3: THH of cochains on the circle

Telescope conjecture reading group

So far...

- ▶ Dan introduced THH and TC, etc. for an E₁-ring spectra R via the category NAss[⊗]_{act} along with some other constructions, e.g. Tate, Frobenius, etc.
- ► TC of E₁-rings featured in Proposition 1.1 and its proof reduces to checking a similar result for THH of S-valued cochains.
- Note S^{BA} is an E_∞-ring spectrum. When R is E_∞ we have a simpler description of THH(R) as the pushout in CAlg(Sp) of R with T:

$$\Gamma \operatorname{HH}(R) = R \otimes \mathbb{T},$$

alternatively:

$$\mathrm{THH}(R)=R\otimes_{R\otimes R}R.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition 1.1

Proposition 1.1

For any *p*-complete \mathbb{E}_1 -ring *R*, the *p*-completion of TC(R) is in the thick subcategory generated by the *p*-completion of the fibre of the coassembly map:

$$\mathrm{TC}(R^{B\mathbb{Z}})\longrightarrow \mathrm{TC}(R)^{B\mathbb{Z}}$$

This will be useful in proving the following Theorem B (Asymptotic constancy for BP(n)) Fix a telescope T(n+1) of a type n+1 p-local finite spectrum. Then for all $k \gg 0$ there is a commuting square:

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra

§3.2: THH of cochains as a $\mathbb{T}\text{-equivariant}$ commutative algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

§3.3: THH of cochains as a cyclotomic spectrum

§3.4: Proof of Proposition 1.1

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra

§3.2: THH of cochains as a \mathbb{T} -equivariant commutative algebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

§3.3: THH of cochains as a cyclotomic spectrum

§3.4: Proof of Proposition 1.1

Assembly and coassembly

Coassembly

Let F be a contravariant homotopy functor, $F \colon Spaces^{op} \to Sp$, then there is a zig-zag called the coassembly map:

$$egin{aligned} \mathcal{F}(X) &
ightarrow \lim_{(\Delta^p
ightarrow X) \in \Delta^{\mathrm{op}}_{SX}} \mathcal{F}(\Delta^p) \ & \stackrel{\sim}{\leftarrow} \lim_{(\Delta^p
ightarrow X) \in \Delta^{\mathrm{op}}_{SX}} \mathcal{F}(*) \ & \cong \mathrm{map}(|N\Delta_{SX}|_+,\mathcal{F}(*)) \ & \stackrel{\sim}{\leftarrow} \mathrm{map}(X_+,\mathcal{F}(*)) \,. \end{aligned}$$

Examples Take $F(-) := \text{THH}(\mathbb{S}^{(-)})$ then the coassembly above gives a map: $\text{THH}(\mathbb{S}^{BA}) \longrightarrow \text{THH}(\mathbb{S})^{BA} \cong \mathbb{S}^{BA}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assembly and coassembly

Assembly

If *F* is a covariant homotopy functor, $F: \text{Spaces} \to \text{Sp}$, then there is similarly a zig-zag called the assembly map:

 $X_+ \wedge F(*) \longrightarrow F(X)$.

Remarks

Assume $F(\emptyset) = *$. The coassembly (resp. assembly) map is characterised by the universal property that it is the universal approximation on the right (resp. left) by a linear functor, i.e. one that also preserves homotopy pushout squares.

Spherical Witt vectors

Recall

- ► The Witt vectors functor W takes an F_p-algebra A and produces a characteristic 0 ring W(A). E.g. W(F_p) = Z_p.
- An 𝔽_p-algebra is *perfect* if the Frobenius x → x^p is an automorphism. E.g. 𝔽_p is perfect.
- ► The spherical group ring functor S[-] produces a ring spectrum S[G] from a group G, which is commutative if G is.

