T C(R)$ is in the thick subcategory generated by the fibre of the coassembly map:

$$
T C\left(R^{B \mathbb{Z}}\right) \longrightarrow T C(R)^{B \mathbb{Z}}
$$

Proof of Corollary 3.21

- There's a fibre sequence:

$$
\mathrm{TC} \longrightarrow \mathrm{TR} \xrightarrow{1-F} \mathrm{TR}
$$

(also another way to define TC) from which we get a fibre sequence on corepresenting objects:

$$
L_{\left\langle p^{\infty}\right\rangle} \mathbb{S} \longrightarrow L_{\left\langle p^{\infty}\right\rangle} \mathbb{S} \longrightarrow \mathbb{S}
$$

Proof of Corollary 3.21

- Tensor this with $\mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right)$to get:
$\mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right) \otimes L_{\left\langle p^{\infty}\right\rangle} \mathbb{S} \longrightarrow \mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right) \otimes L_{\left\langle p^{\infty}\right\rangle} \mathbb{S} \longrightarrow \mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right)$.
- The first two terms are the (suspension) of the fibre of the $\operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)$ coassembly map, hence $\mathbb{W} C^{0}\left(\mathbb{Z}_{p}^{\times}\right)$is in the thick subcategory generated by the fibre of the $\operatorname{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right)$ coassembly map.

Proof of Corollary 3.21

- Tensoring by THH (R) the fibre sequence $F \rightarrow \mathrm{THH}\left(\mathbb{S}^{B \mathbb{Z}}\right) \rightarrow \mathrm{THH}(\mathbb{S})^{B \mathbb{Z}}$ and use THH is monoidal along with $\mathbb{S}^{B \mathbb{Z}} \otimes R \cong R^{B \mathbb{Z}}$ to get the following cofibre sequence:

$$
F \otimes \mathrm{THH}(R) \rightarrow \mathrm{THH}\left(R^{B \mathbb{Z}}\right) \rightarrow \mathrm{THH}(R)^{B \mathbb{Z}}
$$

- Since TC preserves colimits and $\mathbb{W} C^{0}\left(\mathbb{Z}_{p}\right)$ is a p-adic sum of spheres after applying TC we get the sequence:

$$
F \otimes T C(R) \rightarrow \mathrm{TC}\left(R^{B \mathbb{Z}}\right) \rightarrow \mathrm{TC}(R)^{B \mathbb{Z}}
$$

from which the result follows.