Spherical Witt vectors adjunction

There is an adjunction between perfect \mathbb{F}_p -algebras and \mathbb{E}_{∞} -ring spectra given by:

$$\mathbb{W}(-)\colon \operatorname{Perf} \longrightarrow \operatorname{CAlg}(\operatorname{Sp})\colon \pi_0^{\flat}(-)$$
.

Spherical Witt vectors cont.

The adjunction $\mathbb{W}(-) \dashv \pi_0^{\flat}(-)$

$$\mathbb{W}(-)$$
: Perf \longrightarrow CAlg(Sp): $\pi_0^{\flat}(-)$.

Definitions

•
$$\mathbb{W}(A) := \mathbb{S}[W(A)].$$

• $\pi_0^{\flat}(R) := \lim \left(\ldots \to \pi_0(R)/p \xrightarrow{F} \pi_0(R)/p \xrightarrow{F} \pi_0(R)/p \right).$

Example

 $\mathbb{W}(\mathbb{F}_p) = \mathbb{S}.$

Remarks

 \mathbb{W} is fully faithful and so Perf is a colocalisation of $\operatorname{CAlg}(\operatorname{Sp})$. The essential image of \mathbb{W} consists of those $R \in \operatorname{CAlg}(\operatorname{Sp})$ such that $\mathbb{F}_p \otimes R$ is a discrete perfect \mathbb{F}_p -algebra. We then have $R \cong \mathbb{W}(R \otimes \mathbb{F}_p)$.

Plan of attack

Preliminaries

$\S3.1$: THH of cochains as a commutative algebra

§3.2: THH of cochains as a T-equivariant commutative algebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

§3.3: THH of cochains as a cyclotomic spectrum

§3.4: Proof of Proposition 1.1

Lattice of \mathbb{Z}_p -modules

- First step now is to study the commutative algebras THH(S<sup>Bp^kZ</sub>).
 </sup>
- Will in fact study THH(S^{BM}) where M is any discrete finite projective Z_p-module.
- This is justified since for a free finite rank Z-module M the map BM → BM_p is an equivalence on p-complete suspension spectra since it is one on F_p-homology. Hence so too is S^{BM_p} → S^{BM}.

Definition

Write $\operatorname{Latt}_{\mathbb{Z}_p}$ for the category of discrete finite projective $\mathbb{Z}_p\text{-modules}.$

Identifying Witt vectors of continuous functions

- C⁰(A) denotes 𝔽_p-valued continuous functions on the ℤ_p-module A.
- A^{δ} is A equipped with the discrete topology.
- Ω_e is based loops.

Lemma 3.5

There's a commutative diagram of commutative algebras:

natural in $A \in Latt_{\mathbb{Z}_p}$.

Proof of Lemma 3.5

- (1) is an iso since $H^*_c(A; \mathbb{F}_p) \cong H^*(A; \mathbb{F}_p)$.
- (2) and (4) are isos since 𝑘_p ⊗ − commutes with finite limits and arbitray products that are uniformly bounded below.
- (3) is an iso by convergence of the Eilenberg-Moore spectral sequence.

(5) and (6) are by definition.

Proof of Lemma 3.5 cont.

So we have a square:

and recall the essential image of \mathbb{W} were those $R \in CAlg(Sp)$ such that $\mathbb{F}_p \otimes R$ is a discrete \mathbb{F}_p -algebra. And so we get:

$$\begin{array}{ccc} \mathbb{W}C^{0}(A) & \stackrel{i}{\longrightarrow} \mathbb{W}C^{0}(A^{\delta}) \\ \cong & & \downarrow \cong \\ \mathbb{S} \otimes_{\mathbb{S}^{BA}} \mathbb{S} & \longrightarrow \mathbb{S}^{\Omega_{e}BA} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

$\text{THH}(\mathbb{S}^{BA})$ as an \mathbb{S}^{BA} -algebra

Lemma 3.6

There is a commutative diagram of commutative \mathbb{S}^{BA} -algebras:

natural in $A \in Latt_{\mathbb{Z}_p}$.

Proof of Lemma 3.6

- ► The bottom left horizontal map is an assembly map for the T-shaped colimit THH along S⁽⁻⁾.
- The rightmost vertical map is an iso by the map $\mathcal{L}G \cong G \times \Omega_e G$ for G grouplike.
- The top square is \mathbb{S}^{BA} tensored with Lemma 3.5.
- The bottom left vertical map is an iso because ?
- ► ??? They also claim to use $\pi_0^{\flat}(\mathbb{S}^{BA} \otimes R) \cong \pi_0^{\flat}(R)$ somewhere.

$\text{THH}(\mathbb{S}^{BA})$ restricted to 0

Lemma 3.7 There is a pushout square of commutative algebras:

natural in $A \in Latt_{\mathbb{Z}_p}$.

Proof of Lemma 3.7

- $\pi_0^{\flat}(\mathbb{S}^{BA}) = \mathbb{F}_p$ since π_0^{\flat} is a right adjoint with values in a 1-category.
- ▶ Result follows from Lemma 3.6 and the fact that S^{BA} → THH(S^{BA}) → S^{BA} is the identity.

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra

§3.2: THH of cochains as a $\mathbb T\text{-equivariant}$ commutative algebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

§3.3: THH of cochains as a cyclotomic spectrum

§3.4: Proof of Proposition 1.1

Some more preliminaries

Definition

Let $w \in \mathbb{Z}_p$ and $B\mathbb{Z}_p(w)$ denote $B\mathbb{Z}_p$ with $\mathbb{T} = B\mathbb{Z}$ action left via multiplication from $B\mathbb{Z} \to B\mathbb{Z}_p$ induced by $1 \mapsto w$.

Examples

There is a \mathbb{T} -equivariant decomposition of the free loop space on the *p*-adic circle:

$$\mathcal{L}B\mathbb{Z}_p\cong \coprod_{w\in\mathbb{Z}_p}B\mathbb{Z}_p(w).$$

On the connected component corresponding to $w \colon B\mathbb{Z} \to B\mathbb{Z}_p$ the \mathbb{T} action is the '*w*-speed' rotation.

Some more preliminaries

We let:

- $\eta \in \pi_1(\mathbb{S})$ be the Hopf element.
- ▶ $\epsilon \in \pi_{-1} \mathbb{S}^{B\mathbb{Z}}$ be the class corresponding to $1 \in H^1(B\mathbb{Z}; \mathbb{Z})$.
- ► $\zeta \in \pi_{-1}$ THH(S^{BZ}) be the image of ϵ under S^{BZ} \rightarrow THH(S^{BZ}).
- σ be the Connes operator: given a T-equivariant spectrum X there is a degree 1 self map:

$$\sigma \colon \Sigma X \to X$$

obtained by viewing X as a $\mathbb{S}[\mathbb{T}]$ module then σ corresponds to the pointed identity map $S^1 \to \mathbb{T}$ in $\pi_1 \mathbb{S}[\mathbb{T}]$. This then induces $\sigma \colon \pi_n X \to \pi_{n+1} X$.

Lemma 3.11

Lemma 3.11 In π_0 THH($\mathbb{S}^{B\mathbb{Z}}$) we have $\sigma(\zeta) = (1 + \eta\zeta) \cdot \mathrm{Id}_{\mathbb{Z}_p}$.

Proof of Lemma 3.11

- From Lemma 3.6 the assembly map THH(S^{BZ_p}) → S^{LBZ_p} is injective so can compute σ(ζ) in the target instead.
- Using LBZ_p ≃ ∐_{w∈Z_p} BZ_p(w) and the fact Z → Z_p is dense we reduce to computing σ(ε) in π₀S^{BZ(w)} where w ∈ Z.
 Since S^{BZ(w)} = w*S^T for the degree w map T → T sends σ → wσ we can instead show that:

$$\sigma(\epsilon) = 1 + \eta \epsilon \in \pi_* \mathbb{S}^{\mathbb{T}}$$

• They then claim after rationalization this is straightforward and the general case follows from $\sigma \circ \sigma = \eta \sigma$.

p-speed action on THH equivalent to base changed THH

Construction 3.12

For $R \in CAlg(Sp)$ tensoring by the *p*-fold cover $p: \mathbb{T} \to \mathbb{T}/C_p \cong \mathbb{T}$ yields a map of \mathbb{T} -equivariant commutative algebras:

 $\psi_{\rho} \colon \mathrm{THH}(R) \to \rho^* \mathrm{THH}(R)$

where $p^* \colon \operatorname{Sp}^{B\mathbb{T}/C_p} \to \operatorname{Sp}^{B\mathbb{T}}$.

Lemma 3.13

The map ψ_p refines to a \mathbb{T} -equivariant map:

$$\psi_{p} \colon \mathrm{THH}(\mathbb{S}^{B\mathbb{Z}})_{|p\mathbb{Z}_{p}} \xrightarrow{\cong} p^{*}\mathrm{THH}(\mathbb{S}^{B\mathbb{Z}})$$

inducing res_p: $C^0(p\mathbb{Z}_p) \to C^0(\mathbb{Z}_p)$ on π_0^{\flat} . In particular the C_p action on $\text{THH}(\mathbb{S}^{B\mathbb{Z}})_{|p\mathbb{Z}_p}$ is trivialisable.

Proof of Lemma 3.13

Lemma 3.13

The map ψ_p refines to a \mathbb{T} -equivariant map:

$$\psi_{p} \colon \mathrm{THH}(\mathbb{S}^{B\mathbb{Z}})_{|p\mathbb{Z}_{p}} \stackrel{\cong}{\longrightarrow} p^{*}\mathrm{THH}(\mathbb{S}^{B\mathbb{Z}})$$

inducing res_p: $C^0(p\mathbb{Z}_p) \to C^0(\mathbb{Z}_p)$ on π_0^{\flat} . In particular the C_p action on $\text{THH}(\mathbb{S}^{B\mathbb{Z}})_{|p\mathbb{Z}_p}$ is trivialisable.

Proof of Lemma 3.13

- The assembly map THH(S^BZ) → S^{LBZ} are injective on homotopy we can prove the claim in S^{LBZ}.
- Precomposition by the degree p map S¹ → S¹ sends the circle at component a ∈ Z_p to the circle at component pa ∈ Z_p isomorphically.

THH(\mathbb{S}^{BA}) restricted to $p^k \mathbb{Z}_p^{\times}$

Lemma 3.14 For each $k \ge 0$ there is an iso of $\mathbb{W}C^0(p^k\mathbb{Z}_p^{\times})$ -modules in $\operatorname{Sp}^{B\mathbb{T}}$:

$$\mathrm{THH}(\mathbb{S}^{B\mathbb{Z}_p})_{|p^k\mathbb{Z}_p^\times}\cong\mathbb{W}C^0(p^k\mathbb{Z}_p^\times)\otimes\Sigma^{-1}\mathbb{S}[\mathbb{T}/C_{p^k}]\,.$$

Proof of Lemma 3.14

- By Lemma 3.13 we can reduce to k = 0.
- Restricting ζ ∈ π₁THH(S^{BZ_p}) down to a class in π₁THH(S^{BZ_p})_{|Z[×]_p} we can construct a T-equivariant map of WC⁰(Z[×]_p)-modules:

$$z\coloneqq \mathbb{W}C^0(\mathbb{Z}_p^\times)\otimes \Sigma^{-1}\mathbb{S}[\mathbb{T}] \longrightarrow \mathrm{THH}(\mathbb{S}^{B\mathbb{Z}_p})_{|\mathbb{Z}_p^\times}.$$

On homotopy this is:

$$z\colon \left(\pi_*\mathbb{W}C^0(\mathbb{Z}_p^{\times})\right)\left\{[*],[\mathbb{T}]\right\}\longrightarrow C^0(\mathbb{Z}_p^{\times})\left\{1,\zeta\right\}.$$

Proof of Lemma 3.14 cont.

On homotopy this is:

 $z\colon \left(\pi_*\mathbb{W}C^0(\mathbb{Z}_p^{\times})\right)\{[*],[\mathbb{T}]\}\longrightarrow C^0(\mathbb{Z}_p^{\times})\{1,\zeta\}$

with $z([*]) = \zeta$.

▶ To compute *z*([𝔅]) we have by Lemma 3.11:

 $z([\mathbb{T}]) = z(\sigma([*])) = \sigma(z([*])) = \sigma(\zeta) = (1 + \eta\zeta) \cdot \mathrm{Id}_{\mathbb{Z}_p}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The WC⁰(p^kZ[×]_p)-module iso follows since Id_{Z_p} is a unit when restricted to Z[×]_p.

Lemma 3.15 Let $R \in CAlg(Sp)^{BC_p}$ be bounded below. In the span diagram:

$$\pi_0^{\flat} R \longleftarrow \pi_0^{\flat} R^{hC_p} \longrightarrow \pi_0^{\flat} R^{tC_p}$$

the left arrow is an iso if the C_p -action on $\pi_0 R$ is trivial, e.g. when the C_p -action extends to a \mathbb{T} action. The right arrow is an iso if the C_p -action is trivial.

Proof of Lemma 3.15

The left arrow being iso, under the assumption, follows since π₀^b is a right adjoint factoring through π₀ and taking values in a 1-category.

Proof of Lemma 3.15 cont.

$$\pi_0^{\flat} R^{hC_p} \longrightarrow \pi_0^{\flat} R^{tC_p}$$

- The Postnikov tower refines the map S → Z_p to a tower of square-free extensions.
- ► (-)^{hC_p} and (-)^{tC_p} are exact and commute with uniformly bounded below limits.
- π_0^{\flat} sends square-zero extensions to isos.
- These reduce us to check for R replaced with $\mathbb{Z}_p \otimes R$.
- The map is then just

$$\pi_*(F_p\otimes R)\llbracket t \rrbracket \to \pi_*(\mathbb{F}_p\otimes R)((t))$$

with |t| = -2.

Since R is bounded below, |t| < 0 this is a nil-extension in degree 0 so we're done.</p>

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra

§3.2: THH of cochains as a T-equivariant commutative algebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

§3.3: THH of cochains as a cyclotomic spectrum

§3.4: Proof of Proposition 1.1

A diagram and the Cyclotomic Frobenius

We can patch together Lemmas 3.13, 3.14, and 3.15 to get a diagram:

 $\begin{array}{ccc} \pi_0^{\flat} \mathrm{THH}(\mathbb{S}^{B\mathbb{Z}}) &\longleftarrow & \pi_0^{\flat} \mathrm{THH}(\mathbb{S}^{B\mathbb{Z}})^{hC_p} \longrightarrow \pi_0 \mathrm{THH}(\mathbb{S}^{b\mathbb{Z}})^{tC_p} \\ \cong & & \downarrow \cong & & \downarrow \cong \\ C^0(\mathbb{Z}_p) &\longleftarrow & C^0(\mathbb{Z}_p) \xrightarrow{(-)_{|p\mathbb{Z}_p}} & C^0(p\mathbb{Z}_p) \end{array}$

Cyclotomic Frobenius

Recall for $R \in CAlg(Sp)$ there's a unique \mathbb{T} -equivariant map of commutative algebras:

$$\varphi \colon \mathrm{THH}(R) \to \mathrm{THH}(R)^{tC_p}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The cyclotomic Frobenius is an iso

Proposition 3.18

The cyclotomic Frobenius $\varphi \colon \operatorname{THH}(\mathbb{S}^{B\mathbb{Z}_p}) \to \operatorname{THH}(\mathbb{S}^{B\mathbb{Z}_p})^{t\mathcal{C}_p}$ is an iso and $\pi_0^{\flat}(\varphi) = \operatorname{res}_{1/p}$ where $1/p \colon p\mathbb{Z}_p \to \mathbb{Z}_p$.

Proof of Proposition 3.18

$$\begin{array}{cccc} \mathbb{S}^{B\mathbb{Z}_{p}} & \stackrel{\Delta_{p}}{\longrightarrow} ((\mathbb{S}^{B\mathbb{Z}_{p}})^{\otimes p})^{tC_{p}} & \stackrel{m}{\longrightarrow} (\mathbb{S}^{B\mathbb{Z}_{p}})^{tC_{p}} & \stackrel{\cong}{\longleftarrow} & \mathbb{S}^{B\mathbb{Z}_{p}} \\ & & \downarrow^{(\mu_{p}^{*})^{tC_{p}}} & \downarrow & \downarrow \\ & & \downarrow^{(\mu_{p}^{*})^{tC_{p}}} & \downarrow & \downarrow \\ & & & \downarrow \\ & & & \text{THH}(\mathbb{S}^{B\mathbb{Z}_{p}}) \xrightarrow{\varphi} & \text{THH}(\mathbb{S}^{B\mathbb{Z}_{p}})^{tC_{p}} \xrightarrow{\varphi} (p^{*}\text{THH}(\mathbb{S}^{B\mathbb{Z}_{p}}))^{tC_{p}} & \stackrel{\cong}{\leftarrow} & \text{THH}(\mathbb{S}^{B\mathbb{Z}_{p}}) \end{array}$$

▶ Left square is definition of the cyclotomic Frobenius. Middle square is tensoring $\mathbb{S}^{B\mathbb{Z}_p}$ with the ses $C_p \to \mathbb{T} \to \mathbb{T}/C_p$ and applying $(-)^{tC_p}$. Right square is constructed using a trivialization of the C_p action on $* \to \mathbb{T}/C_p$.

(日本本語を本書を本書を入事)の(で)

Proof of Proposition 3.18 cont.

- Allen Yuan showed the indicated isos. By Lemmas 3.13 and 3.14 ψ^{tC_p}_p is an iso.
- The composite $m \circ \Delta_p$ is the Tate valued Frobenius.
- The composite $can^{-1} \circ m \circ \Delta_p$ is the identity on S.
- Naturality of the limit over BZ_p now implies that can⁻¹ ∘ m ∘ Δ_p is the identity on S^{BZ_p} too.
- The universal property of THH: R → THH(R) being initial amongst E_∞-maps from R to T-equivariant E_∞-rings shows φ is iso.

Definition of TR as a corepresentable

Lemma/Definition of TR

Let $L_{\langle p^{\infty} \rangle} \mathbb{S}$ be the cyclotomic spectrum with underlying \mathbb{T} -equivariant spectrum given by:

$$\bigoplus_{j\geq 0} \mathbb{S}[\mathbb{T}/C_{p^j}].$$

The Frobenius $\varphi \colon L_{\langle p^{\infty} \rangle} \mathbb{S} \longrightarrow L_{\langle p^{\infty} \rangle} \mathbb{S}^{tC_p}$ is the iso (by the Segal conjecture) given by the sum of the composites:

$$\mathbb{S}[\mathbb{T}/C_{p^j}] \to (\mathbb{S}[\mathbb{T}/C_{p^{j+1}}])^{hC_p} \to (\mathbb{S}[\mathbb{T}/C_{p^{j+1}}])^{tC_p}$$

 $L_{\langle p^{\infty} \rangle} \mathbb{S}$ then corepresents TR(-) in $CycSp_+$.

Proposition 3.19

There is a fibre sequence of cyclotomic spectra:

$$\mathbb{W}C^{0}(\mathbb{Z}_{p}^{\times})\otimes\Sigma^{-1}L_{\langle p^{\infty}\rangle}\mathbb{S}\to\mathrm{THH}(\mathbb{S}^{B\mathbb{Z}})\to\mathrm{THH}(\mathbb{S})^{B\mathbb{Z}}$$

Proof of Proposition 3.19

Write F for the fibre:

$$F \to \mathrm{THH}(\mathbb{S}^{B\mathbb{Z}}) \to \mathrm{THH}(\mathbb{S})^{B\mathbb{Z}}$$

- F is the fibre of commutative algebras in CycSp so it is a non-unital algebra in CycSp.
- By Lemma 3.7 F is iso to ⊕_{k≥0} F_{|p^kℤ_p[×]} as T-equivariant non-unital commutative algebras.
- ▶ By Lemma 3.14 we identified an iso of $WC^0(\mathbb{Z}_p^{\times})$ -modules:

$$F_{|p^k\mathbb{Z}_p} \cong \mathbb{W}C^0(\mathbb{Z}_p^{\times}) \otimes \Sigma^{-1}\mathbb{S}[\mathbb{T}/C_{p^k}].$$

- ▶ By Proposition 3.18 the cyclotomic Frobenius on *F* breaks up as a sum of isos $F_{|p^k \mathbb{Z}_p^{\times}} \cong (F_{|p^{k+1} \mathbb{Z}_p^{\times}})^{tC_p}$.
- The splitting of the Frobenius gives the result (by Lemma 2.7 we haven't seent).

Plan of attack

Preliminaries

§3.1: THH of cochains as a commutative algebra

§3.2: THH of cochains as a T-equivariant commutative algebra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

§3.3: THH of cochains as a cyclotomic spectrum

§3.4: Proof of Proposition 1.1

Main result

Corollary 3.21

Let $R \in Alg(Sp)$ be connective. Then $WC^0(\mathbb{Z}_p^{\times}) \otimes TC(R)$ is in the thick subcategory generated by the fibre of the coassembly map:

$$TC(R^{B\mathbb{Z}}) \longrightarrow TC(R)^{B\mathbb{Z}}$$

Proof of Corollary 3.21

There's a fibre sequence:

$$\mathrm{TC} \longrightarrow \mathrm{TR} \xrightarrow{1-F} \mathrm{TR}$$

(also another way to define TC) from which we get a fibre sequence on corepresenting objects:

$$L_{\langle p^{\infty} \rangle} \mathbb{S} \longrightarrow L_{\langle p^{\infty} \rangle} \mathbb{S} \longrightarrow \mathbb{S}.$$

Proof of Corollary 3.21

• Tensor this with $\mathbb{W}C^0(\mathbb{Z}_p^{\times})$ to get:

$$\mathbb{W}C^{0}(\mathbb{Z}_{\rho}^{\times})\otimes L_{\langle\rho^{\infty}\rangle}\mathbb{S}\longrightarrow \mathbb{W}C^{0}(\mathbb{Z}_{\rho}^{\times})\otimes L_{\langle\rho^{\infty}\rangle}\mathbb{S}\longrightarrow \mathbb{W}C^{0}(\mathbb{Z}_{\rho}^{\times}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The first two terms are the (suspension) of the fibre of the THH(S^{BZ}) coassembly map, hence WC⁰(Z[×]_p) is in the thick subcategory generated by the fibre of the THH(S^{BZ}) coassembly map.

Proof of Corollary 3.21

► Tensoring by THH(R) the fibre sequence F → THH(S^{BZ}) → THH(S)^{BZ} and use THH is monoidal along with S^{BZ} ⊗ R ≅ R^{BZ} to get the following cofibre sequence:

$F \otimes \operatorname{THH}(R) \to \operatorname{THH}(R^{B\mathbb{Z}}) \to \operatorname{THH}(R)^{B\mathbb{Z}}$

Since TC preserves colimits and WC⁰(Z_p) is a p-adic sum of spheres after applying TC we get the sequence:

$$F \otimes TC(R) \to \mathrm{TC}(R^{B\mathbb{Z}}) \to \mathrm{TC}(R)^{B\mathbb{Z}}$$

from which the result follows.